## Computational Complexity

## Exam

5.02.2019

Problem 1. ( 0.6 pt ) Consider the following problem:
Input: a directed graph $G$ such that every vertex has at most one successor (i.e., in every vertex there starts at most one edge), and vertices $s, t$.
Question: is there a path from $s$ to $t$ in $G$ ?
Prove either that this problem is in $L$, or that it is NL-complete (under log-space reductions).

Problem 2. ( 0.6 pt ) Prove that the following problem is NP-complete:
InPUT: a list of pairs of words $\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right), \ldots,\left(v_{k}, w_{k}\right)$, and a word $y$ of length $m$.
QUESTION: is there a list of indices $i_{1}, \ldots, i_{m}$ such that $v_{i_{1}} v_{i_{2}} \ldots v_{i_{m}}=w_{i_{1}} w_{i_{2}} \ldots w_{i_{m}}$ ?
Note. The word $y$ is irrelevant, only its length is important. By $v_{i_{1}} v_{i_{2}} \ldots v_{i_{m}}$ we mean the concatenation of the words $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{m}}$.
Example. For $\left(v_{1}, w_{1}\right)=(b a, a)$, and $\left(v_{2}, w_{2}\right)=(a, a b)$, and $m=2$ the answer is YES: we can take $i_{1}=2, i_{2}=1$, and the concatenated word is $a b a$. For $\left(\nu_{1}, w_{1}\right)=(b a, a)$, and $\left(v_{2}, w_{2}\right)=$ ( $a, a b$ ), and $m=1$ the answer is NO.

Problem 3. ( 0.6 pt ) We say that $L \in$ RPSpace if there exists a probabilistic Turing machine $M$ such that:

- $M$ uses polynomial space;
- $M$ stops in exponential time;
- $\forall w \in L \mathbb{P}_{r}[M(x, r)=Y E S] \geq \frac{1}{2}$;
- $\forall w \notin L \mathbb{P}_{r}[M(x, r)=Y E S]=0$.

Prove or disprove: RPSpace $=$ PSpace.

