Problem 3.1. (0.25 pt$)$ An oracle machine M is called Zosia Samosia if $L\left(M^{K}\right)=L\left(M^{\varnothing}\right)$ for every language K, i.e., if for every oracle the language recognized by M remains the same (but the running time may differ). Let ZSP be the class of languages that can be recognized in polynomial time by some Zosia Samosia with some oracle. Prove that $\mathbf{Z S P}=\mathbf{N P} \cap \mathbf{c o N P}$.

Problem 3.2. (0.25 pt$)$ There are two persons: Alice and Bob. They both know an undirected graph $G=(V, E)$. Moreover, Alice knows a set $A \subseteq V$, and Bob knows a set $B \subseteq V$. Alice and Bob want to check whether there is a triangle (i.e., a 3-node clique) in the set $A \cup B$, but they want to limit the length of messages they send to each other. They may benefit from a help of a wizard Merlin, who knows both A and B (as well as G), but who is biased: he wants to convince Alice and Bob that there is no such triangle.

Design a probabilistic protocol of the following shape (where $n=|V|$):

1. Merlin sends $O(\sqrt{n} \cdot \log n)$ bits of information to Alice;
2. Bob tosses $O(\log n)$ coins;
3. Bob sends $O(\sqrt{n} \cdot \log n)$ bits of information to Alice;
4. Alice accepts or rejects.

Alice and Bob should work in polynomial time. If there is no triangle in $A \cup B$, there should exist a message from Merlin such that Alice always rejects, otherwise (for every message from Merlin) Alice should accept with probability $\geq \frac{1}{2}$. We assume that Alice and Bob are honest, and that Merlin does not know the future (in particular, Bob's random bits).

Hint As a starting point consider the following protocol for checking whether the sets A and B are disjoint. For simplicity, we present it only for the case when $\sqrt{n} \in \mathbb{Z}$. Suppose that $V=\{1, \ldots, n\}$ and denote $k=\sqrt{n}$. Let p be the smallest prime number such that $p \geq 4 n$. Let $Q_{1}, \ldots, Q_{k}, R_{1}, \ldots, R_{k}$ be polynomials in $\mathbb{Z}_{p}[x]$ of degree at most $k-1$ such that for all $i, j \in$ $\{1, \ldots, k\}$ it holds that

- $Q_{i}(j)=1$ iff $(i-1) k+j \in A$,
- $Q_{i}(j)=0$ iff $(i-1) k+j \notin A$,
- $R_{i}(j)=1$ iff $(i-1) k+j \in B$,
- $R_{i}(j)=0$ iff $(i-1) k+j \notin B$,

The protocol is as follows:

1. Merlin sends to Alice coefficients of a polynomial $P \in \mathbb{Z}_{p}[x]$ of degree at most $2(k-1)$.
2. Bob draws $l \in \mathbb{Z}_{p}$ uniformly at random.
3. Bob sends to Alice l and $R_{i}(l)$ for all $i \in\{1, \ldots, k\}$.
4. Alice accepts if $P(j)=0$ for all $j \in\{1, \ldots, k\}$ and $P(l)=\sum_{i=1}^{k} Q_{i}(l) \cdot R_{i}(l)$; otherwise she rejects.
If $A \cap B=\varnothing$, there exists a message from Merlin such that Alice always accepts, otherwise Alice rejects with probability $\geq \frac{1}{2}$. (This hint is given without any proof, but in your solution you should prove all required properties.)
