
Piotr Gawryluk
student no: 346895 page 1/3 Series: 3

1 Problem 1

1.1 Outline

To prove that ZSP = NP ∩ coNP, I will prove inclusion both ways.

1.2 ZSP ⊆ NP ∧ ZSP ⊆ coNP

First, let’s prove ZSP ⊆ NP. Let’s consider some language LZSP ∈ ZSP. Then there exists M and K (M being
deterministic Zosia Samosia machine and K being oracle) such, that L(MK) = L(M∗) = LZSP. This means that
some Zosia Samosia machine would recognize this language with any oracle (L(M∗) = LZSP), but for some given
oracle K it would work in polynomial time in less than T steps. Now, to show that this language is in NP, we
create a NP machine. Let’s construct M′ such, that L(M′

) = LZSP and it simulates M with some oracle. This
nondeterministic machine follows the same steps as deterministic M with oracle, with a slight difference: every
time M would ask oracle something, M′ selects the answer nondeterministically (caching previous answers to
not contradict them) instead of asking the oracle. This nondeterministic machine accepts input when it enters
accepting state as M with oracle would, otherwise after T(|input|) steps (if M accepts input, then MK accepts
input in less than T(|input|) steps) M

′ rejects (since MK would accept in such number of steps, and clearly
M

′ on some nondeterministic run have all the steps made by M with oracle K). If M′ accepted, then M with
oracle giving answers same as M′ chose on its accepting run would also accept.

Now let’s focus on ZSP ⊆ coNP. We’ve already proven that ZSP ⊆ NP. This implies that coZSP ⊆ coNP.
And since Zosia Samosia is a deterministic machine, it always accepts or rejects, then it recognizes not only
ZSP languages class but also its complement - coZSP. Then ZSP = coZSP. And thus ZSP ⊆ coNP.

1.3 NP ∩ coNP ⊆ ZSP

Now, let’s consider some language L#, for which we know: L# ∈ NP ∧ L# ∈ coNP. Now let’s focus on
the fact that L# ∈ NP for a second. There exists a nondeterministic machine MNP ∈ NP and L(MNP) = L#.
Let’s switch to L# ∈ coNP: there exists another nondeterministic machine McoNP ∈ NP and L(McoNP) = L#.
For such L# let’s construct an oracle Zosia Samosia machine M, that for any oracle recognizes L# and for
some oracle K recognizes L# in polynomial time: L(M∗) = L(MK) = L#. Oracle K would help us create run
for checking word being in L# or L#. Machine M asks its oracle for subsequent steps in simulating MNP and
then after finishing run, for subsequent steps in simulating McoNP. We can assume without loss of generality,
that each step M makes, it has 2 choices. It simply writes "input # number of current step" on oracle tape,
then oracle answers with yes/no, where yes means first choice and no means second one. After running both
simulations machine M can answer if input word is in L# or L#. Checking its run (both for L# and L#) by
Zosia Samosia machine M is done in polynomial time. If oracle that was used is K, then one of the runs must
be correct and machine recognized word to be in L# or L# (because L# ∈ NP∩coNP). If both runs with oracle
are incorrect (so it means the oracle wasn’t K), then machine M checks if input belongs to L# in EXPTIME

since NP ⊆ EXPTIME.

2 Problem 2

2.1 Outline

First, I would prove that communication protocol described in hint is correct. Then I would show that using
this protocol as a blackbox solution, Alice could answer always correctly when there is no triangle in A∪B and

with probability >
1

2
when such triangle exists.

2.2 Proof of hint

First let’s notice that for every n, based on Bertrand’s postulate (for every n exists at least one prime
number p such that n < p < 2n), exists a prime number 4n 6 p 6 8n. We know that polynomial Zp of degree
k has at most k roots (zero points). When we interpret points in V as a square of points (if

√
n /∈ Z then we can

Complexity theory Due: 2018-01-26

Piotr Gawryluk
student no: 346895 page 2/3 Series: 3

use padding to make this V representation a proper square), then we could say that polynomial Qi describes
i-th row of V in terms of which elements belong to set A. Same for Ri and belonging to set B. Now let’s notice
that when we multiply polynomials Qi ∗ Ri we receive a polynomial that describes intersection of both sets A
and B in row i. For example if Qi(j) ∗ Ri(j) = 1 then both Qi(j) and Ri(j) are equal to 1, and thus element j
of row i belongs to A ∩ B. Otherwise, if element j doesn’t belong to A or to B, the multiplication gives 0. We
would use that property proving hint.

An honest Merlin is expected to compute both Qi and Ri polynomials (using Lagrange Interpolating poly-
nomial), then P =

∑k
i=1 Qi ∗ Ri and to send coefficients of that polynomial (P) to Alice (he might actually be

dishonest and send something different than
∑k

i=1 Qi ∗ Ri so we need a way to check its correctness). Let’s
notice that since this polynomial has degree of at most 2(k − 1) and it’s a polynomial in Zp, then it would
require O(klogn) bits. Since it has O(k) coefficients and each one of them is < 8n then each coefficient requires
O(logn) bits to be written in binary. Since k is O(

√
n), then the bits required to send Merlin polynomial to

Alice are O(
√
nlogn).

Now, Bob draws l ∈ Zp uniformly (and at random) and calculates polynomials Ri (also using Lagrange
Interpolating Polynomial). Then he calculates value of each Ri in l. Then Bob sends l and k numbers: Ri(l)

(for each i) to Alice. (Each number is O(logn), so together it makes O(klogn) = O(
√
nlogn) bits to send)

Alice receives Bobs message and calculates coefficients for Qi. Then, she calculates Qi(l) for each i based on
the value of l she received from Bob. Now, Alice computes value of T =

∑k
i=1 Qi∗Ri (the proper polynomial) in l

and wants to check if Merlins polynomial is correct, in other words if P = T . So she also computes P(l) and com-

pares the results. If Merlin cheated (i.e. sent P 6= T), it stands that probability: P(P(l) = T(l) 6
2(k− 1)

p
6

1

2
.

If P(l) = T(l) (either Merlin sent P = T or he sent P 6= T but those polynomials have the same value in l) Alice
assumes those polynomials are the same and checks values of P(j) for each 0 < j 6 k. If all those values are
equal to 0 then the subsets are disjoint and Alice accepts. Otherwise, if for at least one j: P(j) = 1, Alice rejects.
Alice also rejects if P(l) 6= T(l).

2.3 Triangles solution

We are going to heavily use communication protocol described in hint. There is a slight difference though.
Since Bob tosses a coin to draw consecutive bits for l, the number he draws from those tosses (treating each
toss as a binary digit of a number) will be in range [0, 2t − 1] (if he tossed the coin t times). All polynomials
used in communication protocol, on the other hand are in Zp, which means it’s unavoidable that some numbers
have higher chance of being drawn (at most 2 times more than any other). This is due to "overflow", that would
happen when computing l mod p. Because of the differrence described here, the probability of P(l) = T(l)

(if P 6= T) changes from
2(k− 1)

p
to 2 ∗ 2(k− 1)

p
. After all, it’s nothing to worry about, since it still holds:

2 ∗ 2(k− 1)

p
6

1

2
From now on let’s look at the hint as a black box, that we define inputs to and interpret outputs from. Let’s

think about triangles problem. There are couple of possibilities:

� Set A contains a triangle. - Here it’s simple, Alice would always answer correctly without any information
from Merlin or Bob.

� Set B contains a triangle. - This is also pretty straightforward, Bob sends only one information to Alice,
that she should accept, since he has a triangle in his set B.

� Neither A nor B contains a triangle. - Here is where things get more complex, I would describe solution
below.

Let’s notice, that a triangle that spans across sets A and B can:

� Have 2 nodes in A and 1 node in B.

� Have 1 node in A and 2 nodes in B.

Complexity theory Due: 2018-01-26

Piotr Gawryluk
student no: 346895 page 3/3 Series: 3

To simplify description below, let’s call a set of nodes that complement a triangle with 2 nodes in set X as
"missing(X)".

Now let’s describe which sets we want to intersect in our solution (since we are using hint as a blackbox).
Let’s notice, that when we intersect A with missing(B) and the intersection is not-empty, then a triangle
with 2 of its nodes in B and 1 node in A exists. Similarly, when we intersect B with missing(A), non-empty
intersections means there is a triangle with 2 nodes in A and 1 node in B. This is exactly what we would like to
check. Let’s check both those intersections at once: we can encode A and missing(A) (padded to n elements
each) as A′ , also we encode missing(B) and B (in this order, also padded to n elements) as B′ . Now, we simply
want to check if intersection of A′ and B

′ is non-empty. If it is, then a triangle in A ∪ B exists, otherwise it
doesn’t.

We should interpret Alice results differently than they are interpreted in hint. If Alice finds Merlin honest
(i.e. P(l) = T(l)), then if she finds out there exists an intersection of sets A

′ and B
′ , she accepts - a triangle

exists. If Alice finds Merlin cheating (i.e. P(l) 6= T(l)) she also accepts (Merlin is trying to convince Alice and
Bob that no triangle exists). The case when Alice rejects is when Alice finds Merlin honest and the intersection
is empty - which means either Merlin is cheating and Alice with Bob didn’t manage to find out about that or
there is in fact no such triangle.

Complexity theory Due: 2018-01-26

