
Albert Gutowski
Index number: 359504 Series 3 Computational complexity

Problem 3.1

ZSP ⊆ NP∩coNP
For each language L ∈ ZSP (so there exists a Zosia Samosia machine M that recognises L and
an oracle O for which M recognises L in time bounded by polynomial p(n)) we can show two
NP machines (one recognising L, the other L) that simulate M , nondeterministically guessing
answers of the oracle (remembering all queries and checking if some query has repeated – then
they repeat the old answer) and stopping (rejecting) after p(|w|) simulated steps.

Of course, if the simulated machine accepts or rejects, the simulating machine recognising
L does the same, and the one recognising L does the contrary.

The proof of correctness is as follows. For each word w the machine M with oracle O
reaches final state (rejects or accepts) in at most p(n) steps. That means that some runs of both
NP machines also reach them (and obviously give the correct answers). As the Zosia Samosia
recognises the same language for each oracle, no run of the NP machines will give incorrect
answer – and that’s enough for the correctness.

It is also easy to see that their working time is polynomial – each run simulates polynomial
number of steps and cost of simulating each step in bounded by some polynomial (the most
expensive step is query to the oracle – we need to compare it with all previous queries – but the
sum of lengths of all queries doesn’t exceed p(|w|)).

NP∩coNP ⊆ ZSP
For each language L ∈ NP∩coNP (so for each word there exists a witness for it either being
in or not being in the language, which size is bounded by some polynomial p(n) and can be
verified in polynomial time) we will show a Zosia Samosia machine and an oracle O with
which it recognises L in polynomial time.

Let’s consider specific set of the mentioned witnesses over some alphabet A. We will call a
witness positive if it proves that a word is in the language. We will call it negative if it proves
that it is not in the language.

The idea is simple: the Zosia Samosia machine will construct a witness symbol by symbol,
using hints from the oracle whether there exists a witness beginning with the given sequence.
It will believe in the oracle’s oracles until it creates a correct witness or until it discovers some
inconsistency (the size of witness exceeds p(|w|) or the oracle states that there is no symbol that
could go next) – if that happens, it will become a non-believer. It will start from the beginning,
won’t ask oracle for anything anymore and do all the work by itself (probably in exponential
time) checking all possible witnesses.

The oracle O (for which the machine works in polynomial time) accepts word w0v iff for
a word w there exists a negative witness (of length less than p(|w|)) with a prefix equal to v.
Similarly, it will accept a word w1v iff for a word w there exists a positive witness that begins
with v. Let’s assume 0 and 1 are special characters, not occuring in the alphabets of words nor
witnesses. We won’t ask oracle for any other words than described above, so it can reject them.

The Zosia Samosia’s algorithm is now quite obvious. For input word w, it sends oracle
words w0 and w1 (with the oracle O we would already know whether w ∈ L) and temporarily
believes in the answer (of course, if exactly one of the answers is positive). Then it guesses

1/5

Albert Gutowski
Index number: 359504 Series 3 Computational complexity

consecutive letters of the witness. Believing there exists a witness with prefix v, it checks
whether v is a correct witness. If so, it answers; otherwise for each letter a from the witnesses’
alphabet it asks the oracle about the prefix va. If none are accepted by the oracle or the length
of the prefix exceeds p(|w|), it stops believing, otherwise it extends the prefix it believes in.

The correctness follows immediately from the correctness of the witnesses (the machine
answers only when it finds a witness). The machine makes polynomial number of steps be-
lieving in the oracle (at most |A| · p(|w|) prefixes will be considered and the verification of the
witness takes polynomial number of steps). It’s obvious that with the oracle O the working
time will be polynomial and for other oracles the machine will eventually answer (in the worst
case, after verifying |A|p(|w|) potential witnesses after becoming a non-believer).

2/5

Albert Gutowski
Index number: 359504 Series 3 Computational complexity

Problem 3.2

General idea
If the answer is positive, there are four cases:

1. There is a triangle in A.
2. There is a triangle in B.
3. There is a triangle with two nodes in A and one node in B.
4. There is a triangle with one node in A and two nodes in B.

The first two cases are trivial, as we assume that Alice and Bob are honest, so in case 1
Alice can answer by herself and in case 2 Bob can send one bit with the information that there
is a triangle.

Let’s solve case 3. Alice wants to decide whether there is any vertex in B that creates a
triangle with some pair from A. There is a specific set of vertices SA fulfilling this condition, so
Alice can calculate this set and check whether SA and B are disjoint (as in the hint – everything
works, because Merlin still wants to convince them that the sets are disjoint, i.e. there is no
such triangle).

Case 4 is symmetrical – Bob calculates set SB and they check if SB and A are disjoint.
So the protocol will consist of one bit sent from Bob to Alice (whether there is a triangle in

B), then the exact protocol from the hint (with Alice using SA instead of A while checking),
and again protocol from the hint, but with Bob using SB instead of B (and sending values of
the appropriate polynomial).

If there is no triangle in A ∪ B, there exists a message from Merlin such that Alice always
rejects (as there exist appropriate messages such that Alice will accept sets A and SB as disjoint
and B and SA as disjoint).

If there is a triangle from case 3, there is ≥ 1
2

probability that Alice will accept, as it’s
equivalent to her (correctly) recognising that SA and B are not disjoint. If it’s case 4, there is
again ≥ 1

2
probability of accepting (for the same reason). If both cases (3 and 4) are true, the

probability of accepting is only higher.

Calculating SA and SB

We will talk about the set of vertices SA that create triangles with some pair from A (for Bob
everything is symmetrical, so we will focus on Alice). It is obvious that it is well defined (it is
a set of these vertices that have edges to at least two vertices from A). It is also obvious that if
any of these vertices are in B, there is a triangle with two nodes from A and one node from B,
and otherwise – there is no such triangle.

It’s easy to calculate this set in polynomial time – for each vertex v in V count number of
edges (v, u) ∈ E such that u ∈ A and if it’s greater or equal to 2, add it to SA.

3/5

Albert Gutowski
Index number: 359504 Series 3 Computational complexity

Proof of the hint
Text in gray is basically content of the hint

We assume that V = {1, ..., n} and denote k =
√
n (we assume that k ∈ Z for simplicity),

p is the smallest prime number such that p ≥ 4n. Q1, ..., Qk and R1, ..., Rk are polynomials in
Zp

[
x
]

of degree less than k, such that for all i, j ∈ 1, ..., k:

Qi(j) =

{
0, if (i− 1)k + j 6∈ A

1, if (i− 1)k + j ∈ A

Ri(j) =

{
0, if (i− 1)k + j 6∈ B

1, if (i− 1)k + j ∈ B

To cover all cases, let’s say that if
√
n 6∈ Z, everyone (Alice, Bob and Merlin) adds „artifi-

cial” vertices n + 1, n + 2, ...
⌈√

n
⌉2 with no edges and not beloging to A nor B. The answer

remains the same, while the probability of giving the correct answer shouldn’t suffer too much
(we only add O(

√
n) vertices).

We defined values of polynomials Qi and Ri in k distinct points and want them to be of
degree at most k − 1. That means we have correctly defined them and there is exactly one set
of polynomials fulfilling these conditions. What’s more, they can be calculated in polynomial
time (we can find their coefficients; it’s a known problem of polynomial interpolation), so Alice
can calculate all Qi, Bob can calculate all Ri and Merlin, of course, can do both.

The protocol is as follows:

1. Merlin sends to Alice coefficients of a polynomial P ∈ Zp [x] of degree at most 2(k−1).
2. Bob draws l ∈ Zp uniformly at random.
3. Bob sends to Alice l and Ri(l) for all i ∈ {1, ..., k}.
4. Alice accepts if P (j) = 0 for all j ∈ {1, ..., k} and P (l) =

∑k
i=1 Qi(l) ·Ri(l); otherwise

she rejects.

Let’s denote T (l) =
∑k

i=1 Qi(l) · Ri(l). It is a polynomial of degree at most 2(k − 1), as
each Qi ·Ri is a polynomial of degree at most 2(k − 1) and T is a sum of k such polynomials.

If A∩B = ∅, there obviously exists a message from Merlin such that Alice always accepts
(says that the sets are disjoint) – Merlin can send coefficients of T . As A∩B = ∅, all T (j) = 0
for j ∈ {1, ..., k} (for arguments l ∈ {1, ..., k} all values of Qi(l) and Ri(l) denote belonging
of some node to, respectively, A and B; there is no node in both, so all Qi(l) ·Ri(l) = 0, so the
sum T (l) is also equal to 0). And, of course, T (l) =

∑k
i=1Qi(l) ·Ri(l), as that’s its definition.

If A∩B 6= ∅, if Merlin sends T , Alice will surely reject (say that the sets are not disjoint),
because T (j) 6= 0 for some j ∈ {1, ..., k}. There is some node in A ∩B, let’s write its number
as (a − 1)k + b. Then we have Qa(b) = Ra(b) = 1, so Qa(b) · Ra(b) = 1, thus T (b) > 0 (as
each component of the sum T (b) is either 0 or 1, there are k components and k < p).

What happens when Merlin sends some other polynomial P ? Then P (x)− T (x) is a non-
zero polynomial of degree at most 2(k− 1), so it takes value 0 for at most 2(k− 1) arguments.
That means that, no matter what polynomial Merlin sends, Bob has chance at most 2(k−1)

p
for

drawing number l for which the values of T and P are equal.
Alice calculates value of T (l) and compares it with P (l). That means that the chance of

Alice rejecting in this case (A ∩ B 6= ∅) is at least 1− 2(k−1)
p
≥ 1− 2

√
n

4n
= 1− 1

2
√
n

, which is
obviously ≥ 1

2
for any n ≥ 1.

4/5

Albert Gutowski
Index number: 359504 Series 3 Computational complexity

Lengths of messages
Merlin sends coefficients of two polynomials over Zp of degree at most 2(k − 1) to Alice, so
the number of sent bits is at most 2 · 2(k − 1) · log p = O(

√
n log n).

Bob draws two random numbers l1, l2 from {1, ..., p} (tosses 2 log n = O(log n) coins) and
sends them to Alice, along with 2k values from {1, ..., p} and one additional bit (whether there
is a triangle in B), so he sends at most (2k + 2) log p+ 1 = O(

√
n log n) bits.

5/5

