
Anna Prochowska, 360709

Computational complexity, Homework 2

Problem 2.1

Define PSS as {k | ∃Si⊆S
∑

Si = k} (set of all possible sums of subsets of S). PSS can be encoded as

a binary number of length max PSS : k-th bit is set iff k ∈ PSS . In our solution PSS is represented

as a binary number of length n.

We describe a construction of a uniform circuit of depth O(log2 n), polynomial size, and gates having

fan-in 2. This proves that the problem is in u−NC.

Algorithm overview:

input = {n1, ..., nn} is a set of n input numbers.

1. Convert each input number ni to PS{ni}. Depth: O(log n).

2. Compute PSinput in ”divide and conquer” manner. To get PSS , first split S into two subsets S1,

S2 of (almost) equal size, compute PSS1 and PSS2, and then use them to calculate PSS . Depth:

O(log2 n).

3. Return 1 iff n-th bit of PSinput is set. This is equivalent to saying whether n ∈ PSinput. Depth:

O(1), because it is a single and operation of 1 and n-th bit of PSinput.

Figure 1: Example for n=4

Below are details of algorithm steps:

Ad. 1

The only possible sum of non-empty subset of {ni} is ni, so at most one bit of PS{ni} is set.

Our goal is to find a subset of numbers which sum up to n. Numbers are positive, therefore no

number greater than n can be included in this set, so we can just skip numbers greater than n in

our reasoning. So, if ni > n then PS{ni} = 0, otherwise exactly one bit of PS{ni} is set, ni-th one.

1

In other words, each input number ni is converted to f(ni), where:

f(i) =

2i−1 i ≤ n

0 otherwise

Below is a construction of a circuit of depth O(log n) performing this operation.

For each of n output bits we create an independent circuit of depth O(log n) and size O(n) which

returns 1 for i-th bit iff input is equal to i. Consider binary representation of i now. Bits at some

positions are set s1, ..., sk, while others are unset u1, ..., ul, where k + l = n. Therefore value of i-th

bit is equal to a value of bitwise operation s1 & ... & sk & ¬u1 & ... & ¬ul There are n − 1 and

operations which can be structured as a binary tree of depth O(log n).

Ad. 2

To compute PSS we first split S into two subsets S1, S2 of (almost) equal size (|S1| = |S2| or

|S1| + 1 = |S2|, S1 ∪ S2 = S and S1 ∩ S2 = ∅). Then compute PSS1 and PSS2 recursively and

finally use PSS1 and PSS2 to calculate PSS . Operations of computing PS can be represented as a

binary tree: node PSS has children PSS1 and PSS2. Tree root is PSinput while leaves are PS{ni}

(PS for singletons containing input numbers ni). At i-th tree level, subsets of size at most n/2i are

considered, because in each node set is divided into two subsets of (almost) equal size. Therefore

tree depth is log n.

Now we explain how to compute PSS out of PSS1 and PSS2. This circuit is again of logarithmic

depth.

i ∈ PSS iff we can select some numbers from S1 and S2 which sum up to i. Formally: there exist

numbers a and b such that a + b = i, a ∈ PSS1 and b ∈ PSS2 (we assume that always 0 ∈ PS).

To verify if such a and b exist, we simply check all i + 1 possibilities: i = 0 + i = 1 + (i − 1) =

2 + (i − 2) = ... = i + 0. So i-th bit of PSS is equal to ci = bi | (a1 & bi−1) | ... | ai where a1a2...

and b1b2... are PSS1 and PSS2, respectively. Again, in order to use only logic gates with fan-in 2,

so we must structure expression ci as a binary tree. For each of n output bits we create a separate

circuit. For each of them expression length is O(n), so circuit depth is O(log n).

To sum up, tree of PS operations has logarithmic depth and so has circuit computing PS in each

node. Therefore, step 2 can be performed in depth O(log2 n).

To show that described sequence of circuits is uniform, we must show that there exists a Turing

Machine working in logarithmic space which on input 1n outputs the representation of circuit Cn.

Note that it’s enough for a machine to store number n in binary, and counter from 1 to n in binary

to create expression ci or all i from i to n in stage 1. All the other operations can be encoded in

2

states, so final circuit is uniform.

To sum up, described circuit has depth O(log2 n). Size of input is n2, so this variant of subset sum

problem belongs to NC2 complexity class, so in particular to NC.

Problem 2.2

To prove that problem in NP-complete we must show that, firstly, it belongs to NP, and secondly,

it is NP-hard.

2) To prove that given problem is NP-hard, we reduce NP-complete problem 3-SAT in polynomial

time to it.

Consider an instance of 3-SAT problem consisting of n clauses and k variables. Now we show how

to convert it to a context-free grammar G = (V,Σ, R, S).

V consists of a start symbol S, k nonterminals Xi and n nonterminals Yi.

Σ contains n terminals ai, each of them corresponds to one nonterminal Yi.

Production rules are described as follows:

∀i∈{1..n} there is a production rule Yi → ai.

Also, for each variable xi we have a corresponding non-terminal Xi. For each non-terminal Xi there

are two production rules Xi− > Let’s call them positive and negative to distinguish between

them.

Now consider i-th clause of the formula. Now we will define rules which contain symbol Yi on their

right hand side. The clause consists of 3 (positive or negative) literals. Consider one of them (¬)xj .

If it is negative then symbol Yi is included in a negative rule of nonterminal Xj , otherwise symbol Yi

is included in a positive rule of nonterminal Xj (right hand side of a rule is a concatenation of some

nonterminals as described above; their order in a rule doesn’t matter). Intuitively, we interpret i-th

clause as a condition if nonterminal Yi is used in a derivation: ”nonterminal Yi is used iff at least

one the rules which contain it on the right hand side is used in a derivation tree”.

For a start symbol S we have one rule: RuleS = S → X1X2...Xk.

Example. Consider a formula (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬x3). Production rules:

S → X1X2X3

X1 → Y1

X2 → Y1 | Y2

X3 → Y2 | Y1Y2

Y1 → a1

Y2 → a2

Note that above algorithm of transformation from 3-SAT formula to a CFG works in time linear to

3

size of input formula.

Lemma 1. Assigning values to variables in a 3-SAT boolean formula determines derivation tree in

described CFG and vice versa.

Proof. Assigning a value to a variable xi is an equivalent operation to choosing exactly one of

positive and negative rules for nonterminal Xi. Number of variables k is the same as number of

nonterminals Xi. There is 1:1 mapping between variables and Xi nonterminals. Also, for a variable

we choose exactly one of two values 0 and 1. For a nonterminal, we also select one of two rules and

we do it exactly once in every derivation tree. It must appear in a derivation tree as a part of rule

RuleS , but it doesn’t appear on right hand side of any other rule.

For all the other nonterminals (S, Y1, ..., Yn) there is exactly one rule to choose from. So assigning

values to all xi variables determines a derivation tree and vice versa, for each derivation tree there

is exactly one equivalent assignment.

We claim that 3-SAT formula is satisfiable iff there exists a derivation in described CFG which uses

all non-terminals.

⇒
Assume that formula is satisfiable so there exists an assignment for which all clauses are true.

Now we will show that it implies that all nonterminals Yi are used in a corresponding derivation

(which exists by Lemma 1). Consider i-th clause. Its 3 literals describe rules which contain Yi, by

definition of this grammar. At least one of the literals is true, so a rule containing Yi on its right

hand side belongs to a derivation. Therefore Yi is used in a derivation. This reasoning applies to all

Yi nonterminals.

All derivations use symbol S and all the Xi nonterminals, because they are included in the only rule

for start symbol S.

So all non terminals are used.

⇐
Now we will prove that following the statement holds: if Yi is used in a derivation then i-th clause

is true.

Each nonterminal Yi appears on the right hand side of at most 3 rules which follows from a con-

struction of a grammar. (It can appear less than 3 times if a particular literal is repeated in a clause,

e.g. x1 ∨ x1 ∨ x1). The fact that Yi is used implies that at least one of the mentioned (at most 3)

rules is used in a derivation. Choosing a rule Xj → ... corresponds to assigning a value to a variable

xj by Lemma 1. Assume that rule described by literal (¬)xj is selected. If literal is positive, then

we choose a positive rule and value 1 is assigned to xj , so i-th clause is true. Otherwise literal is

negative, then we select a negative rule and value 0 is assigned to xj , so i-th clause is true in this

case too.

All nonterminals Yi are used so all clauses are true.

4

1) To prove that problem is in NP we show that there exists a certificate we can verify in polynomial

time.

Consider a certificate of polynomial size which is a part of a derivation which contains all the nonter-

minals. (Below we will show that such certificate exists.) Once we have a derivation we should verify

if it’s correct. To do that, we first check if it’s possible to apply rules as defined by this derivation.

This simulation is linear to the size of the certificate.

Note that our certificate is not a full derivation tree, but only a part of it, so we have to check one

more thing to make sure it’s correct: all the nonterminals which are leaves of the certificate should

have a finite derivation (can’t loop). We can generate a set S of nonterminals which don’t loop in

the following way:

1. S = {N | N is nonterminal; there exists a production rule N → a1...an where ai are terminals}
2. Add nonterminal M to S if there exists a rule M → ...N... for some N ∈ S.

3. Repeat step 2 until no more nonterminals can be added to S.

This algorithm is linear with regards to grammar size, because each nonterminal can be added to S

at most once and total number of rules we iterate through is O(total size of the rules).

Now we prove following statement: if there exists a derivation which uses all nonterminals then there

exists a part of this derivation tree of polynomial size which uses all nonterminals.

Let n be the number of nonterminals and m be a number of production rules.

Note that part of the tree we need has at most n leaves, because otherwise there would be a redun-

dant nonterminal in a leaf. Now consider a path from the root to one of the leaves. If this path

is longer than m × n then there exists a cycle which we can remove it and still have a valid cer-

tificate. If there is no cycle on a path, then for each nonterminal we can apply each rule at most once.

Therefore, if we could compute if there exists a derivation which uses all nonterminals of CFG in

deterministic polynomial time, then we would be able to solve 3-SAT in this time, which is proved

to be impossible. The conclusion is that described problem is NP-complete.

5

