Anna Prochowska, 360709
Computational complexity, Homework 2

Problem 2.1

Define $P S_{S}$ as $\left\{k \mid \exists_{S_{i} \subseteq S} \sum S_{i}=k\right\}$ (set of all possible sums of subsets of S). $P S_{S}$ can be encoded as a binary number of length $\max P S_{S}$: k-th bit is set iff $k \in P S_{S}$. In our solution $P S_{S}$ is represented as a binary number of length n.

We describe a construction of a uniform circuit of depth $O\left(\log ^{2} n\right)$, polynomial size, and gates having fan-in 2. This proves that the problem is in $u-N C$.

Algorithm overview:
input $=\left\{n_{1}, \ldots, n_{n}\right\}$ is a set of n input numbers.

1. Convert each input number n_{i} to $P S_{\left\{n_{i}\right\}}$. Depth: $O(\log n)$.
2. Compute $P S_{\text {input }}$ in "divide and conquer" manner. To get $P S_{S}$, first split S into two subsets S_{1}, S_{2} of (almost) equal size, compute $P S_{S 1}$ and $P S_{S 2}$, and then use them to calculate $P S_{S}$. Depth: $O\left(\log ^{2} n\right)$.
3. Return 1 iff n-th bit of $P S_{\text {input }}$ is set. This is equivalent to saying whether $n \in P S_{\text {input }}$. Depth: $O(1)$, because it is a single and operation of 1 and n-th bit of $P S_{\text {input }}$.

Below are details of algorithm steps:
Ad. 1
The only possible sum of non-empty subset of $\left\{n_{i}\right\}$ is n_{i}, so at most one bit of $P S_{\left\{n_{i}\right\}}$ is set.
Our goal is to find a subset of numbers which sum up to n. Numbers are positive, therefore no number greater than n can be included in this set, so we can just skip numbers greater than n in our reasoning. So, if $n_{i}>n$ then $P S_{\left\{n_{i}\right\}}=0$, otherwise exactly one bit of $P S_{\left\{n_{i}\right\}}$ is set, n_{i}-th one.

In other words, each input number n_{i} is converted to $f\left(n_{i}\right)$, where:

$$
f(i)= \begin{cases}2^{i-1} & i \leq n \\ 0 & \text { otherwise }\end{cases}
$$

Below is a construction of a circuit of depth $O(\log n)$ performing this operation.

For each of n output bits we create an independent circuit of depth $O(\log n)$ and size $O(n)$ which returns 1 for i-th bit iff input is equal to i. Consider binary representation of i now. Bits at some positions are set s_{1}, \ldots, s_{k}, while others are unset u_{1}, \ldots, u_{l}, where $k+l=n$. Therefore value of i-th bit is equal to a value of bitwise operation $s_{1} \& \ldots \& s_{k} \& \neg u_{1} \& \ldots \& \neg u_{l}$ There are $n-1$ and operations which can be structured as a binary tree of depth $O(\log n)$.

Ad. 2
To compute $P S_{S}$ we first split S into two subsets S_{1}, S_{2} of (almost) equal size ($|S 1|=|S 2|$ or $|S 1|+1=|S 2|, S 1 \cup S 2=S$ and $S 1 \cap S 2=\emptyset)$. Then compute $P S_{S 1}$ and $P S_{S 2}$ recursively and finally use $P S_{S 1}$ and $P S_{S 2}$ to calculate $P S_{S}$. Operations of computing $P S$ can be represented as a binary tree: node $P S_{S}$ has children $P S_{S 1}$ and $P S_{S 2}$. Tree root is $P S_{\text {input }}$ while leaves are $P S_{\left\{n_{i}\right\}}$ ($P S$ for singletons containing input numbers n_{i}). At i-th tree level, subsets of size at most $n / 2^{i}$ are considered, because in each node set is divided into two subsets of (almost) equal size. Therefore tree depth is $\log n$.

Now we explain how to compute $P S_{S}$ out of $P S_{S 1}$ and $P S_{S 2}$. This circuit is again of logarithmic depth.
$i \in P S_{S}$ iff we can select some numbers from $S 1$ and $S 2$ which sum up to i. Formally: there exist numbers a and b such that $a+b=i, a \in P S_{S 1}$ and $b \in P S_{S 2}$ (we assume that always $0 \in P S$). To verify if such a and b exist, we simply check all $i+1$ possibilities: $i=0+i=1+(i-1)=$ $2+(i-2)=\ldots=i+0$. So i-th bit of $P S_{S}$ is equal to $c_{i}=b_{i}\left|\left(a_{1} \& b_{i-1}\right)\right| \ldots \mid a_{i}$ where $a_{1} a_{2} \ldots$ and $b_{1} b_{2} \ldots$ are $P S_{S 1}$ and $P S_{S 2}$, respectively. Again, in order to use only logic gates with fan-in 2, so we must structure expression c_{i} as a binary tree. For each of n output bits we create a separate circuit. For each of them expression length is $O(n)$, so circuit depth is $O(\log n)$.

To sum up, tree of $P S$ operations has logarithmic depth and so has circuit computing $P S$ in each node. Therefore, step 2 can be performed in depth $O\left(\log ^{2} n\right)$.

To show that described sequence of circuits is uniform, we must show that there exists a Turing Machine working in logarithmic space which on input 1^{n} outputs the representation of circuit C_{n}. Note that it's enough for a machine to store number n in binary, and counter from 1 to n in binary to create expression c_{i} or all i from i to n in stage 1 . All the other operations can be encoded in
states, so final circuit is uniform.

To sum up, described circuit has depth $O\left(\log ^{2} n\right)$. Size of input is n^{2}, so this variant of subset sum problem belongs to $N C^{2}$ complexity class, so in particular to $N C$.

Problem 2.2

To prove that problem in NP-complete we must show that, firstly, it belongs to NP, and secondly, it is NP-hard.
2) To prove that given problem is NP-hard, we reduce NP-complete problem 3-SAT in polynomial time to it.
Consider an instance of 3-SAT problem consisting of n clauses and k variables. Now we show how to convert it to a context-free grammar $G=(V, \Sigma, R, S)$.
V consists of a start symbol S, k nonterminals X_{i} and n nonterminals Y_{i}.
Σ contains n terminals a_{i}, each of them corresponds to one nonterminal Y_{i}.
Production rules are described as follows:
$\forall_{i \in\{1 . . n\}}$ there is a production rule $Y_{i} \rightarrow a_{i}$.
Also, for each variable x_{i} we have a corresponding non-terminal X_{i}. For each non-terminal X_{i} there are two production rules $X_{i}->\ldots$ Let's call them positive and negative to distinguish between them.
Now consider i-th clause of the formula. Now we will define rules which contain symbol Y_{i} on their right hand side. The clause consists of 3 (positive or negative) literals. Consider one of them $(\neg) x_{j}$. If it is negative then symbol Y_{i} is included in a negative rule of nonterminal X_{j}, otherwise symbol Y_{i} is included in a positive rule of nonterminal X_{j} (right hand side of a rule is a concatenation of some nonterminals as described above; their order in a rule doesn't matter). Intuitively, we interpret i-th clause as a condition if nonterminal Y_{i} is used in a derivation: "nonterminal Y_{i} is used iff at least one the rules which contain it on the right hand side is used in a derivation tree".
For a start symbol S we have one rule: Rule $_{S}=S \rightarrow X_{1} X_{2} \ldots X_{k}$.

Example. Consider a formula $\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee \neg x_{3}\right)$. Production rules:
$S \rightarrow X_{1} X_{2} X_{3}$
$X_{1} \rightarrow Y_{1}$
$X_{2} \rightarrow Y_{1} \mid Y_{2}$
$X_{3} \rightarrow Y_{2} \mid Y_{1} Y_{2}$
$Y_{1} \rightarrow a_{1}$
$Y_{2} \rightarrow a_{2}$

Note that above algorithm of transformation from 3-SAT formula to a CFG works in time linear to
size of input formula.

Lemma 1. Assigning values to variables in a 3-SAT boolean formula determines derivation tree in described CFG and vice versa.

Proof. Assigning a value to a variable x_{i} is an equivalent operation to choosing exactly one of positive and negative rules for nonterminal X_{i}. Number of variables k is the same as number of nonterminals X_{i}. There is 1:1 mapping between variables and X_{i} nonterminals. Also, for a variable we choose exactly one of two values 0 and 1 . For a nonterminal, we also select one of two rules and we do it exactly once in every derivation tree. It must appear in a derivation tree as a part of rule Rule $_{S}$, but it doesn't appear on right hand side of any other rule.
For all the other nonterminals $\left(S, Y_{1}, \ldots, Y_{n}\right)$ there is exactly one rule to choose from. So assigning values to all x_{i} variables determines a derivation tree and vice versa, for each derivation tree there is exactly one equivalent assignment.

We claim that 3-SAT formula is satisfiable iff there exists a derivation in described CFG which uses all non-terminals.
\Rightarrow
Assume that formula is satisfiable so there exists an assignment for which all clauses are true.
Now we will show that it implies that all nonterminals Y_{i} are used in a corresponding derivation (which exists by Lemma 1). Consider i-th clause. Its 3 literals describe rules which contain Y_{i}, by definition of this grammar. At least one of the literals is true, so a rule containing Y_{i} on its right hand side belongs to a derivation. Therefore Y_{i} is used in a derivation. This reasoning applies to all Y_{i} nonterminals.
All derivations use symbol S and all the X_{i} nonterminals, because they are included in the only rule for start symbol S.
So all non terminals are used.
\Leftarrow
Now we will prove that following the statement holds: if Y_{i} is used in a derivation then i-th clause is true.
Each nonterminal Y_{i} appears on the right hand side of at most 3 rules which follows from a construction of a grammar. (It can appear less than 3 times if a particular literal is repeated in a clause, e.g. $x_{1} \vee x_{1} \vee x_{1}$). The fact that Y_{i} is used implies that at least one of the mentioned (at most 3) rules is used in a derivation. Choosing a rule $X_{j} \rightarrow \ldots$ corresponds to assigning a value to a variable x_{j} by Lemma 1. Assume that rule described by literal $(\neg) x_{j}$ is selected. If literal is positive, then we choose a positive rule and value 1 is assigned to x_{j}, so i-th clause is true. Otherwise literal is negative, then we select a negative rule and value 0 is assigned to x_{j}, so i-th clause is true in this case too.
All nonterminals Y_{i} are used so all clauses are true.

1) To prove that problem is in NP we show that there exists a certificate we can verify in polynomial time.
Consider a certificate of polynomial size which is a part of a derivation which contains all the nonterminals. (Below we will show that such certificate exists.) Once we have a derivation we should verify if it's correct. To do that, we first check if it's possible to apply rules as defined by this derivation. This simulation is linear to the size of the certificate.
Note that our certificate is not a full derivation tree, but only a part of it, so we have to check one more thing to make sure it's correct: all the nonterminals which are leaves of the certificate should have a finite derivation (can't loop). We can generate a set S of nonterminals which don't loop in the following way:
1. $S=\left\{N \mid N\right.$ is nonterminal; there exists a production rule $N \rightarrow a_{1} \ldots a_{n}$ where a_{i} are terminals $\}$
2. Add nonterminal M to S if there exists a rule $M \rightarrow \ldots N \ldots$ for some $N \in S$.
3. Repeat step 2 until no more nonterminals can be added to S.

This algorithm is linear with regards to grammar size, because each nonterminal can be added to S at most once and total number of rules we iterate through is O (total size of the rules).

Now we prove following statement: if there exists a derivation which uses all nonterminals then there exists a part of this derivation tree of polynomial size which uses all nonterminals.
Let n be the number of nonterminals and m be a number of production rules.
Note that part of the tree we need has at most n leaves, because otherwise there would be a redundant nonterminal in a leaf. Now consider a path from the root to one of the leaves. If this path is longer than $m \times n$ then there exists a cycle which we can remove it and still have a valid certificate. If there is no cycle on a path, then for each nonterminal we can apply each rule at most once.

Therefore, if we could compute if there exists a derivation which uses all nonterminals of CFG in deterministic polynomial time, then we would be able to solve 3-SAT in this time, which is proved to be impossible. The conclusion is that described problem is NP-complete.

