
Homework 2 - Zuzanna Pilat (360670)

1. I will present a circuit solving this problem using divide and conquer

approach. Important observation: this is a variation of subset sum pro-

blem. As numbers are non-negative we can only consider numbers and

sums of numbers ¬ n. My solution has two steps:

• For each number I create n outputs saying ”what sums from 1 to

n can be created with this number only”. For a single number this

demands that for each of n sums we check if the number is exactly

this sum. This can be achieved with n parallel AC0 circuits.

• On the top of the first step I build a binary tree of ciruits that

compute available sums for bigger and bigger sets. Such a circuit

has 2n inputs - answers for 2 subsets - and produces n outputs -

answer for the sum of subsets. Sum i can be created if: (i can be

created in 1st set) OR (i− 1 can be created in 1st set AND 1 can

be created in 2nd set) OR .. OR (i can be created in 2nd set). To

compute all n outputs we can run in parallel n AC0 circuits. So

the whole step is a log n deep tree of AC0 circuits, so it is AC1.

At the top of second step the n-th output gives us the answer - can

sum n be created with all numbers. The whole circuit is AC1, so it is

NC. It is uniform - description of the circuit can be easily created with

a constant number of counters of logarithmic size.

2. First I will show the problem is in NP. We know that the answer to

the problem is NO if there is a non-terminal that cannot transitively

produce only terminals. We can check that in the following way: if there

is a non-terminal that can produce only terminals (or an empty word)

in one production, we remove it from right sides of all productions and

we remove all productions with this terminal on the left. We repeat

1



this until there is no rule left (OK) or there is no terminal we can

remove (we answer NO). After that we know that once we have seen

all non-terminals we can finish producing the word regardless of the

mid-product we have. This means we can just guess a derivation up to

the point where we have seen all the non-terminals. I will show that this

derivation (if it exists) is reasonably short. Let’s represent a derivation

with a tree. The root is the starting symbol. The children of a symbol

are a subset of non-terminals produced from it in one production. Each

node that is not a leaf corresponds to a production used. Let’s count

all the nodes (this will be more than the number of productions we had

to guess). Let’s denote the number of non-terminals as n. Let’s call a

node with at least two children a multi-parent. Following facts are true:

• Each leaf corresponds to a different non-terminal (or the tree can

be smaller because we don’t need duplicates, we can remove them),

so there are at most n leaves

• There are at most n − 1 multi-parents as each multi-parent in-

creases the number of leaves, so the number of multi-parents and

leaves is bounded by 2n− 1

• The path from a leaf or multi-parent to it’s lowest ancestor that

is a multi-parent (or root) is of rank at most n×(number of non-

terminals on this path that appear exactly once in the tree+1).

If there is a path for which this does not hold there is a part of

this path of length at least n with no unique symbols on it. This

path is so long it must contain two identical non-terminals and

we can remove the part from one of them (exclusive) to the other

(inclusive) and all non-terminals will still occur in our tree

• As the number of symbols that appear only once in the tree is

bounded by n, the number of edges (and nodes) is at most of rank

2



n(2n − 1 + n) - each multi-parent and leaf can have n ancestors

before the next multi-parent or root for free, unique symbols allow

us to add another nn nodes.

This altogether shows that the shortest derivation we have to guess is

of polynomial size, so the problem is in NP.

Now I will reduce from SAT problem. For a given instance of SAT:

x1, x2, ..., xn - variables

c1, c2, ..., cm - clauses

let’s take the following grammar:

• P −→ X1X2...Xn

• ∀1 ¬ i ¬ n and j1, ..., jki - numbers of clauses containig xi
Xi −→ Cj1Cj2 ...Cjki

• ∀1 ¬ i ¬ n and j1, ..., jli - numbers of clauses containig ¬xi
Xi −→ Cj1Cj2 ...Cjli

• ∀1 ¬ i ¬ m Ci −→ c

This grammar has 1 + 2n +m rules, their right sides altogether have

length of n+(number of variables in all clauses)+m. It’s easy to con-

struct it once we have an instance of SAT. It can be understood as

follows: we take all the variables and we choose for each one of them

whether it is true or false. Based on the chosen value the variable non-

terminal produces non-terminals that represent the clauses this value

satisfies. Each clause non-terminal then produces a terminal c. Each

derivation in this grammar uses P , all Xi and only those Ci for which

the chosen valuation satisfies clause ci. Therefore all non-terminals are

used if and only if the valuation satisfies the whole SAT formula. This

proves that the problem is NP-complete.

3


