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Problem 1.1. 

I’ll use the following terms to name specific versions of TMs: 

 standard TM – deterministic, single-tape TM, 

 modified TM – TM modified as described in the problem statement. 

Let 𝑆 = 〈𝑄𝑆, 𝛤𝑆 , 𝛿𝑆 , 𝑞0
𝑆

0
, 𝑞𝐴

𝑆, 𝑞𝑅
𝑆〉  be a standard TM. I will construct a modified TM 𝑀 satisfying 𝐿(𝑀) = 𝐿(𝑆). 

First, I will present an outline of 𝑀’s behaviour: 

1. 𝑀 mimics the steps of 𝑆 and on its tape it maintains the contents of 𝑆’s tape (with possible auxiliary 

markings); the cell where 𝑆’s head rests is additionaly marked. 

2. Mimicking steps that move the head to the right and those that don’t move it at all is simple because 

they can be performed by a modified TM in one go (as it naturally proceeds to the right). 

3. Mimicking moves to the left requires finding the cell directly to the left of the head: 

1) We iterate over each cell that lies to the left of the head and in each iteration test if this cell is 

the one we’re looking for (that is, the last one before the head). 

2) When we’ve found the right cell, we apply the transition, mark the cell as the new head and 

unmark the old one. 

3) In the end, we clean up all auxiliary flags that we used to perform the previous steps. 

Now, let’s proceed to the details of 𝑀’s constitution. Let 𝑀 = 〈𝑄𝑀 , Γ𝑀 , 𝛿𝑀 , 𝑞0
𝑀, 𝑞𝐴

𝑀, 𝑞𝑅
𝑀〉. 

 𝑄𝑀 = 𝑄𝑆 × 𝑀𝑜𝑑𝑒𝑠 × 𝑇𝑒𝑠𝑡𝑅𝑒𝑠𝑢𝑙𝑡 

o 𝑀𝑜𝑑𝑒𝑠 consist of the following symbols:  

?  searching for the head to perform next step  

→ performing 𝑆’s move to the right 

← performing 𝑆’s move to the left 

𝑡𝑒𝑠𝑡 checking if a cell lies directly to the head’s left 

∎ testing finished (the result is frozen) 

𝑐𝑙𝑒𝑎𝑛 cleanin all flags used during testing 

o 𝑇𝑒𝑠𝑡𝑅𝑒𝑠𝑢𝑙𝑡 is used during testing and consists of two symbols: 

𝑝𝑎𝑠𝑠 the cell being tested is the last one so far 

𝑓𝑎𝑖𝑙 the cell being tested is not the last one 

 Γ𝑀 = (Γ𝑆  ∪ (ΓS × {^}) × 𝑇𝑒𝑠𝑡𝑆𝑡𝑎𝑡𝑢𝑠, where the first part is simply Γ𝑆 possibly with additional 

marking ^ indicating the position of head; 𝑇𝑒𝑠𝑡𝑆𝑡𝑎𝑡𝑢𝑠 = {𝑇, 𝑁𝑇} is used during testing and shows 

whether the cell was already tested (𝑇) or not (𝑁𝑇) 

 𝑞0
𝑀 = 〈𝑞0

𝑆, ? , 𝑓𝑎𝑖𝑙〉, 𝑞𝐴
𝑀, 𝑞𝑅

𝑀 are sets of those states in 𝑄𝑀 that contain 𝑞𝐴
𝑆, 𝑞𝐴

𝑆 respectively  

 

In order to limit the number of purely technical transitions I assume that: 

 𝑀’s first step has number 2 (that is, it does nothing during step number 1); 

 initially, there’s the symbol 〈⊳ ^, 𝑁𝑇〉 in the first cell of 𝑀’s tape; 

 blanks on 𝑀’s tape have the form of 〈⊥, 𝑁𝑇〉. 
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I’ll divide 𝑆’s steps into three categories: stationary (leaving head where it was), moves to the right and to 

the left and for each of these categories I’ll provide a recipe for 𝑀 for mimicking such steps. 

Whenever I use a dot in place of some part of state or letter, I mean that I don’t care for this particular part 

and the transition should be understood as a set of transitions for all possible substitutions of the dot (and of 

course this transition leaves this part unchanged). 

Stationary steps 

Mimic the following transition of 𝑆:  (𝑥, 𝑝) ⟹ (𝑦, 𝑞, 0). 

1) (〈𝑥^,⋅〉, 〈𝑝, ? ,⋅〉) ⟹ (〈𝑦^,⋅〉, 〈𝑞, ? ,⋅〉) — replace letter 𝑥 with 𝑦 and state 𝑝 with 𝑞; searching for the 

next step may be started immediately (so flag ? remains). 

Moves to the right 

Mimic the following transition of 𝑆:  (𝑥, 𝑝) ⟹ (𝑦, 𝑞, →). 

1) (〈𝑥^,⋅〉, 〈𝑝, ? ,⋅〉) ⟹ (〈𝑥,⋅〉, 〈𝑞, →,⋅〉) — replace letter 𝑥 with 𝑦, state 𝑝 with 𝑞, remove head. 

2) (〈𝑥,⋅〉, 〈⋅, →,⋅〉) ⟹ (〈𝑥^,⋅〉, 〈⋅, ? ,⋅〉) — mark head in the cell to the right and set mode to ?. This step 

will clearly be performed on the correct cell (that is, on the previous one’s right neighbour) because 

𝑀 with each lap increases its scope to the right before returning to ⊳. 

Moves to the left 

Mimic the following transition of 𝑆:  (𝑥, 𝑝) ⟹ (𝑦, 𝑞, ←). 

1. Initialize: 

1) 〈𝑥^,⋅〉, 〈⋅, ? ,⋅〉 ⟹ 〈𝑥^,⋅〉, 〈⋅, ←,⋅〉 — for now, leave head where it was and initialize the procedure 

of mimicking the step (flag ←). 

2. Find the element directly to the left of the head: 

1) 〈𝑥, 𝑁𝑇〉, 〈⋅, ←,⋅〉 ⟹ 〈𝑥, 𝑁𝑇〉, 〈⋅, 𝑡𝑒𝑠𝑡, 𝐿〉 — begin testing cell if it hasn’t already been tested. 

2) 〈𝑥,⋅〉, 〈⋅, 𝑡𝑒𝑠𝑡, 𝐿〉 ⟹ 〈𝑥,⋅〉, 〈⋅, 𝑡𝑒𝑠𝑡, 𝑁𝐿〉 — if found another cell before reaching head then the cell 

being tested is definitely not the last one (set flag 𝑁𝐿). 

3) 〈𝑥^,⋅〉, 〈⋅, 𝑡𝑒𝑠𝑡, 𝑁𝐿〉 ⟹ 〈𝑥^,⋅〉, 〈⋅, ∎, 𝑁𝐿〉 — when head reached then the testing ends (flag ∎). 

4) 〈𝑥^,⋅〉, 〈⋅, 𝑡𝑒𝑠𝑡, 𝐿〉 ⟹ 〈𝑥,⋅〉, 〈⋅, ∎, 𝐿〉 — same as 3), only here the test was positive (𝐿), so we 

additionaly unmark head. 

5) 〈𝑥, 𝑁𝑇〉, 〈⋅, ∎, 𝑁𝐿〉 ⟹ 〈𝑥, 𝑇〉, 〈⋅, ←, 𝑁𝐿〉 — return where the test started; test was negative (NL), 

so set the cell as tested (flag 𝑇) and continue to the next cell (with flag ←, that is: goto 2.1). 

6) 〈𝑥, 𝑁𝑇〉, 〈𝑝, ∎, 𝐿〉 ⟹ 〈𝑦^, 𝑁𝑇〉, 〈𝑞, 𝑐𝑙𝑒𝑎𝑛, 𝐿〉 — return where the test started; test was positive 

(𝐿), so we’re in the cell where head should now be. We can finally perform the transition of 𝑆 

that has been our goal: replace letter 𝑥 with 𝑦, state 𝑝 with 𝑞 and mark head; remove flag 𝐿 and 

set flag 𝑐𝑙𝑒𝑎𝑛 for cleaning up flags 𝑇. 

3. Clean-up: 

1) 〈𝑥^,⋅〉, 〈⋅, 𝑐𝑙𝑒𝑎𝑛,⋅〉 ⟹ 〈𝑥^,⋅〉, 〈⋅, ? ,⋅〉 — finish clean-up when head reached and begin searching for 

the next transition. 

2) 〈⋅, 𝑇〉, 〈⋅, 𝑐𝑙𝑒𝑎𝑛,⋅〉 ⟹ 〈⋅, 𝑁𝑇〉, 〈⋅, 𝑐𝑙𝑒𝑎𝑛,⋅〉 — remove flag 𝑇 and set 𝑁𝑇. 
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I’ve shown that modified TMs are at least as powerful as stadard TMs. To complete the proof that both 

models of TM recognize the same languages, it remains to show that standard TMs are at least as powerful 

as modified TMs: We can easily simulate a modified TM using stadard TM if we simply copy its moves, add 

the automatic → move and keeping the moves’ count so that we can return the head to the beginning of the 

tape whenever moves’ count reaches a square of a natural number. 

∎ 
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Problem 1.2. 

The main idea is to iterate over each pair of nodes, compute the length of the path between them (there’s 

exactly one such path) and check if this length is equal to 𝑘. I assume that 𝑘 ≥ 0. 

My program will use 𝑂(log(𝑛) + log(log (𝑘))) space, which falls within the 𝐿 class. 

First, let’s observe that the root is always the node number 1 because it alone doesn’t have a parent. 

Before we go any further, let’s look at some procedures that’ll be used in terms of space complexity: 

1) following operations on binary numbers: +, −, mod 2, div 2, >, ≤, ==, ≠ all take 𝑂(log(n)) space 

(counting in the space for results) provided that the arguments take 𝑂(log(𝑛)) space. 

2) I introduce the function 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟(𝑤, 𝑘) for each node 𝑤 and those 𝑘 ∈ ℕ for which the definition 

makes sense: it returns the 𝑘th ancestor of 𝑤 (a parent is 1st ancestor and so on). Given our 

representation of tree, this function can be computed using 𝑂(log(𝑛)) space (it only needs to 

remember one node number at a time). 

The main iteration will look similar to this: 

for 𝑢 ∶= 1 to 𝑛 do 

     for 𝑣 ∶= 𝑢 to 𝑛 do 𝑐𝑜𝑑𝑒 

REJECT 

It will then only increase numbers 𝑢, 𝑣 and test equality so it falls within our space limit. 

Main iteration 

First, we compute 𝐿𝐶𝐴(𝑢, 𝑣): 

1. Compute 𝑑𝑒𝑝𝑡ℎ𝑢, 𝑑𝑒𝑝𝑡ℎ𝑣, that is the depths of 𝑢 and 𝑣. This can be done in 𝑂(log(𝑛)) space as it’s 

very similar to the 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 function. These depths are evidently ≤ 𝑛. 

2. if 𝑑𝑒𝑝𝑡ℎ𝑢 > 𝑑𝑒𝑝𝑡ℎ𝑣  then 𝑠𝑤𝑎𝑝(𝑢, 𝑣) //𝑠𝑤𝑎𝑝 may need additional 𝑂(log (𝑛)) space 

 𝑑𝑖𝑓𝑓 ≔ 𝑑𝑒𝑝𝑡ℎ𝑣 − 𝑑𝑒𝑝𝑡ℎ𝑢    

3. 𝑖𝑢 ≔ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟(𝑢, 𝑑𝑖𝑓𝑓), 𝑖𝑣 ≔ 𝑣 //𝑖𝑢 and 𝑖𝑣 start at the same depth 

while 𝑖𝑢 ≠ 𝑖𝑣  do 

       𝑖𝑢 ≔ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟(𝑖𝑢 , 1) 

       𝑖𝑣 ≔ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟(𝑖𝑣 , 1) 

𝑙𝑐𝑎 ≔ 𝑖𝑢 

Now comes the part where we have to find the path length between 𝑢 and 𝑣.  

It’s quite easy if 𝑘 is given in unary: we may keep a variable 𝑠𝑢𝑚 of size 𝑂(log(𝑘)) and accumulate the path 

length successively, making sure to stop when either or 𝑠𝑢𝑚 exceeds 𝑘 or bit-length of any edge on the path 

exceeds bit-length of 𝑘. 

Let’s now assume 𝑘 is given in binary. In this case, we’ll aim at avoiding keeping the whole sum in memory. 

To achieve this, we’ll perform columnar addition of the edges’ lengths and after each iteration (that’ll 

produce one bit of result) check whether the produced bit is equal to the corresponding bit in 𝑘. 
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Columnar addition 

Columnar addition of a bit column 𝑏1, 𝑏2, … , 𝑏𝑚 for 𝑚 ∈ ℕ+ with a carry 𝑐 produces bit  𝑏′ = (𝐵 + 𝑐) mod 2 

and carry 𝑐′ = (𝐵 + 𝑐) div 2 (integer division), where 𝐵 = 𝑏1 + ⋯ + 𝑏𝑚.  

It can be shown inductively that (∗) 𝑐′ < 𝑚:  

Inductive step: Clearly, 𝐵 ≤ 𝑚, so if 𝑐 < 𝑚, then 𝑐′ = (𝐵 + 𝑐) div 2 < 𝑚. 

Base case: 𝑐 = 0 < 𝑚. 

We can see that the number of edges on the path 𝑢 − 𝑣 is ≤ 𝑛, and from this and (∗) we conclude that 

during our columnar addition, the carry will always be ≤ 𝑛. The sum of all the bits and the carry will thus be 

≤ 2𝑛 (as there’ll be ≤ 𝑛 bits). Therefore, the carry and the sum of all bits will be represented in 𝑂(log(𝑛)) 

space. 

Now we can perform the columnar addition: 

1. We create a variable 𝑏𝑖𝑡𝑛𝑢𝑚 that in each iteratiorn will indicate which bit to look at in this 

iteration. In particular, the firt iteration should look at the LSBs of all visited egdes’ lengths, so 

we initialize 𝑏𝑖𝑡𝑛𝑢𝑚 to 0. It will increase by 1 in each iteration, as counting goes form LSB to 

MSB. The variable 𝑏𝑖𝑡𝑛𝑢𝑚 takes 𝑂(log(log(𝑘))) space, because iterating stops when the end of 

the binary 𝑘 is reached. 

2. 𝑠𝑢𝑚𝑏𝑖𝑡𝑠 ≔ 0; 𝑐𝑎𝑟𝑟𝑦 ≔ 0  //the sum of bits and carry; both take 𝑂(log(𝑛)) space.  

One iteration: 

1. 𝑠𝑢𝑚𝑏𝑖𝑡𝑠 ≔ 𝑐𝑎𝑟𝑟𝑦 

2. Follow the path 𝑢 − 𝑙𝑐𝑎 and then 𝑣 − 𝑙𝑐𝑎 (both upwards) and for each visited egde add the right 

bit (indicated by 𝑏𝑖𝑡𝑛𝑢𝑚) of its length to 𝑠𝑢𝑚𝑏𝑖𝑡𝑠. If the right bit doesn’t exist (that is, the 

edge’s length was shorter), go to the next edge. 

3. When all edges visited: 

𝑛𝑒𝑤𝑏𝑖𝑡 ≔ 𝑠𝑢𝑚𝑏𝑖𝑡𝑠 mod 2 

𝑐𝑎𝑟𝑟𝑦 ≔ 𝑠𝑢𝑚𝑏𝑖𝑡𝑠 div 2 

if the bit in 𝑘 indicated by 𝑏𝑖𝑡𝑛𝑢𝑚 is equal to 𝑛𝑒𝑤𝑏𝑖𝑡 then 

      if this was the MSB of 𝑘 then  

             if there aren’t any unvisited bits on the path 𝑢 − 𝑣 then ACCEPT 

             else discard the nodes 𝑢, 𝑣 and proceed to the next pair 

      𝑏𝑖𝑡𝑛𝑢𝑚 ≔ 𝑏𝑖𝑡𝑛𝑢𝑚 + 1 

      goto next iteration 

else discard the nodes 𝑢, 𝑣 and proceed to the next pair 

Note: if all the edges’ lengths has already been wholly processed in previous iterations, 𝑛𝑒𝑤𝑏𝑖𝑡 

will be equal to 0 in all following iterations and it will finally clash with 𝑘’s MSB. 

∎ 


