Computational Complexity
 Exam
 9.02.2018

Problem 1. (0.6 pt) Let
$\operatorname{DIST}=\{(G, s, t, d) \mid d$ is the length of the shortest path from s to t in directed graph $G\}$.
In other words, $(G, s, t, d) \in$ DIST when there is no path from s to t in G of length smaller than d, but there is such a path of length d. Show that DIST is NL-complete. (Don't forget to show that DIST \in NL. Note that because d is given in binary, the working memory should be $O(\log (\log (d)+|G|))$.

Problem 2. (0.6 pt) We say that a language $L \subseteq\{0,1\}^{*}$ has $\mathbf{A C}^{0}$ witnesses if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a uniform sequence of circuits of polynomial size and constant depth $\left(C_{n}\right)_{n \in \mathbb{N}}$, where C_{n} has $n+p(n)$ input gates, such that for every $v \in\{0,1\}^{*}$,

$$
(v \in L) \Leftrightarrow\left(\exists w \in\{0,1\}^{p(|\nu|)} \text { such that } C_{|\nu|}(\nu, w)=1\right)
$$

Prove that the class of languages that have $\mathbf{A C}^{0}$ witnesses equals NP.

Problem 3. (0.6 pt) For a word $w \in\{0,1\}^{*}$, consider the following randomized process:

- we randomly choose a pair of positions a, b such that $1 \leq a \leq b \leq|w|$ and $b-a \leq \frac{|w|}{2}$ (every such a pair is equally probable);
- we reverse all bits of w on positions $i \in\{a, a+1, \ldots, b\}$ (all 0 's are changed to 1 's, and all l's are changed to 0's).
For a language $L \subseteq\{0,1\}^{*}$, let

$$
\operatorname{robust}(L)=\left\{w \in L \left\lvert\, \operatorname{Prob}(\text { the process applied to } w \text { gives a word in } L)>\frac{3}{4}\right.\right\}
$$

Show that if $L \in \mathbf{R P}$, then $\operatorname{robust}(L) \in \mathbf{R P}$.

