Homework 3\&4

Deadline: Wednesday, 4th June, 23:59

Problem 3

Show that the following problem is not in P . Given an alphabet A, two words $u, v \in A^{*}$ of equal length, and two binary relations $H, V \subseteq A^{2}$, decide if Player 1 has a winning strategy in the following game:

- the players take turns, Player 1 moves first;
- each move consists in choosing a word over A of length $|u|$, such that each two consecutive letters of the word are in relation H, and for all i, the i-th letter of the chosen word is in relation V with the i-th letter of the last word chosen by the opponent;
- in the first move Player 1 has no choice: he must play the word u;
- Player 1 wins if at some point word v is chosen (by him or the opponent).

Hint: APSpace = ExpTime.

Problem 4

For a language $L \subseteq\{0,1\}^{*}$, let

$$
B(L, r)=\{u: \exists v \in L d(u, v) \leq r\}
$$

where $d(u, v)$ is the Hamming distance,

$$
d(u, v)= \begin{cases}\left|\left\{i: u_{i} \neq v_{i}\right\}\right| & \text { if }|u|=|v|, \\ \infty & \text { if }|u| \neq|v|\end{cases}
$$

Show that for each $L \subseteq\{0,1\}^{*}$ and each $r \in \mathbb{N}$
(a) if $L \in \mathrm{RP}$ then $B(L, r) \in \mathrm{RP}$;
(b) if $L \in$ CO-RP then $B(L, r) \in$ CO-RP.

