Partial exam. Wednesday 11 May, 12:15-14:00

1. Show that the following problem is $N P$-complete.

Given an alphabet A and a regular expression α over A, decide if there is a word generated by α which contains every letter from A.
Hint. For $N P$-hardness, you may reduce $C N F-S A T$. Note that the alphabet A is not fixed and may depend on the formula.
2. We consider the words of the form

$$
w=w_{1} w_{2} \ldots w_{2^{m}-1} w_{2^{m}}
$$

with $w_{i} \in\{0,1\}^{m}$, for $i=1, \ldots, 2^{m}$. Let the language L consists of all words w in the above form, in which the number of different blocks w_{i} is even. Show that L can be accepted by a sequence of circuits C_{n} of polynomial size and depth $\mathcal{O}(\log n)$.
3. We consider a grid $n \times n$ with the nodes colored black or white. (It can be encoded as a word in $\{0,1\}^{n^{2}}$ in an obvious manner.) Show that a deterministic Turing machine can check in logarithmic space whether there is a monochromatic path from the topmost level to the lowest level.
4. Show that the complexity class P is closed under morphic images w.r.t. non-zero morphisms iff $P=N P$.
Hint. For the only if direction, use problem CNF-SAT.
Reminder. A morphism is defined by a mapping $h: \Sigma \rightarrow \Sigma^{*}$, which is extended to $\hat{h}: \Sigma \rightarrow \Sigma^{*}$ by

$$
\begin{aligned}
\hat{h}(\varepsilon) & =\varepsilon \\
h(v w) & =h(v) h(w) .
\end{aligned}
$$

The morphic image of a language $L \subseteq \Sigma^{*}$ is $\{\hat{h}(w): w \in L\}$. A morphism is non-zero iff ($\forall \sigma \in$ इ) $h(\sigma) \neq \varepsilon$.
Remark. The necessity of the assumption that the morphism is non-zero was noticed during the exam. This yields an additional question: Why the claim fails without this assumption ?

