

Computational complexity

lecture 14

Interactive proofs
Idea:
● the class NP corresponds to a classical theorem proving – one

presents a proof (a witness), and it should be possible to verify
this proof in polynomial time

● the class IP – like on an oral exam: a verifier questions a prover,
and in this way he can faster check what he knows

Example: graph nonisomorphism (are two given graph different?)
We do not know whether this problem is in NP, but it has an easy
interactive proof:
● Two players: Verifier & Prover; Prover claims that G1, G2 differ

Interactive proofs

Example: graph nonisomorphism (are two given graph different?)
We do not know whether this problem is in NP, but it has an easy
interactive proof:
● Two players: Verifier & Prover; Prover claims that G1, G2 differ
● Verifier picks randomly one of the two given graphs,

permutes randomly its nodes, and shows it to Prover
● Prover has to say, which graph he has received

Interactive proofs

input: G1, G2

Verifier
i=random({1,2})
H=permute_nodes(Gi)

return (i==j)

Prover

H

j

Example: graph nonisomorphism (are two given graph different?)
We do not know whether this problem is in NP, but it has an easy
interactive proof:
● Two players: Verifier & Prover; Prover claims that G1, G2 differ
● Verifier picks randomly one of the two given graphs,

permutes randomly its nodes, and shows it to Prover
● Prover has to say, which graph he has received
● if the graphs differ, he can always answer correctly
● if the graphs are isomorophic, Prover has no idea which graph

was chosen by Verifier (he answers correctly with probability 1/2)
● the error probability can be decreased arbitrarily, by repeating

the experiment
● Verifier works in polynomial time, using random bits
● Prover has a complicated task (we do not require polynomial time

– this is similar to NP, where we do not require that a witness can
be found in polynomial time)

Interactive proofs

Formal definition (deterministic Verifier):
● consider two functions V, P: {0,1}*→{0,1}*
● V – Verifier, P – Prover
● a k-round interaction between them on an input word w:

 q1=V(w) a1=P(w,q1)
 q2=V(w,q1,a1) a2=P(w,q1,a1,q2)
 ...
 qk=V(w,q1,a1,...,qk-1,ak-1) ak=P(w,q1,a1,...,qk-1,ak-1,qk)

 out(V,P)(w)=V(w,q1,a1,...,qk,ak)
 [we assume here some encoding of tuples in words]

● A language L has a deterministic interactive protocol (i.e., L∈dIP)
if there is a deterministic machine V working in polynomial time,
and a polynomial number of rounds k(n), such that

w∈L ∃P. out(V,P)(w)=1
● We do not put any computability restrictions on the function P

Interactive proofs

It turns out that a deterministic interaction does not increase the
computational power: dIP=NP

Proof
● NPdIP – one round is enough: Prover presents a witness,

Verifier checks this witness
● dIPNP – the record of the conversation can serve as a witness

Clearly one can check in polynomial time that the conversation
record is correct (i.e. whether the algorithm of Verifier is respected)
Because Verifier uses no randomness, a correct conversation
record witnesses that Prover has convinced Verifier.

Remark
The protocol for graph nonisomorphism does not fit to this setting;
this protocol is randomized

Interactive proofs

Formal definition (randomized Verifier):
● consider two functions V, P: {0,1}*→{0,1}*
● V – Verifier, P – Prover
● a k-round interaction between them on an input word w,

with access to a random string r of polynomial length:
 q1=V(w,r) a1=P(w,q1)

 q2=V(w,r,q1,a1) a2=P(w,q1,a1,q2)
 ...
 qk=V(w,r,q1,a1,...,qk-1,ak-1) ak=P(w,q1,a1,...,qk-1,ak-1,qk)

out(V,P)(w,r)=V(w,r,q1,a1,...,qk,ak)
● Notice that P has no access to the random string r.
● A language L has an interactive protocol (i.e., L∈IP) if there is a

deterministic machine V working in polynomial time, a polynomial
number of rounds k(n), and a polynomial length of random strings,
such that w∈L ∃P. Prr[out(V,P)(w,r)=1] ≥ 3/4

w∉L ∀P. Prr[out(V,P)(w,r)=1] ≤ 1/4
● We do not put any computability restrictions on the function P

Interactive proofs

w∈L ∃P. Prr[out(V,P)(w,r)=1] ≥ 3/4
w∉L ∀P. Prr[out(V,P)(w,r)=1] ≤ 1/4

Thus, we have a protocol such that:
● for every word in L one can prove that the word is in L

with high probability
● for words not in L, one can cheat and prove that such a word

is in L only with a small probability

Interactive proofs

w∈L ∃P. Prr[out(V,P)(w,r)=1] ≥ 3/4
w∉L ∀P. Prr[out(V,P)(w,r)=1] ≤ 1/4

Th. The error 1/4 in the definition can be made arbitrarily small
Proof:
● Amplification as for BPP – we repeat the verification process

several times, and we take majority voting
● For words in L OK – Prover repeats the same multiple times
● For words not in L this is more complicated – there can be Provers

that make use of questions asked in previous experiments

Interactive proofs

w∈L ∃P. Prr[out(V,P)(w,r)=1] ≥ 3/4
w∉L ∀P. Prr[out(V,P)(w,r)=1] ≤ 1/4

Th. The error 1/4 in the definition can be made arbitrarily small
Proof:
● Amplification as for BPP – we repeat the verification process

several times, and we take majority voting
● For words in L OK – Prover repeats the same multiple times
● For words not in L this is more complicated – there can be Provers

that make use of questions asked in previous experiments
● But: V does not remember which questions he asked in previous

experiments. If there is Prover, which in the m-th experiment has
high probability of incorrect acceptance (conditional probability,
under the condition of having particular questions in previous
experiments), then there is also Prover, which from the beginning
assumes that he has he has seen such a questions in m-1
previous experiments, and from the beginning has high probability
of incorrect acceptance.

Interactive proofs

w∈L ∃P. Prr[out(V,P)(w,r)=1] ≥ 3/4
w∉L ∀P. Prr[out(V,P)(w,r)=1] ≤ 1/4

Th. The error 1/4 in the definition can be made arbitrarily small
Proof:
● ...
● The same can be done without increasing the number of rounds:

we perform the experiments in parallel

Interactive proofs

w∈L ∃P. Prr[out(V,P)(w,r)=1] ≥ 3/4
w∉L ∀P. Prr[out(V,P)(w,r)=1] ≤ 1/4

● In the protocol for graph nonisomorphism, if the graphs are non-
isomorphic (i.e., w∈L), then there is Prover that always presents
a correct proof (in the above definition 3/4 can be changed to 1)

● We will prove soon that the same can be done for every language
(changing 3/4 to 1 does not change the class IP)

Interactive proofs

w∈L ∃P. Prr[out(V,P)(w,r)=1] ≥ 3/4
w∉L ∀P. Prr[out(V,P)(w,r)=1] ≤ 1/4

● In the protocol for graph nonisomorphism, if the graphs are non-
isomorphic (i.e., w∈L), then there is Prover that always presents
a correct proof (in the above definition 3/4 can be changed to 1)

● We will prove soon that the same can be done for every language
(changing 3/4 to 1 does not change the class IP)

● On the other hand, changing 1/4 to 0 decreases the class IP to NP
Proof:
As a witness for a word w we can take a record of a single
interaction, together with the random string that was used.
Such a record exists only for words in L. One can check in
polynomial time whether such a record is correct.

Interactive proofs

● In the class IP Prover does not see random bits used by Verifier.
● For the protocol for graph nonisomorphism this is essential:

(if P knows random bits, he can always answer correctly)
● One also considers protocols in which P can see the random bits

used by V (but only those already used by V, not those from the
future). This is called Arthur-Merlin protocol – class AM[poly]
(AM itself denotes such a single-round protocol)

Interactive proofs

● In the class IP Prover does not see random bits used by Verifier.
● For the protocol for graph nonisomorphism this is essential:

(if P knows random bits, he can always answer correctly)
● One also considers protocols in which P can see the random bits

used by V (but only those already used by V, not those from the
future). This is called Arthur-Merlin protocol – class AM[poly]
(AM itself denotes such a single-round protocol)

● Fact: AM[poly]⊆IP (and the number of rounds remains unchanged)

Proof: We change the protocol, so that V sends to P his random
bits. Then it does not matter whether P can see the random bits
directly, or not.

Interactive proofs

● In the class IP Prover does not see random bits used by Verifier.
● For the protocol for graph nonisomorphism this is essential:

(if P knows random bits, he can always answer correctly)
● One also considers protocols in which P can see the random bits

used by V (but only those already used by V, not those from the
future). This is called Arthur-Merlin protocol – class AM[poly]
(AM itself denotes such a single-round protocol)

● Fact: AM[poly]⊆IP (and the number of rounds remains unchanged)

Proof: We change the protocol, so that V sends to P his random
bits. Then it does not matter whether P can see the random bits
directly, or not.

● Theorem (Goldwasser-Sipser 1987)
IP⊆AM[poly] (and the number of rounds increases only by 1)

Nonobvious (and surprising) – we will prove this soon, without
preserving the number of round

Interactive proofs

single round - verifier checks a witness provided by Prover:
NP
● Verifier deterministic, Prover arbitrary (can guess)

protocols with multiple questions & answers:
dIP
● Verifier deterministic, Prover arbitrary (can guess)

IP
● Verifier randomized, Prover arbitrary (can guess)
● Prover does not know the random bits of Verifier

AM[poly]
● Verifier randomized, Prover arbitrary (can guess)
● Prover knows the random bits of Verifier

AP (alternating polynomial)
● Verifier & Prover arbitrary (can guess)

zero-knowledge proofs:
● Verifier & Prover - randomized
● additionally: Verifier does not reveal the secret information of Prover

Comparison

How large is the IP class?
● we know that dIP=NP
● simultaneously, we believe that BPP=P, i.e., that randomization

is meaningless
● on the other hand: graph nonisomorphism is in IP, but we do not

know whether it is in NP
● initially, people suspected that even if IP is larger than NP,

it rather does not contain coNP

Interactive proofs

How large is the IP class?
● we know that dIP=NP
● simultaneously, we believe that BPP=P, i.e., that randomization

is meaningless
● on the other hand: graph nonisomorphism is in IP, but we do not

know whether it is in NP
● initially, people suspected that even if IP is larger than NP,

it rather does not contain coNP
● a surprising theorem: IP=PSPACE (Lund, Fortnow, Karloff,

Nisan, Shamir 1990)

Interactive proofs

Theorem (Lund, Fortnow, Karloff, Nisan, Shamir 1990)

IP=PSPACE
Proof
It is more-or-less clear that IPPSPACE:
● we simulate Verifier on all possible sequences of random bits,

and we compute the probability of acceptance
● we browse all possible answers that could be given by Prover,

and we choose the one that maximizes the acceptance probability

Interactive proofs

Theorem (Lund, Fortnow, Karloff, Nisan, Shamir 1990)

IP=PSPACE
Proof
It is more-or-less clear that IPPSPACE:
● we simulate Verifier on all possible sequences of random bits,

and we compute the probability of acceptance
● we browse all possible answers that could be given by Prover,

and we choose the one that maximizes the acceptance probability
It remains to prove that PSPACEIP:
● We first prove an easier inclusion coNPIP
● For that, it is enough to prove that 3CNF-NSAT∈IP
● We will prove an even stronger fact: the following language is in IP:

{(f,K) | f is 3CNF and has precisely K satisfying valuations}
If this problem is in IP, then 3CNF-NSAT as well: it is enough to
follow the protocol for K=0

Interactive proofs

We aim in proving that the following language is in IP:
{(f,K) | f is 3CNF and has precisely K satisfying valuations}

● We treat logical formulas as polynomials:
x∧y ↔ x .y
 ¬x ↔ 1-x
x∨y ↔ 1-(1-x)(1-y)

 x∨¬y∨z ↔ 1-(1-x)y(1-z)
● If f is 3CNF and has k clauses, then the corresponding polynomial

Pf(x1,...,xn) is of degree d=3k; it evaluates (in every field) to 1

for valuations satisfying f, and to 0 for valuations not satisfying f
● Observe that d=O(n3), as this is the upper bound for the number of

different clauses in f.
● We want to check whether

K= S S ... S Pf(v1,...,vn)
v1∈{0,1} v2∈{0,1} vn∈{0,1}

Interactive proofs

We want to check whether

K= S S ... S Pf(v1,...,vn)

● We prefer to compute everything over some finite field. We know
that the sum on the right has value ≤2n, thus P and V have to fix
some prime number p>2n, and then they can compute modulo p.

● How p should be selected? Preferably, it should be chosen by P
(he has an unlimited power). Thus step 1 of the interaction is:
➔ P presents a number 2n<p≤4n (it should not be too large)
➔ V checks, that p is prime (using the AKS test, or any randomized test)

v1∈{0,1} v2∈{0,1} vn∈{0,1}

Interactive proofs

We want to check whether

K= S S ... S Pf(v1,...,vn)

● We prefer to compute everything over some finite field. We know
that the sum on the right has value ≤2n, thus P and V have to fix
some prime number p>2n, and then they can compute modulo p.

● How p should be selected? Preferably, it should be chosen by P
(he has an unlimited power). Thus step 1 of the interaction is:
➔ P presents a number 2n<p≤4n (it should not be too large)
➔ V checks, that p is prime (using the AKS test, or any randomized test)

● Thus our task is: we are given a polynomial g(x1,...,xn) of degree d,
a number K, and a prime p; check interactively whether

K= S S ... S g(v1,...,vn)

modulo p. The polynomial g is given so that V can easily compute
values of g for given arguments.

v1∈{0,1} v2∈{0,1} vn∈{0,1}

v1∈{0,1} v2∈{0,1} vn∈{0,1}

Interactive proofs

We want to check whether

K= S S ... S g(v1,...,vn) (mod p) (1)

● V asks for a polynomial of a single variable:

h(x1)= S ... S g(x1,v2,...,vn)

This polynomial has degree ≤d=O(n3), and is considered modulo p,
so it can be written succinctly.
➔ P sends some polynomial s(x1) (allegedly s(x1)=h(x1))
➔ V check whether s(0)+s(1)=K – if not, he rejects

v1∈{0,1} v2∈{0,1} vn∈{0,1}

v2∈{0,1} vn∈{0,1}

Interactive proofs

We want to check whether

K= S S ... S g(v1,...,vn) (mod p) (1)

● V asks for a polynomial of a single variable:

h(x1)= S ... S g(x1,v2,...,vn)

This polynomial has degree ≤d=O(n3), and is considered modulo p,
so it can be written succinctly.
➔ P sends some polynomial s(x1) (allegedly s(x1)=h(x1))
➔ V check whether s(0)+s(1)=K – if not, he rejects

How P copes with the situation that (1) is false?
● If P sends the correct h as s, then we have s(0)+s(1)≠K

and V rejects. Thus P has to send s differing from h.
● Since the polynomial s(x1)-h(x1) has degree ≤d, it has ≤d roots.

Thus for a random a∈{0,...,p-1} the probability that s(a)=h(a) is ≤d/p

v1∈{0,1} v2∈{0,1} vn∈{0,1}

v2∈{0,1} vn∈{0,1}

Interactive proofs

We want to check whether

K= S S ... S g(v1,...,vn) (mod p) (1)

● We proceed as follows: V draws a∈{0,...,p-1}, and then he solves
the same problem as (1), but with one variable less:

s(a)= S ... S g(a,v2,...,vn) (mod p)

● At the very end, when there are no variables (n=0), V simply
checks whether K=g()

v1∈{0,1} v2∈{0,1} vn∈{0,1}

v2∈{0,1} vn∈{0,1}

Interactive proofs

We want to check whether

K= S S ... S g(v1,...,vn) (mod p) (1)

● We proceed as follows: V draws a∈{0,...,p-1}, and then he solves
the same problem as (1), but with one variable less:

s(a)= S ... S g(a,v2,...,vn) (mod p)

● At the very end, when there are no variables (n=0), V simply
checks whether K=g()

● If (1) holds, the „truthful” Prover always convinces V
● If (1) does not hold, every Prover gets caught on cheating

with probability ≥ (1-d/p)n ≥ 1-dn/p ≥ 3/4

We have shown that 3CNF-NSAT∈IP, i.e., that coNPIP

v1∈{0,1} v2∈{0,1} vn∈{0,1}

v2∈{0,1} vn∈{0,1}

Interactive proofs

Bernoulli's inequality holds for large n, since p is
exponential in n, while d=O(n3))

Now the actual theorem: QBF∈IP, i.e., PSPACEIP
This time we have a formula with quantifiers:

F=∃x1∀x2∃x3 ...∀xn f(x1,...,xn)

After translating f into a polynomial, we want to check whether:

0 < S P S ... P g(v1,...,vn)
v1∈{0,1} v3∈{0,1}v2∈{0,1}v2∈{0,1} vn∈{0,1}

Interactive proofs

Now the actual theorem: QBF∈IP, i.e., PSPACEIP
This time we have a formula with quantifiers:

F=∃x1∀x2∃x3 ...∀xn f(x1,...,xn)

After translating f into a polynomial, we want to check whether:

0 < S P S ... P g(v1,...,vn)

● We would like to use the previous protocol (for a product we
proceed similarly as for a sum, but instead of checking s(0)+s(1)=K
we have to check whether s(0).s(1)=K)

● A problem: resulting single-variable polynomials may have
an exponential degree; they are too long to be sent in polynomial
time during the interaction

v1∈{0,1} v3∈{0,1}v2∈{0,1}v2∈{0,1} vn∈{0,1}

Interactive proofs

Now the actual theorem: QBF∈IP, i.e., PSPACEIP
This time we have a formula with quantifiers:

F=∃x1∀x2∃x3 ...∀xn f(x1,...,xn)

After translating f into a polynomial, we want to check whether:

0 < S P S ... P g(v1,...,vn)

● We would like to use the previous protocol (for a product we
proceed similarly as for a sum, but instead of checking s(0)+s(1)=K
we have to check whether s(0).s(1)=K)

● A problem: resulting single-variable polynomials may have
an exponential degree; they are too long to be sent in polynomial
time during the interaction

● Solution: transform F to an equivalent (in the sense of the QBF
problem) formula such that the resulting polynomials are of
low degree.

v1∈{0,1} v3∈{0,1}v2∈{0,1}v2∈{0,1} vn∈{0,1}

Interactive proofs

We have a formula F=∃x1∀x2∃x3 ...∀xn f(x1,...,xn)
We transform F to an equivalent (in the sense of the QBF problem)
formula such that the resulting polynomials are of low degree:
● We proceed from right to left (i.e., inside-out)
● Every subformula of the form ∀xi q(x1,...,xi) (where q can contain

more quantifiers) is replaced with:
∀xi∃y1 ...∃yi (x1=y1)∧...∧(xi=yi)∧q(y1,...,yi)

● We obtain an equivalent formula of n2 variables, size = O(n2)

Interactive proofs

We have a formula F=∃x1∀x2∃x3 ...∀xn f(x1,...,xn)
We transform F to an equivalent (in the sense of the QBF problem)
formula such that the resulting polynomials are of low degree:
● We proceed from right to left (i.e., inside-out)
● Every subformula of the form ∀xi q(x1,...,xi) (where q can contain

more quantifiers) is replaced with:
∀xi∃y1 ...∃yi (x1=y1)∧...∧(xi=yi)∧q(y1,...,yi)

● We obtain an equivalent formula of n2 variables, size = O(n2)
● We change it into a polynomial; x=y results in x.y+(1-x).(1-y)
● What are the degrees of polynomials for subformulas:

➔ the degree of f is bounded by the size of f
➔ appending “∃x” does not change the degree (we append a sum)
➔ appending “(x=y)∧” increases the degree by ≤2
➔ The polynomial for ∀xi∃y1 ...∃yi (x1=y1)∧...∧(xi=yi)∧q(y1,...,yi) has

degree ≤2(i-1) (because ≤2 with respect to every variable xj)

Interactive proofs

We can apply the previous interactive algorithm for such a modified
formula.
● Additional problem: previously, we were computing modulo a small

prime number p, since we knew that the result is ≤2n
● Now the result can be doubly exponential, so in order to compute

precisely, we would need to take p of exponential length
● Solution: P proposes a small (≤2n) prime number p such that

(K mod p)≠0 – it surely exists, since K cannot be divisible by all
prime numbers ≤2n (see one of the previous lectures)

Interactive proofs

We can apply the previous interactive algorithm for such a modified
formula.
● Additional problem: previously, we were computing modulo a small

prime number p, since we knew that the result is ≤2n
● Now the result can be doubly exponential, so in order to compute

precisely, we would need to take p of exponential length
● Solution: P proposes a small (≤2n) prime number p such that

(K mod p)≠0 – it surely exists, since K cannot be divisible by all
prime numbers ≤2n (see one of the previous lectures)

Remark 1
In these protocols, random bits can be visible to P.
We have thus also shown that AM[poly]=IP.

Interactive proofs

We can apply the previous interactive algorithm for such a modified
formula.
● Additional problem: previously, we were computing modulo a small

prime number p, since we knew that the result is ≤2n
● Now the result can be doubly exponential, so in order to compute

precisely, we would need to take p of exponential length
● Solution: P proposes a small (≤2n) prime number p such that

(K mod p)≠0 – it surely exists, since K cannot be divisible by all
prime numbers ≤2n (see one of the previous lectures)

Remark 1
In these protocols, random bits can be visible to P.
We have thus also shown that AM[poly]=IP.

Remark 2
For words in L there exists a Prover, which always proves this.
Thus if in the first point of the definition of IP we have probability 1
instead of 3/4, we do not change the class IP.

Interactive proofs

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37

