Computational complexity

lecture 12

Derandomization

Generally, we only know that BPP \subseteq PSPACE, but some algorithms can be derandomized, and there are some techniques for this.
Consider the example: approximation of MAX-CUT - for an undirected graph $G=(V, E)$ compute a subset $S \subseteq V$ such that $\operatorname{cut}(S)=\{\{u, v\} \in E \mid u \in S, v \notin S\}$ is largest possible.
The decision problem (is $\operatorname{cut}(S) \geq k$ some S ?) is NP-complete.
There is a simple randomized algorithm, which computes S so that the expected value of $\operatorname{cut}(S)$ is $\geq|E| / 2$: for every node, take it to S with probability $1 / 2$:

- Every edge is in cut with probability $1 / 2$ (because the choices are independent), thus by linearity of the expected value, the expected size of cut is $|E| / 2$.

Derandomization

How can we derandomize the algorithm, i.e., give a deterministic algorithm computing S for which $\operatorname{cut}(S) \geq|E| / 2$?
We will show two concepts:

1) The method of conditional expected values

- In order to derandomize the algorithm, we should be able to find a "good" witness - in our case such that cut(S) $\geq|E| / 2$
- For a fixed sequence of guesses b_{1}, \ldots, b_{k}, let $E\left(b_{1}, \ldots, b_{k}\right)$ be the expected value of the size of a cut in the case when the first k bits are b_{1}, \ldots, b_{k}. It is clear that:
$E\left(b_{1}, \ldots, b_{k}\right)=E\left(b_{1}, \ldots, b_{k}, 0\right) / 2+E\left(b_{1}, \ldots, b_{k}, 1\right) / 2$
so either $E\left(b_{1}, \ldots, b_{k}, 0\right)$ or $E\left(b_{1}, \ldots, b_{k}, 1\right)$ is $\geq E\left(b_{1}, \ldots, b_{k}\right)$
- Assume that we can deterministically compute $E\left(b_{1}, \ldots, b_{k}\right)$. In such a situation, we can proceed "greedly": we choose this b_{k+1} which gives larger expected size of a cut.

Derandomization

1) The method of conditional expected values

- Then we have that:

$$
E\left(b_{1}, \ldots, b_{n}\right) \geq E\left(b_{1}, \ldots, b_{n-1}\right) \geq \ldots \geq E\left(b_{1}\right) \geq E()=|E| / 2
$$

- Thus at the end we obtain a cut of size $\geq|E| / 2$.
- Generally, it is not always possible to quickly compute $E\left(b_{1}, \ldots, b_{k}\right)$, but for MAXCUT we can do it: if we have chosen nodes from S, and we have discarded nodes from T, and X is the set of those edges in which at least one end is neither in S nor in T, then $E\left(b_{1}, \ldots, b_{k}\right)=|\operatorname{cut}(S, T)|+|X| / 2$

Derandomization

2) The method of pairwise-independent variables

- We were assuming that the random bits are all independent. But in the algorithm for MAXCUT it is enough to assume that they are pairwise independent, i.e., that $\operatorname{Pr}\left[b_{i}=b_{j}\right]=1 / 2$ for all $i \neq j$
- Fact: having $\log (n)$ independent random bits, one can produce n pairwise independent bits. Namely, for every nonempty subset of bits we take the XOR of these bits.
- On the other hand, all combinations of $\log (n)$ bits can be browsed in polynomial time.
for every sequence w of $c \cdot \log (n)$ bits do:
for every nonempty subset of bits we take the XOR of these bits let r be the sequence of $2^{|w|}-1$ bits obtained this way
run the algorithm using r as the sequence of random bits

Derandomization

We have presented two „practical" methods of derandomization:

1) The method of conditional expected values
(we invariably ensure that the expected value of a good result is high)
2) The method of pairwise-independent variables (out of $\log (n)$ random bits we produce n pseudorandom bits, for which our algorithm performs as for completely random bits)

Derandomization

We have presented two „practical" methods of derandomization:

1) The method of conditional expected values
(we invariably ensure that the expected value of a good result is high)
2) The method of pairwise-independent variables (out of $\log (n)$ random bits we produce n pseudorandom bits, for which our algorithm performs as for completely random bits) Now more theoretically: how one can try to derandomize an arbitrary randomized algorithm.

- We want to generalize the second method - having only $\log (n)$ random bits, we want to generate n pseudorandom bits, such that no polynomial algorithm can distinguish them from completely random bits

Derandomization

Having only $\log (n)$ random bits, we want to generate n pseudorandom bits, such that no polynomial algorithm can distinguish them from completely random bits.
More precisely:

- a generator - a function $G:\{0,1\}^{\log (n)} \rightarrow\{0,1\}^{n}$ computable in time polynomial in n
- a generator is ε-pseudorandom, if for every family of functions $D:\{0,1\}^{n} \rightarrow\{0,1\}$ from the class P/poly we have the property that for every large enough n :

$$
P r_{x \in\{0,1\}^{\log (n)}[}[D(G(x))=1]-P r_{y \in\{0,1\}^{n}}[D(y)=1] \leq \varepsilon
$$

Theorem (Yao 1982)
If a (1/10)-pseudorandom generator exists, then BPP=P.

Derandomization

Theorem (Yao 1982)

If a (1/10)-pseudorandom generator exists, then BPP=P.
Proof
Take a machine M, which BPP-recognizes some language L in time $p(n)$. Given an input word w of length n :

- generate, consecutively, all sequences of bits x of length $\log (p(n))$
- for each of them compute $G(x)$
- simulate M on the word w with bits $G(x)$
- accept if at least half of computations have accepted

Derandomization

Theorem (Yao 1982)
If a (1/10)-pseudorandom generator exists, then BPP=P.
Proof
Take a machine M, which BPP-recognizes some language L in time $p(n)$. Given an input word w of length n :

- generate, consecutively, all sequences of bits x of length $\log (p(n))$
- for each of them compute $G(x)$
- simulate M on the word w with bits $G(x)$
- accept if at least half of computations have accepted

Correctness proof:
The amount of "yes" results equals: $a_{w}=\operatorname{Pr}_{x \in\{0,1\}^{\log (p(n))}}[M(w, G(x))=1]$ For a random algorithm this is:

$$
b_{w}=P r_{y \in\{0,1\}^{p(n)}}[M(w, y)=1]
$$ If for every (long enough) w it holds that $\left|a_{w}-b_{w}\right| \leq 1 / 10$, then OK: for $w \in L$ it is $b_{w} \geq 3 / 4$, i.e., $a_{w}>1 / 2$, similarly for $w \notin L$

(a finite number of short inputs can be handled "manually")

Derandomization

Correctness proof:

The amount of "yes" results equals: $a_{w}=\operatorname{Pr}_{x \in\{0,1\}^{\log (p(n))}}[M(w, G(x))=1]$ For a random algorithm this is: $\quad b_{w}=\operatorname{Pr}_{y \in\{0,1\} p(n)}[M(w, y)=1]$ If for every (long enough) w it holds that $\left|a_{w}-b_{w}\right| \leq 1 / 10$, then OK: for $w \in L$ it is $b_{w} \geq 3 / 4$, i.e., $a_{w}>1 / 2$, similarly for $w \notin L$ (a finite number of short inputs can be handled "manually") If the difference is $\geq 1 / 10$ for arbitrarily long words w_{n}, then we consider $D(y)=M\left(w_{n}, y\right)$ (it is in P/poly) and we obtain a contradiction with the definition of a pseudorandom generator - for every (large enough) n it should hold that:

$$
P r_{x \in\{0,1\}^{\log (n)}}[D(G(x))=1]-P r_{y \in\{0,1\}^{n}}[D(y)=1] \leq 1 / 10
$$

Derandomization

Theorem (Yao 1982)
If a (1/10)-pseudorandom generator exists, then BPP=P.
Formerly, people supposed that such generators rather do not exist.
But in the course of time, it turned out that they exist under weaker and weaker assumptions. The strongest result of this form is:
Theorem (Impagliazzo-Wigderson 1998)
If SAT cannot be solved by a (not necessarily uniform) family of circuits of size smaller than $2^{\varepsilon n}$, then $\mathbf{B P P}=\mathbf{P}$
The proof is difficult.
Notice an interesting phenomenon: out of hardness of one problem (SAT) it is possible to deduce that other problems (those from BPP) are easy.

Fixed-parameter tractability

Idea:

- sometimes the reason for hardness lies not in the length of the input, but in some its parameter
- while fixing the parameter, we can sometimes obtain a polynomial algorithm
- sometimes even the exponent in this polynomial does not depend on the parameter
Such problems are called FPT (fixed-parameter tractable)
More formally:
- a parameter - a function from input words to natural numbers
- a problem is fixed-parameter tractable with respect to a parameter k, if it has complexity $f(k) \cdot n^{c}$ (important: the exponent does not depend on k)

Fixed-parameter tractability

Formally:

- a parameter - a function from input words to natural numbers
- a problem is fixed-parameter tractable with respect to a parameter k, if it has complexity $f(k) \cdot n^{c}$ (important: the exponent does not depend on k)

Example:

SAT is FPT with respect to the number of variables k algorithm: check all valuations
complexity: $2^{k} n$

Fixed-parameter tractability

Example 2:

VERTEX-COVER is FPT with respect to the size of the maximal cover.

- Algorithm: A full backtracking - for every edge (not having any of its ends in the cover yet), consecutively, decide which of its ends should be taken to the cover.
- This backtracking has depth k; in each step we choose one of two nodes, so the complexity is $2^{k} n$.
- Attention: One can consider another backtracking (a more natural one) - for every node decide whether it should be taken to the cover or not. This is not an FPT algorithm: it considers all k-element sets of nodes, so k goes to the exponent here.

Fixed-parameter tractability

Example 3:

k-colorability of a graph is not FPT with respect to the number of colors (unless $\mathrm{P}=\mathrm{NP}$).
If it was FPT, then it would be possible to solve the NP-complete problem of 3-colorability in time $f(3) \cdot n^{c}$, i.e., in polynomial time
But there is another parameter, under which k-colorability of a graph is FPT.
This is treewidth.

Treewidth

Intuitively: treewidth is small when the graph is similar to a tree.
Formally: we consider a tree decomposition.
A tree decomposition of a graph (V, E) consists of a tree T, in which nodes (called bags) are labeled by subsets of V, such that:

- for every $v \in V$, the bags of T to which v
belongs form a connected (and nonempty) subtree
- for every edge $(u, v) \in E$ there is a bag X in T such that $u, v \in X$
The decomposition is not unique.

Treewidth = maximal size of a bag in a decomposition, minus 1 .

Treewidth $=2$

Treewidth

k-colorability of a graph having treewidth s
Algorithm: dynamic programming over the tree decomposition. We compute which k-colorings of a bag in the decomposition (out of k^{s+1} possibilities) can be extended to a k-coloring of the whole subtree. We ensure that:

- if some node belongs to neighboring bags, then it should have the same color in both bags (this is enough, since the subtree containing a node is connected), and
- if two nodes in a bag are neighbors, then they should have different colors (this is
 enough, since every edge "belongs" to some bag).
Running time: $f(s) \cdot n$

Treewidth

k-colorability of a graph having treewidth s
Algorithm: dynamic programming over the tree decomposition. We compute which k-colorings of a bag in the decomposition (out of k^{s+1} possibilities) can be extended to a k-coloring of the whole subtree.
Running time: $f(s) \cdot n$
Additional problem: one has to find an optimal tree decomposition, before running this algorithm

- computing the treewidth is NP-hard

- but for a fixed treewidth s, a decomposition can be found in time $f(s) \cdot n$
- a decomposition of width slightly worse than the optimal one can be found in polynomial time

Treewidth

A dynamic programming over the tree decomposition of a graph, like for k-colorability, can be applied to many other problems. There is even a general theorem ("metatheorem"): Theorem (Courcelle 1990):
Every property of graphs expressible in the MSO logic can be decided in time $f(s) \cdot n$, where s is the treewidth.

Treewidth

A dynamic programming over the tree decomposition of a graph, like for k-colorability, can be applied to many other problems. There is even a general theorem ("metatheorem"):
Theorem (Courcelle 1990):
Every property of graphs expressible in the MSO logic can be decided in time $f(s) \cdot n$, where s is the treewidth.

- in this logic, we allow quantification over sets of nodes, and over sets of edges
- for most properties, it is easy to express them in this logic
- in this way we easily obtain an FPT algorithm, but the function $f(s)$ is fast-growing. In order to obtain a practical algorithm, it is necessary to concentrate on a particular problem
- another version of this theorem: the MSO logic without quantification over sets of edges (i.e., a weaker logic), but instead of treewidth we have "cliquewidth" (which can be smaller)

Treewidth

An example application of treewidth:
Graphs of control flow in structural programs (without GOTO) have treewidth at most 6 (Thorup 1998)
This helps e.g. in an optimal allocation of registers during compilation of programs

Fixed-parameter tractability

More on hardness:

k-colorability of a graph is not FPT with respect to the number of colors (unless $\mathrm{P}=\mathrm{NP}$).
If it was FPT, then it would be possible to solve the NP-complete problem of 3-colorability in time $f(3) \cdot n^{c}$, i.e., in polynomial time

This example is very unusual. There are many problems, which for a fixed value of a parameter are polynomial, but are not FTP (i.e., they can be solved in time $n^{f(k)}$, but not in $f(k) \cdot n^{c}$)

There exist multiple reductions between such problems (similarly to reductions between NP-complete problems), thus either all are are FPT, or none of them (we rather believe that none of them). In this context, it makes sense to consider only reductions which do not change the value of the parameter.

Fixed-parameter tractability

More on hardness:

In this context, one considers classes called $\mathbf{W}[k]$ for all $k \geq 0$ (we skip a definition) W[0] contains FPT problems
W[1] contains (for example):

- deciding if a given graph contains a clique of size k
- deciding if a given graph contains an independent set of size k
- deciding if a given nondeterministic single-tape Turing machine accepts within k steps (there are FPT-reductions between these problems;
it is believed that there are no FPT algorithms for these problems)
W[2] contains (for example):
- deciding if a given graph contains a dominating set of size k
- deciding if a given nondeterministic multi-tape Turing machine accepts within k steps (there are FPT-reductions between these problems, and from \mathbf{W} [1] to $\mathbf{W}[2]$)
there is a class $\mathbf{W}[t]$ for every natural t

Approximation

- Approximation is considered for hard optimization problems: find the smallest vertex cover, the greatest clique, etc.
- One often says that these problems are e.g. NP-complete. What does it mean precisely? These are not decision problems. But optimization problems can be considered in a decision variant, and then they can be NP-complete, e.g.
\rightarrow for a given graph, and a number k, is there a clique of size k ?
\rightarrow or: for a given graph, a number k, and a set of nodes, is there a clique of size k containing these nodes?
(this corresponds to searching for the clique, not only its size)
- The problem in the optimization version can be easily reduced to many calls of the problem in the decision version.

Approximation

- Approximation: looking for approximate solutions for (hard) optimization problems
\rightarrow We want an algorithm that outputs some solution, which is maybe not optimal, but not much worse than the optimal solution

Approximation

- Approximation: looking for approximate solutions for (hard) optimization problems
- A ϱ-approximation algorithm returns a solution such that:
\rightarrow for maximization problems:
solution \geq optimum $\cdot \rho$
\rightarrow for minimization problems:
solution \leq optimum $\cdot \rho$
ρ is called approximation factor

Approximation

- Approximation: looking for approximate solutions for (hard) optimization problems
- A ϱ-approximation algorithm returns a solution such that:
\rightarrow for maximization problems:
solution \geq optimum $\cdot \rho$
\rightarrow for minimization problems:
solution \leq optimum $\cdot \rho$
ρ is called approximation factor
- Different possibilities:
\rightarrow approximation impossible within any constant factor (unless $\mathrm{P}=\mathrm{NP}$)
\rightarrow there exists an approximation algorithm with a constant factor
\rightarrow for every $\varepsilon>0$ there is an ($1+\varepsilon$)-approximation algorithm - we say that there exists a PTAS (polynomial time approximation scheme); if the exponent in the algorithm does not depend on ε, we say that there exists a strong PTAS

Example: VERTEX-COVER

Vertex cover: a set of nodes containing at least one end of every edge (we want to find a smallest one)

A simple idea: in a loop - take a node of the maximal degree, take it to the cover, and remove it from the graph, together with all its neighbors.
Does it approximate well the minimal cover?

Example: VERTEX-COVER

Vertex cover: a set of nodes containing at least one end of every edge (we want to find a smallest one)

A simple idea: in a loop - take a node of the maximal degree, take it to the cover, and remove it from the graph, together with all its neighbors.
Does it approximate well the minimal cover?
The solution can be $\log (n)$ times worse than the minimal one, e.g. for such a bipartite graph:

the algorithm chooses all the nodes on the right, instead of nodes on the left

Example: VERTEX-COVER

But there is a 2-approximation of VERTEX-COVER:
In a loop - add both ends of some edge to the cover, and remove them from the graph, together with their neighbors

Every cover contains at least one of these ends, thus our cover is at most twice larger (factor 2)
A known hypothesis: there is no better algorithm

Difficult approximation

Traveling salesmen problem: no approximation with constant factor, unless $\mathbf{P}=\mathbf{N P}$.

Proof:
Suppose that there is a ρ-approximation algorithm. Out of it, we will create a precise algorithm finding Hamiltonian cycles. For an arbitrary graph we create an instance of the traveling salesman problem: as the distance between nodes u, v we take:
$\rightarrow 1$ if there is an edge between u and v in the original graph
$\rightarrow|V| \cdot \rho$ if there is no such edge

Difficult approximation

Traveling salesmen problem: no approximation with constant factor, unless $\mathbf{P}=\mathbf{N P}$.

Proof:
Suppose that there is a ρ-approximation algorithm. Out of it, we will create a precise algorithm finding Hamiltonian cycles. For an arbitrary graph we create an instance of the traveling salesman problem: as the distance between nodes u, v we take:
$\rightarrow 1$ if there is an edge between u and v in the original graph
$\rightarrow|V| \cdot \rho$ if there is no such edge
We run the approximate algorithm of the traveling salesmen problem on this instance. There are two possibilities:
\rightarrow the algorithm gives a route having cost $|V|$; then we have a Hamiltonian cycle
\rightarrow the algorithm gives a route having cost $C>|V| \rho \rho$ (when at least one edge of such a cost is used); the factor is ρ, so $C \leq O \cdot \rho$ (where O - optimal cost), so $O>|V|$ - there is no Hamiltonian cycle

Difficult approximation

Suppose that there is a ρ-approximation algorithm. Out of it, we will create a precise algorithm finding Hamiltonian cycles. For an arbitrary graph we create an instance of the traveling salesman problem: as the distance between nodes u, v we take:
$\rightarrow 1$ if there is an edge between u and v in the original graph
$\rightarrow|V| \cdot \rho$ if there is no such edge
We run the approximate algorithm of the traveling salesmen problem on this instance. There are two possibilities:
\rightarrow the algorithm gives a route having cost $|V|$; then we have a Hamiltonian cycle
\rightarrow the algorithm gives a route having cost $C>|V| \cdot \rho$ (when at least one edge of such a cost is used); the factor is ρ, so $C \leq O^{\cdot} \rho$ (where O - optimal cost), so $O>|V|$ - there is no Hamiltonian cycle Remark: This shows not only that there is no approximation with a constant factor, but even with an exponential factor (i.e., where $C / O \leq e x p o n e n t i a l$ function), since then the instance of the traveling salesmen problem is still of polynomial size

