

Computational complexity

lecture 10

Class RP (randomized polynomial time): a language L is in RP iff
there is a machine M with a source of random bits, working in
polynomial time, and such that:
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ ∄s. (w,s)∈LM

Probabilistic machines

An example of an algorithm in coRP – primality testing
input: n
question: is n prime?
[So the converse: “is n composite?” is in RP.]

Examples of randomized algorithms

An example of an algorithm in coRP – primality testing
input: n
question: is n prime?
[So the converse: “is n composite?” is in RP.]

History:
● Clearly primality∈coNP: a nontrivial divisor is a witness,

but it is difficult to find it.
● For years it was not known how to check that a number is prime

(even before the era of computers, this was an interesting problem)

Examples of randomized algorithms

An example of an algorithm in coRP – primality testing
input: n
question: is n prime?
[So the converse: “is n composite?” is in RP.]

History:
● Clearly primality∈coNP: a nontrivial divisor is a witness,

but it is difficult to find it.
● For years it was not known how to check that a number is prime

(even before the era of computers, this was an interesting problem)
● Pratt 1975, primality∈NP (i.e., ∈NP∩coNP) – certificate for

primality that can be checked in polynomial time
● probabilistic tests discovered, showing primality∈coRP

(Solovay-Strassen test 1977, Miller-Rabin test 1976-1980)

Examples of randomized algorithms

An example of an algorithm in coRP – primality testing
input: n
question: is n prime?
[So the converse: “is n composite?” is in RP.]

History:
● Clearly primality∈coNP: a nontrivial divisor is a witness,

but it is difficult to find it.
● For years it was not known how to check that a number is prime

(even before the era of computers, this was an interesting problem)
● Pratt 1975, primality∈NP (i.e., ∈NP∩coNP) – certificate for

primality that can be checked in polynomial time
● probabilistic tests discovered, showing primality∈coRP

(Solovay-Strassen test 1977, Miller-Rabin test 1976-1980)
● Adleman-Pomerance-Rumely 1983: determin. alg., |n|O(ln ln |n|)

● Adleman-Huang 1992: primality∈RP∩coRP
● Agrawal-Kayal-Saxena 2002: primality∈P, best known time: O(|n|6)
● in practice, probabilistic tests are used (the determ. alg. is too slow)

Examples of randomized algorithms

An example of an algorithm in coRP – primality testing
input: n
question: is n prime?
Miller-Rabin test:
● let n-1=2s.d
● choose randomly a∈{1,...,n-1}
● If ad≡1 (mod n) and a2rd≡-1 (mod n) for all r∈{0,...,s-1}, say

“composite”, otherwise say “prime”

Examples of randomized algorithms

An example of an algorithm in coRP – primality testing
input: n
question: is n prime?
Miller-Rabin test:
● let n-1=2s.d
● choose randomly a∈{1,...,n-1}
● If ad≡1 (mod n) and a2rd≡-1 (mod n) for all r∈{0,...,s-1}, say

“composite”, otherwise say “prime”
➔ For prime numbers, the algorithm always says “prime”
➔ For composite numbers, the algorithm says “composite”

with probability ≥3/4 (probability of error ≤1/4)
➔ We skip a proof

Examples of randomized algorithms

An example of an algorithm in RP: check that a polynomial (given
in an implicit form) is nonzero?

Formally, we are given an arithmetic circuit, where we have gates
+, *, –, and input gates corresponding to variables – notice that
such a circuit always encodes a polynomial with integer coefficients.
We ask whether there is a valuation of variables for which the result
of the circuit is nonzero.
The problem can be considered over rational (real) numbers, or
over some finite field.

Examples of randomized algorithms

An example of an algorithm in RP: check that a polynomial (given
in an implicit form) is nonzero?

Formally, we are given an arithmetic circuit, where we have gates
+, *, –, and input gates corresponding to variables – notice that
such a circuit always encodes a polynomial with integer coefficients.
We ask whether there is a valuation of variables for which the result
of the circuit is nonzero.
The problem can be considered over rational (real) numbers, or
over some finite field.

In both cases, we do not know whether the problem is in P.

An idea for a probabilistic algorithm:
take a random valuation of variables, and check the result

Does it make sense?
Yes, if every nonzero polynomial is nonzero for a majority of
valuations of variables.

Examples of randomized algorithms

Lemma (Schwartz-Zippel)
Let p be a nonzero polynomial of k variables, of total degree d,
over a field F (finite or not), let S be a finite subset of this field.
We pick r1,...,rk∈S randomly.

Then Pr[p(r1,...,rk)=0] ≤ d / |S|

Examples of randomized algorithms (*)

Lemma (Schwartz-Zippel)
Let p be a nonzero polynomial of k variables, of total degree d,
over a field F (finite or not), let S be a finite subset of this field.
We pick r1,...,rk∈S randomly.

Then Pr[p(r1,...,rk)=0] ≤ d / |S|

Proof: induction over k
k=1 → Bezout's theorem: a polynomial of degree d has ≤d zeroes

Examples of randomized algorithms (*)

Lemma (Schwartz-Zippel)
Let p be a nonzero polynomial of k variables, of total degree d,
over a field F (finite or not), let S be a finite subset of this field.
We pick r1,...,rk∈S randomly.

Then Pr[p(r1,...,rk)=0] ≤ d / |S|

Proof: induction over k
k=1 → Bezout's theorem: a polynomial of degree d has ≤d zeroes
Induction step: write p as a polynomial of the variable x1:

p(x1,...,xk)=Σ x1
.pi(x2,...,xk)

Take the greatest i, for which pi is nonzero (exists, since p≠0).

The degree of pi is ≤d-i. From the induction assumption:
Pr[pi(r2,...,rk)=0] ≤ (d-i) / |S|

i=0
i

d

Examples of randomized algorithms (*)

Lemma (Schwartz-Zippel)
Let p be a nonzero polynomial of k variables, of total degree d,
over a field F (finite or not), let S be a finite subset of this field.
We pick r1,...,rk∈S randomly.

Then Pr[p(r1,...,rk)=0] ≤ d / |S|

Proof: induction over k
k=1 → Bezout's theorem: a polynomial of degree d has ≤d zeroes
Induction step: write p as a polynomial of the variable x1:

p(x1,...,xk)=Σ x1
.pi(x2,...,xk)

Take the greatest i, for which pi is nonzero (exists, since p≠0).

The degree of pi is ≤d-i. From the induction assumption:
Pr[pi(r2,...,rk)=0] ≤ (d-i) / |S|

If pi(r2,...,rk)≠0, then p(x1,r2,...,rk) is of degree i , so

Pr[p(r1,...,rk)=0 | pi(r2,...,rk)≠0] ≤ i / |S|

This is enough, since Pr[A]≤Pr[B]+Pr[A|Bc] for arbitrary events A,B

i=0
i

d

Examples of randomized algorithms (*)

The Schwartz-Zippel lemma shows that the question whether a
polynomial is nonzero is in RP, when we consider it over a large
finite field.
● We see that a circuit with n gates defines a polynomial of total

degree at most 2n. If there are k variables, it is enough to pick k
random numbers from 0,...,10

.2n (it requires O(kn) bits), compute
the value of the polynomial (i.e., simulate the circuit), and accept
if the result is nonzero. We are wrong with probability ≤0.1.

Examples of randomized algorithms (*)

The Schwartz-Zippel lemma shows that the question whether a
polynomial is nonzero is in RP, when we consider it over a large
finite field.
● We see that a circuit with n gates defines a polynomial of total

degree at most 2n. If there are k variables, it is enough to pick k
random numbers from 0,...,10

.2n (it requires O(kn) bits), compute
the value of the polynomial (i.e., simulate the circuit), and accept
if the result is nonzero. We are wrong with probability ≤0.1.

Over the field of rationals (or if the considered finite field is too large)
there is an additional problem: how to evaluate the circuit in poly-
nomial time? Even if the final result is 0, intermediate results can be
very long.
● Solution: pick a random number m from 2,...,22n, and compute

everything modulo m
Why does this work well?

Examples of randomized algorithms (*)

● We take random m from 2,...,22n, and we compute modulo m
● If the value of a polynomial Y=p(r

1
,...,r

k
) is 0, then modulo m it is 0

as well.
● If the value is nonzero, we will prove that with probability ≥1/(10n)

it does not divide by m (i.e., is nonzero modulo m)

Examples of randomized algorithms (*)

● We take random m from 2,...,22n, and we compute modulo m
● If the value of a polynomial Y=p(r

1
,...,r

k
) is 0, then modulo m it is 0

as well.
● If the value is nonzero, we will prove that with probability ≥1/(10n)

it does not divide by m (i.e., is nonzero modulo m)
● The number p(N) of prime numbers smaller than N satisfies:

● Thus m is prime with probability at least 1/(5n) (for large enough n)

lim =1
N→∞

p(N)
N/ln(N)

Examples of randomized algorithms (*)

● We take random m from 2,...,22n, and we compute modulo m
● If the value of a polynomial Y=p(r

1
,...,r

k
) is 0, then modulo m it is 0

as well.
● If the value is nonzero, we will prove that with probability ≥1/(10n)

it does not divide by m (i.e., is nonzero modulo m)
● The number p(N) of prime numbers smaller than N satisfies:

● Thus m is prime with probability at least 1/(5n) (for large enough n)
● We have Y≤(10

.2n)2n
● The number of prime divisors of Y is at most logarithmic,

namely ≤5n2n

● A randomly chosen m is among these divisors with probability
≤5n2n/22n<1/(10n)

● Thus m is prime and is NOT a divisor of Y with probability >1/(10n)

Examples of randomized algorithms (*)

lim =1
N→∞

p(N)
N/ln(N)

● We take random m from 2,...,22n, and we compute modulo m
● If the value of a polynomial Y=p(r

1
,...,r

k
) is 0, then modulo m it is 0

as well.
● If the value is nonzero, then with probability ≥1/(10n) it does not

divide by m (i.e., is nonzero modulo m)
● This is still not enough – our algorithm fails with prob. ≤1-1/(10n)
● Let us repeat the whole algorithm n times. This is enough, since

● For large n this is <0.5
● We have finitely many „small” n, where the error is a constant;

we can decrease it using the standard amplification

lim (1-1/n)n = 1/e
n→∞

Examples of randomized algorithms (*)

As a side effect, we obtain the following stronger version of
amplification:
Fact
Suppose that a language L is recognized by a machine M with
a source of random bits, working in polynomial time, and such that
for some polynomial p(n):
● w∈L ⇒ Prs[(w,s)∈LM]≥1/p(n)
● w∉L ⇒ ∄s. (w,s)∈LM

Then L∈RP.
Proof
● We execute the machine p(n) times. This is enough, since

● For large n this is <0.5
● We have finitely many „small” n, we can deal with them somehow

lim (1-1/p(n))p(n) = 1/e
n→∞

Amplification

(error probability almost 1)

We can go even further:
Fact
Let L∈RP. Then, for every polynomial q(n) there is a machine M
with a source of random bits, working in polynomial time, and
such that:
● w∈L ⇒ Prs[(w,s)∈LM]≥1-1/2q(n)

● w∉L ⇒ ∄s. (w,s)∈LM

Proof
● We take a machine that makes a mistake with probability <1/2,

and we run it q(n) times

Amplification

(error probability exponentially small)

Perfect matching in a bipartite graph:
input: bipartite graph G=(V1,V2,E), where |V1|=|V2|

question: is there a perfect matching in G?
● several deterministic algorithms are known for detecting if

a perfect matching exists
● we present here a randomized algorithm

Examples of randomized algorithms

Perfect matching in a bipartite graph:
input: bipartite graph G=(V1,V2,E), where |V1|=|V2|=n

question: is there a perfect matching in G?
Solution
● Consider the n×n matrix X whose entry Xij is a variable xij if (i,j)∈E,

and 0 otherwise.
● Recall that the determinant det(X) is

det(X)=Σ(-1)sign(s)PXi,s(i)

● Every permutation in Sn is a potential perfect matching.
● A perfect matching exists iff the determinant is nonzero.

Examples of randomized algorithms

s∈Sn i=1

n

Perfect matching in a bipartite graph:
input: bipartite graph G=(V1,V2,E), where |V1|=|V2|=n

question: is there a perfect matching in G?
Solution
● Consider the n×n matrix X whose entry Xij is a variable xij if (i,j)∈E,

and 0 otherwise.
● Recall that the determinant det(X) is

det(X)=Σ(-1)sign(s)PXi,s(i)

● Every permutation in Sn is a potential perfect matching.
● A perfect matching exists iff the determinant is nonzero.
● The determinant itself, as a polynomial, is large.
● But for specific numbers substituted for the variables, we can

compute in quickly (as fast as matrix multiplication).
● Randomized algorithm: substitute something for the variables,

and check that the determinant is nonzero.
● Advantage: the algorithm parallelizes (matrix_determinant ∈ NC)

Examples of randomized algorithms

s∈Sn i=1

n

Class PP
Class PP (probabilistic polynomial): like RP, but:
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ Prs[(w,s)∈LM]<0.5

Intuition: acceptance by voting of witnesses

Class PP
Class PP (probabilistic polynomial): like RP, but:
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ Prs[(w,s)∈LM]<0.5

Intuition: acceptance by voting of witnesses

Advantages of this class:
● errors allowed on both sides ⇒ closed under complement
● a „syntactic” class ⇒ has a complete problem MAJSAT:

is a given boolean formula satisfied by at least half of possible
valuations?

Class PP
Class PP (probabilistic polynomial): like RP, but:
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ Prs[(w,s)∈LM]<0.5

Intuition: acceptance by voting of witnesses

Advantages of this class:
● errors allowed on both sides ⇒ closed under complement
● a „syntactic” class ⇒ has a complete problem MAJSAT:

is a given boolean formula satisfied by at least half of possible
valuations?

Disadvantages of this class – it is too large:
● in practice: maybe M gives probabilities close to 0.5, so running it

(even many times) does not tell us too much about the result
● NP⊆PP – tutorials

Class BPP
Class BPP (bounded probabilistic polynomial): errors allowed on
both sides, but only small errors:
● w∈L ⇒ Prs[(w,s)∈LM]≥3/4
● w∉L ⇒ Prs[(w,s)∈LM]≤1/4

In other words: the probability of an error is ≤1/4, both sides

Class BPP (bounded probabilistic polynomial): errors allowed on
both sides, but only small errors:
● w∈L ⇒ Prs[(w,s)∈LM]≥3/4
● w∉L ⇒ Prs[(w,s)∈LM]≤1/4

In other words: the probability of an error is ≤1/4, both sides

Remarks:
● easy fact: RP⊆BPP⊆PP
● we are not aware of any problem, which is in BPP, and about

which we do not know whether it is in RP or in coRP
● BPP is a good candidate for the class of these problems, which

can be quickly solved “in practice”
● open problem: how is BPP related to NP?
● tutorials: if NP⊆BPP, then NP⊆RP (i.e., NP=RP)
● conjecture (open problem): BPP=P (“randomization doesn't add

anything”)

Class BPP

Amplification for BPP:
instead of the error 1/4, one can take any number p∈(0,1/2)

Proof:
Let the original error probability be p<1/2.
We run the algorithm 2m+1 times, and we take the decision of
majority. The probability of error decreases to:

(1-p)ip2m+1-i ≤Σ
i=0

m 2m+1
i() (1-p)mpm+1 = 22m(1-p)mpm+1 ≤ (4p(1-p))mΣ

i=0

m 2m+1
i()

precisely i correct
answers

Class BPP

Amplification for BPP:
instead of the error 1/4, one can take any number p∈(0,1/2)

Proof:
Let the original error probability be p<1/2.
We run the algorithm 2m+1 times, and we take the decision of
majority. The probability of error decreases to:

Remark:
As for RP, we can prove a stronger version: we can start from an
algorithm with error probability 1-1/p(n) (very large), and obtain an
algorithm with error probability 1/2q(n), for polynomials p(n), q(n).
It is enough to take as m appropriate polynomial.

(1-p)ip2m+1-i ≤Σ
i=0

m 2m+1
i() (1-p)mpm+1 = 22m(1-p)mpm+1 ≤ (4p(1-p))mΣ

i=0

m 2m+1
i()

precisely i correct
answers

Class BPP

Two types of randomized algorithms:
● Monte Carlo: the algorithm is always fast, usually the answer is

correct – RP, BPP, PP
● Las Vegas: the answer is always correct, usually the algorithm is

fast – ZPP

Class ZPP (zero-error probabilistic polynomial time): problems that
can be solved in expected polynomial time.

Class ZPP

Two types of randomized algorithms:
● Monte Carlo: the algorithm is always fast, usually the answer is

correct – RP, BPP, PP
● Las Vegas: the answer is always correct, usually the algorithm is

fast – ZPP

Class ZPP (zero-error probabilistic polynomial time): problems that
can be solved in expected polynomial time.

How do we compute the expected running time?
● The machine has access to an infinite tape with random bits
● Every bit is chosen independently (0 or 1 with probability 0.5)
● I.e., a computation that halts after reading k random bits has

probability 2-k
● The probability of looping forever is required to be 0

Class ZPP

Two types of randomized algorithms:
● Monte Carlo: the algorithm is always fast, usually the answer is

correct – RP, BPP, PP
● Las Vegas: the answer is always correct, usually the algorithm is

fast – ZPP

Class ZPP (zero-error probabilistic polynomial time): problems that
can be solved in expected polynomial time.

How do we compute the expected running time?
● The machine has access to an infinite tape with random bits
● Every bit is chosen independently (0 or 1 with probability 0.5)
● I.e., a computation that halts after reading k random bits has

probability 2-k
● The probability of looping forever is required to be 0

Tutorials: ZPP=RP∩coRP (i.e, Las Vegas algorithms can be
changed to Monte Carlo algorithms)

Class ZPP

Non-uniform derandomization
Theorem (Adleman 1978):
BPP⊆P/poly

Remark: this theorem says that for every language in BPP there is
a sequence of circuits of polynomial size, which recognizes it.
If this sequence would be uniform, the language would be in P
(it would be possible to derandomize every language from BPP).
This is an open problem, though, so the sequence of circuits
obtained in our proof should be “strange”, i.e., difficult to compute.

Theorem (Adleman 1978):
BPP⊆P/poly

Proof:
● Suppose that M recognizes L with error probability ≤1/4.
● On input of length n we repeat the computation 2(3n)+1 times;

the error decreases to ≤(4p(1-p))3n=(3/4)3n (running time is still
polynomial, number of random bits polynomial)

● The probability that a random sequence of bits gives an incorrect
answer for a fixed input of length n is ≤(3/4)3n, thus the probability
that a random sequence of bits gives an incorrect answer for at
least one input of length n is ≤2n(3/4)3n=(27/32)n<1

● Thus there exists a sequence of bits, which gives a correct answer
for every input of length n – we take this sequence of bits as the
advice

Non-uniform derandomization

Derandomization
Generally, we only know that BPP⊆PSPACE, but some algorithms
can be derandomized, and there are some techniques for this.

Consider the example: approximation of MAX-CUT – for an
undirected graph G=(V,E) compute a subset S⊆V such that
 cut(S)={{u,v}∈E | u∈S, v∉S}
is largest possible.
The decision problem (is cut(S)≥k some S?) is NP-complete.

Generally, we only know that BPP⊆PSPACE, but some algorithms
can be derandomized, and there are some techniques for this.

Consider the example: approximation of MAX-CUT – for an
undirected graph G=(V,E) compute a subset S⊆V such that
 cut(S)={{u,v}∈E | u∈S, v∉S}
is largest possible.
The decision problem (is cut(S)≥k some S?) is NP-complete.

There is a simple randomized algorithm, which computes S so that
the expected value of cut(S) is ≥|E|/2: for every node, take it to S
with probability 1/2:
● Every edge is in cut with probability 1/2 (because the choices are

independent), thus by linearity of the expected value, the expected
size of cut is |E|/2.

Derandomization

There is a simple randomized algorithm, which computes S so that
the expected value of cut(S) is ≥|E|/2: for every node, take it to S
with probability 1/2:
● Every edge is in cut with probability 1/2 (because the choices are

independent), thus by linearity of the expected value, the expected
size of cut is |E|/2.

And how can be bound (from below) the probability that the resulting
cut has size at least |E|/2?
● The worst case is when rarely (in k cases, for some k) the algo-

rithm returns a cut of size |E|, and often (in 2|V|-k cases) it returns
a cut of size |E|/2-1. We have an inequality:
k|E|+(2|V|-k)(|E|/2-1)≥2|V||E|/2
This gives: k(|E|/2+1)≥2|V| ⇒ k/2|V|≥2/(|E|+2)

● Thus the probability that the resulting cut has size ≥|E|/2 is ≥1/|E|
(assuming |E|≥2). By repeating the algorithm a linear number of
times, the probability can be changed to a constant, since
lim (1-1/n)n = 1/e
n→∞

Derandomization

Thus: we have a randomized algorithm, giving with probability ≥1/2
a cut of size ≥|E|/2.
How can we derandomize it, i.e., give a deterministic algorithm
computing S for which cut(S)≥|E|/2?

We will show two concepts:

1) The method of conditional expected values
● In order to derandomize the algorithm, we should be able to find a

“good” witness – in our case such that cut(S)≥|E|/2
● For a fixed sequence of guesses b1,...,bk, let E(b1,...,bk) be the

expected value of the size of a cut in the case when the first k bits
are b1,...,bk. It is clear that:
E(b1,...,bk)=E(b1,...,bk,0)/2+E(b1,...,bk,1)/2

so either E(b1,...,bk,0) or E(b1,...,bk,1) is ≥E(b1,...,bk)

● Assume that we can deterministically compute E(b1,...,bk).

In such a situation, we can proceed “greedly”: we choose
this bk+1 which gives larger expected size of a cut.

Derandomization

1) The method of conditional expected values
● Then we have that:

E(b1,...,bn)≥E(b1,...,bn-1)≥...≥E(b1)≥E()=|E|/2

● Thus at the end we obtain a cut of size ≥|E|/2.
● Generally, it is not always possible to quickly compute E(b1,...,bk),

but for MAXCUT we can do it: if we have chosen nodes from S,
and we have discarded nodes from T, and X is the set of those
edges in which at least one end is neither in S nor in T, then
E(b1,...,bk)=|cut(S,T)|+|X|/2

Derandomization

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42

