

Computational complexity

lecture 9

The following problem is in NP:
INDSET = {(G,k) : in graph G there is an independent set of size ≥k}

Consider now a slightly more difficult problem:
EXACT-INDSET = {(G,k) : the largest independent set in G is

 of size k}
We see no reason for this problem to be in NP...
What would be a witness?

Polynomial hierarchy

EXACT-INDSET = {(G,k) : the largest independent set in G is
 of size k}

A similar problem:
MIN−DNF = { : is a formula in the DNF form, not equivalent toϕ ϕ

 any smaller formula in the DNF form}
 = { : ϕ ∀ ψ, |ψ| < | | ϕ ⇒ ∃ valuation s such that (s)≠ψ(s)}ϕ

In order to describe these problems, it is not enough to use one
„exists” quantifier (as in NP), neither one „for all” quantifier (as in
coNP). We have here a combination of two quantifiers.

Polynomial hierarchy

EXACT-INDSET = {(G,k) : the largest independent set in G is
 of size k}

A similar problem:
MIN−DNF = { : is a formula in the DNF form, not equivalent toϕ ϕ

 any smaller formula in the DNF form}
 = { : ϕ ∀ ψ, |ψ| < | | ϕ ⇒ ∃ valuation s such that (s)≠ψ(s)}ϕ

In order to describe these problems, it is not enough to use one
„exists” quantifier (as in NP), neither one „for all” quantifier (as in
coNP). We have here a combination of two quantifiers.

Class S
2
 contains languages L for which there is a machine M

working in polynomial time, and a polynomial q such that:
xL  ∃ u{0,1}q(|x|) ∀ v{0,1}q(|x|) M(x,u,v)=1

The language EXACT-INDSET is of this form:
∃S ∀S' . S is an independent set of size k and

 S' is not an independent set of size >k

p

Polynomial hierarchy

Class S
2
 contains languages L for which there is a machine M

working in polynomial time, and a polynomial q such that:
xL  ∃ u{0,1}q(|x|) ∀ v{0,1}q(|x|) M(x,u,v)=1

The language EXACT-INDSET is of this form

Class P
2
 contains complements of languages from S

2
; it is easy to

see that it contains languages L for which there is a machine M
working in polynomial time, and a polynomial q such that:

xL  ∀ u{0,1}q(|x|) ∃ v{0,1}q(|x|) M(x,u,v)=1

The language EXACT-INDSET is of this form as well:
∀S' ∃S . S is an independent set of size k and

 S' is not an independent set of size >k

Also the language MIN−DNF is of this form:
∀ ψ ∃s . |ψ| < | | ϕ ⇒ (ϕ s)≠ψ(s)
However, it is believed that MIN-DNF does not belong to S

2

p p

p

p
Polynomial hierarchy

Class S
k
 contains languages L for which there is a machine M

working in polynomial time, and a polynomial q such that:
 xL  ∃u

1
{0,1}q(|x|) ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

Class P
k
 contains complements of languages from S

k
, i.e.,

languages L for which there is a machine M working in polynomial
time, and a polynomial q such that:
 xL  ∀u

1
{0,1}q(|x|) ∃u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

We also define PH=∪
k
S

k

p

p p

p

Polynomial hierarchy

Class S
k
 contains languages L for which there is a machine M

working in polynomial time, and a polynomial q such that:
 xL  ∃u

1
{0,1}q(|x|) ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

Class P
k
 contains complements of languages from S

k
, i.e.,

languages L for which there is a machine M working in polynomial
time, and a polynomial q such that:
 xL  ∀u

1
{0,1}q(|x|) ∃u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

We also define PH=∪
k
S

k

p

p p

p

Polynomial hierarchy

Fact 1
Class S

k
 contains precisely languages recognizable in polynomial

time by nondeterministic Turing machines with an oracle for a
problem from S

k-1
, and P

k
 contains their complements.

p

p p

p

Polynomial hierarchy
Fact 1
Class S

k
 contains precisely languages recognizable by nondetermi-

nistic Turing machines with an oracle for a problem from S
k-1

,
and P

k
 contains their complements.

Proof
Let LS

k
. By definition there is a machine M working in polynomial

time, and a polynomial q such that:
 xL  ∃u

1
{0,1}q(|x|) ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

Consider the language L' defined by
 (x,u

1
)L'  ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

The complement of L' is in S
k-1

.
It is easy to recognize L by a nondeterministic machine with
oracle for (the complement of) L'.

p

Fact 1
Class S

k
 contains precisely languages recognizable in polynomial

time by nondeterministic Turing machines with an oracle for a
problem from S

k-1
, and P

k
 contains their complements.

p

p p

Polynomial hierarchy
Fact 1
Class S

k
 contains precisely languages recognizable by nondetermi-

nistic Turing machines with an oracle for a problem from S
k-1

,
and P

k
 contains their complements.

Proof
Let L be recognized by a nondet. machine N with oracle for L'S

k-1
.

By definition there is a machine M' working in polynomial time, and
a polynomial q' such that:
 yL'  ∃v

1
{0,1}q'(|y|) ∀v

2
{0,1}q'(|y|) … Qv

k-1
{0,1}q'(|y|) . M'(y,v

1
,...,v

k-1
)=1

We observe that (for an appropriate polynomial q)
 xL  ∃u

1
{0,1}q(|x|) ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

where M checks that:
● a prefix of u

1
 is of the form R, v1,1, ..., v1,n, where R is a run of N

● if y is the i-th query to L' in R with answer yes, M'(y,v1,1,u2,...,uk-1)=1

● if y is a query to L' in R with answer no, M'(y,u2,...,uk)=0

(where u2,...,uk are prefixes of u2,...,uk of length q'(y))
Thus LS

k
.

p

p

' '
''

Fact 1
Class S

k
 contains precisely languages recognizable in polynomial

time by nondeterministic Turing machines with an oracle for a
problem from S

k-1
, and P

k
 contains their complements.

p

p p

Polynomial hierarchy

In particular:
● S

1
=NP

● P
1
=coNP

● S
2
 is sometimes denoted NPNP (NP with oracle in NP)

● S
2
 contains in particular all languages from NP and from coNP

p

p

p

p

Fact 1
Class S

k
 contains precisely languages recognizable in polynomial

time by nondeterministic Turing machines with an oracle for a
problem from S

k-1
, and P

k
 contains their complements.

p

p p

Class S
k
 contains languages L for which there is a machine M

working in polynomial time, and a polynomial q such that:
 xL  ∃u

1
{0,1}q(|x|) ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

Class P
k
 contains complements of languages from S

k
, i.e.,

languages L for which there is a machine M working in polynomial
time, and a polynomial q such that:
 xL  ∀u

1
{0,1}q(|x|) ∃u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

We also define PH=∪
k
S

k

How are these classes related?

p

p p

p

Polynomial hierarchy

Class S
k
 contains languages L for which there is a machine M

working in polynomial time, and a polynomial q such that:
 xL  ∃u

1
{0,1}q(|x|) ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

Class P
k
 contains complements of languages from S

k
, i.e.,

languages L for which there is a machine M working in polynomial
time, and a polynomial q such that:
 xL  ∀u

1
{0,1}q(|x|) ∃u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

We also define PH=∪
k
S

k

How are these classes related?

Fact 2: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Proof: Obvious (follows from Fact 1)

p

p p

p

Polynomial hierarchy

p p p p p p p p

Fact 2: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Are these inclusions strict? And how are S
k
 and P

k
 related?

Polynomial hierarchy
p p p p p p p p

pS
1

pS
2

⊆ pS
3

⊆ ⊆

pP
1
⊆ ⊆ ⊆pP

2
pP
3

P

coNP=

 NP=

...

...

⊆
⊆
⊆

⊆
⊆
⊆

⊆
⊆

p p

Fact 2: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Are these inclusions strict? And how are S
k
 and P

k
 related?

We don't know (it is believed that all these classes are different).

But there are only two possibilities:
● either all the classes are different, or
● they are different to some point, and then they start to be equal

Fact 3:
If S

k
=P

k
, then S

k
=S

k+1
=...=P

k
=P

k+1
=...=PH.

If P=NP, then P=S
1
=S

2
=...=P

1
=P

2
=...=PH.

Polynomial hierarchy
p p p p p p p p

pS
1

pS
2

⊆ pS
3

⊆ ⊆

pP
1
⊆ ⊆ ⊆pP

2
pP
3

P

coNP=

 NP=

...

...

⊆
⊆
⊆

⊆
⊆
⊆

⊆
⊆

p p

pp p p p p

p p p p

Fact 3:
If S

k
=P

k
, then S

k
=S

k+1
=...=P

k
=P

k+1
=...=PH.

If P=NP, then P=S
1
=S

2
=...=P

1
=P

2
=...=PH.

Proof (first part, the second part is analogous):
Suppose that S

k
=P

k
, and take LS

k+1
. Then L is recognized by a

nondeterministic machine M with oracle for L'S
k
=P

k
, and L' is reco-

gnized by a nondeterministic machine M+ with oracle for L+Sk-1
,

and the complement of L' is recognized by a nondeterministic
machine M– with oracle for L–Sk-1

. We can assume that both M+

and M– use the same oracle L±={(i,x) : xLi}Sk-1
.

We modify machine M to a machine with oracle L± – instead of

asking a query to L', it guesses an accepting run of M+ or an

accepting run of M–. Thus LS
k+1

.
Other equalities follow easily.

Polynomial hierarchy

pp p p p p

p p p p

p p

ppp

p

p

p

p

There are only two possibilities:
● either all the classes are different, or
● they are different to some point, and then they start to be equal

Complete language in S
k
?

Input: a sentence of the following form (with k blocks of quantifiers)
∃x11,...,x1n∀x21,...,x2n∃x21,...,x2n ...Qxk1,...,xkn f(x11,...,xkn)

Question: is the sentence true?

Polynomial hierarchy
pS
1

pS
2

⊆ pS
3

⊆ ⊆

pP
1
⊆ ⊆ ⊆pP

2
pP
3

P

coNP=

 NP=

...

...

⊆
⊆
⊆

⊆
⊆
⊆

⊆
⊆

p

There are only two possibilities:
● either all the classes are different, or
● they are different to some point, and then they start to be equal

Complete language in S
k
?

Input: a sentence of the following form (with k blocks of quantifiers)
∃x11,...,x1n∀x21,...,x2n∃x21,...,x2n ...Qxk1,...,xkn f(x11,...,xkn)

Question: is the sentence true? (similarly for P
k
)

Complete language in PH?
Fact 4:
If there exists a PH-complete language, then PH=S

k
 for some k

Proof – The PH-complete language belongs to some S
k
, and

S
k
 is closed under reductions in polynomial time.

Polynomial hierarchy
pS
1

pS
2

⊆ pS
3

⊆ ⊆

pP
1
⊆ ⊆ ⊆pP

2
pP
3

P

coNP=

 NP=

...

...

⊆
⊆
⊆

⊆
⊆
⊆

⊆
⊆

p

p

p

p

p

Fact 2: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Fact 3:
If S

k
=P

k
, then S

k
=S

k+1
=...=P

k
=P

k+1
=...=PH.

If P=NP, then P=S
1
=S

2
=...=P

1
=P

2
=...=PH.

Fact 4:
If there exists a PH-complete language, then PH=S

k
 for some k

Fact 5: PH⊆PSPACE

Proof: The S
k
-complete language mentioned above is a special

case of QBF, which belongs to PSPACE.

p p p p p p p p

pp p p p p

p p p p

p

p

Polynomial hierarchy

Fact 2: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Fact 3:
If S

k
=P

k
, then S

k
=S

k+1
=...=P

k
=P

k+1
=...=PH.

If P=NP, then P=S
1
=S

2
=...=P

1
=P

2
=...=PH.

Fact 4:
If there exists a PH-complete language, then PH=S

k
 for some k

Fact 5: PH⊆PSPACE

Fact 6: If the classes S
k
 are all different, then PH≠PSPACE

Proof: Follows from Fact 4 – in PSPACE there is a complete
language.

p p p p p p p p

pp p p p p

p p p p

p

p

Polynomial hierarchy

● Alternating Turing machines (ATM) generalize nondeterministic
ones (NTM)

● Both NTM and ATM are not a realistic model of computation
(we cannot build such machines). But NTM help us to observe
a very natural phenomenon: a difference between finding
a solution and verifying a solution.

● ATMs have a similar role for some languages, for which there are
no short witnesses, i.e., which cannot be characterized using
nondeterminism.

Alternating machines

Definition of ATM:
● a configuration can have multiple successors (as in NTM)
● additionally states of the machine (and in effect its configurations)

are divided to existential and universal ones

Alternating machines

Definition of ATM:
● a configuration can have multiple successors (as in NTM)
● additionally states of the machine (and in effect its configurations)

are divided to existential and universal ones
The set of wining configurations is defined as the smallest set s.t.:
● accepting configurations are winning
● every existential configuration, whose some successor is winning,

is also winning
● every universal configuration, whose all successors are winning,

is also winning
We accept a word w, if the initial configuration for this word is
winning.
M works in time T(n) / in space S(n), if every computation fits in
this time / space.

Alternating machines

Definition of ATM:
● a configuration can have multiple successors (as in NTM)
● additionally states of the machine (and in effect its configurations)

are divided to existential and universal ones
The set of wining configurations is defined as the smallest set s.t.:
● accepting configurations are winning
● every existential configuration, whose some successor is winning,

is also winning
● every universal configuration, whose all successors are winning,

is also winning
We accept a word w, if the initial configuration for this word is
winning.
M works in time T(n) / in space S(n), if every computation fits in
this time / space.

Observation:
NTM is a special case of an ATM – only existential states

Alternating machines

Equivalently: acceptance can be defined using a game:
● we consider the configuration graph (edges = possible transitions)
● players ∃ and ∀ alternatingly move a pawn (common to both

player) around the graph
● in existential states player ∃ decides, in universal states player ∀

decides (player ∃ wants to accept, player ∀ wants to reject)
● we accept a word, if player ∃ has a winning strategy – he can

reach an accepting configuration regardless moves of player ∀

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)),
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)),
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Proof AP⊆PSPACE
Backtracking: we browse through all computations of the alternating
machine (such a computation can be represented in polynomial
space)

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)),
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Proof AL⊆P
We construct the graph containing all reachable configurations of
the alternating machine – it is of polynomial size. Then in
polynomial time we can find all winning configurations,
by going backwards (starting from accepting configurations).

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)),
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Proof PSPACE⊆AP

It is enough to prove that QBF∈AP, as QBF is PSPACE-complete.
This is almost obvious – player ∃ chooses values of variables
quantified existentially, and player ∀ chooses values of variables
quantified universally; at the end we deterministically compute the
value of the formula.
Actually: the algorithm for AP is simpler than for PSPACE.

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)),
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Proof P⊆AL
● For an algorithm in P there is an equivalent boolean circuit,

and we can construct it in logarithmic space.
● It is easy to give an algorithm in AL, which computes the value of

a circuit: players walk from the output gate, in OR gates player ∃
decides which predecessor is true, and in AND gates player ∀
decides which predecessor is supposed to be false.

● We do not generate the whole circuit, only particular fragments,
„on demand”.

Alternating machines

Consider alternating machines which:
● work in polynomial time
● the initial state is existential (universal)
● every computation leads to at most k-1 changes between

existential and universal states

Fact
Such machines recognize languages from S

k
 (P

k
)

(we skip the formal proof, although it is easy)

Alternating machines

p p

Machines with a source of random bits (probabilistic machines):
● a deterministic machine
● an additional read-once tape (the head cannot move left along

this tape)

Probabilistic machines

Machines with a source of random bits (probabilistic machines):
● a deterministic machine
● an additional read-once tape (the head cannot move left along

this tape)

Notice that NP can be defined as follows: a language L is in NP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ ∃s. (w,s)∈LM

● w∉L ⇒ ∄s. (w,s)∈LM

(a word is in L iff some witness confirms this)

Probabilistic machines

Machines with a source of random bits (probabilistic machines):
● a deterministic machine
● an additional read-once tape (the head cannot move left along

this tape)

Notice that NP can be defined as follows: a language L is in NP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ ∃s. (w,s)∈LM

● w∉L ⇒ ∄s. (w,s)∈LM

Class RP (randomized polynomial time): as above, but
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ ∄s. (w,s)∈LM

Intuition: a word is in L, if at least half of possible witnesses confirm
this.

Probabilistic machines

Class RP (randomized polynomial time): a language L is in RP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ ∄s. (w,s)∈LM

As s we can take sequences of length p(n), or infinite sequences,
does not matter.

Intuition: a word is in L, if at least half of possible witnesses confirm
this (but there are no witnesses for words not in L)

In other words: if a word is not in L, we will certainly reject;
if it is in L, then choosing transitions randomly, we will accept with
probability at least 0.5

Probabilistic machines

Class RP (randomized polynomial time): a language L is in RP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ ∄s. (w,s)∈LM

Remark: Some machines does not accept any language in the
sense of RP. It is undecidable whether a machine is correct in the
sense of RP, even if we know the polynomial p(n)

For this reason we do not know any RP-complete problem.
Intuition: we cannot reduce from every machine recognizing
a language from RP, because we do not know how such machines
look like.

Probabilistic machines

Class RP (randomized polynomial time): a language L is in RP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ ∄s. (w,s)∈LM

Fact: P⊆RP⊆NP (both inclusions are obvious)

Probabilistic machines

Class RP (randomized polynomial time): a language L is in RP iff
there is a polynomial T(n) and a machine M with a source of random
bits, working in at most T(n) steps, and such that:
● w∈L ⇒ Prs[(w,s)∈LM]≥1-p=0.5
● w∉L ⇒ ∄s. (w,s)∈LM

Fact (amplification): in the definition of RP the number 0.5 can be
changed to any number from the interval (0,1), and the class of
defined languages will remain the same

Proof: Let RP
p
 be the class with error probability p

Obviously RP
p
⊆RP

q
 when p≤q

We will now prove that RP
p
⊆RP

p2
● Out of a machine M with error p we construct a machine M', which

on the same input chooses randomly two witnesses, and accepts
if some of them is a correct witness

● The running time doubles, so it remains polynomial
● The error probability decreases to p2 – M' is wrong only when

M made a mistake twice

Probabilistic machines

Is this a realistic model?
● It is more realistic than nondeterministic or alternating machines:

we can run a probabilistic machine, give it some sequence of
bits as random bits, and obtain a result that is correct with some
probability.

● We obtain a result that is correct with some probability (and due to
amplification this probability can be arbitrarily high), but we cannot
be sure.

● How to generate bits that are really random? There exist physical
random number generators (basing e.g. on quantum effects).
Problems: they are relatively slow, and can be biased (in particular
after some time, when they start to be broken).

● In practice, we use pseudo-random generators, that generate
“random” bits using some algorithm. In practice, this works well,
as the generated sequence looks like a random one.
But theoretically, we cannot be sure about the probability of
correctness.

Probabilistic machines

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38

