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The following problem is in NP:
INDSET = {(G,k) : in graph G there is an independent set of size ≥k}

Consider now a slightly more difficult problem:
EXACT-INDSET = {(G,k) : the largest independent set in G is

  of size k}
We see no reason for this problem to be in NP...
What would be a witness?
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EXACT-INDSET = {(G,k) : the largest independent set in G is
  of size k}

A similar problem:
MIN−DNF = {  :  is a formula in the DNF form, not equivalent toϕ ϕ

  any smaller formula in the DNF form}
  = {  : ϕ ∀ ψ, |ψ| < | | ϕ ⇒ ∃ valuation s such that (s)≠ψ(s)}ϕ

In order to describe these problems, it is not enough to use one
„exists” quantifier (as in NP), neither one „for all” quantifier (as in 
coNP). We have here a combination of two quantifiers.
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EXACT-INDSET = {(G,k) : the largest independent set in G is
  of size k}

A similar problem:
MIN−DNF = {  :  is a formula in the DNF form, not equivalent toϕ ϕ

  any smaller formula in the DNF form}
  = {  : ϕ ∀ ψ, |ψ| < | | ϕ ⇒ ∃ valuation s such that (s)≠ψ(s)}ϕ

In order to describe these problems, it is not enough to use one
„exists” quantifier (as in NP), neither one „for all” quantifier (as in 
coNP). We have here a combination of two quantifiers.

Class S
2
 contains languages L for which there is a machine M 

working in polynomial time, and a polynomial q such that:
xL  ∃ u{0,1}q(|x|) ∀ v{0,1}q(|x|) M(x,u,v)=1

The language EXACT-INDSET is of this form:
∃S ∀S' . S is an independent set of size k and

    S' is not an independent set of size >k 

p
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Class S
2
 contains languages L for which there is a machine M 

working in polynomial time, and a polynomial q such that:
xL  ∃ u{0,1}q(|x|) ∀ v{0,1}q(|x|) M(x,u,v)=1

The language EXACT-INDSET is of this form

Class P
2
 contains complements of languages from S

2
; it is easy to

see that it contains languages L for which there is a machine M 
working in polynomial time, and a polynomial q such that:

xL  ∀ u{0,1}q(|x|) ∃ v{0,1}q(|x|) M(x,u,v)=1

The language EXACT-INDSET is of this form as well:
∀S' ∃S . S is an independent set of size k and

    S' is not an independent set of size >k 

Also the language MIN−DNF is of this form:
∀ ψ ∃s . |ψ| < | | ϕ ⇒ (ϕ s)≠ψ(s)
However, it is believed that MIN-DNF does not belong to S

2

p p

p

p
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Class S
k
 contains languages L for which there is a machine M 

working in polynomial time, and a polynomial q such that:
 xL  ∃u

1
{0,1}q(|x|) ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

Class P
k
 contains complements of languages from S

k
, i.e., 

languages L for which there is a machine M working in polynomial 
time, and a polynomial q such that:
 xL  ∀u

1
{0,1}q(|x|) ∃u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

We also define PH=∪
k
S

k

p

p p

p

Polynomial hierarchy



  

Class S
k
 contains languages L for which there is a machine M 

working in polynomial time, and a polynomial q such that:
 xL  ∃u

1
{0,1}q(|x|) ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

Class P
k
 contains complements of languages from S

k
, i.e., 

languages L for which there is a machine M working in polynomial 
time, and a polynomial q such that:
 xL  ∀u

1
{0,1}q(|x|) ∃u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

We also define PH=∪
k
S

k

p

p p

p
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Fact 1
Class S

k
 contains precisely languages recognizable in polynomial 

time by nondeterministic Turing machines with an oracle for a 
problem from S

k-1
, and P

k
 contains their complements.

p

p p



  

p

Polynomial hierarchy
Fact 1
Class S

k
 contains precisely languages recognizable by nondetermi-

nistic Turing machines with an oracle for a problem from S
k-1

, 
and P

k
 contains their complements.

Proof
Let LS

k
. By definition there is a machine M working in polynomial 

time, and a polynomial q such that:
 xL  ∃u

1
{0,1}q(|x|) ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

Consider the language L' defined by
 (x,u

1
)L'  ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

The complement of L' is in S
k-1

.
It is easy to recognize L by a nondeterministic machine with
oracle for (the complement of) L'.  

p
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Class S

k
 contains precisely languages recognizable in polynomial 

time by nondeterministic Turing machines with an oracle for a 
problem from S

k-1
, and P

k
 contains their complements.
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Polynomial hierarchy
Fact 1
Class S

k
 contains precisely languages recognizable by nondetermi-

nistic Turing machines with an oracle for a problem from S
k-1

, 
and P

k
 contains their complements.

Proof
Let L be recognized by a nondet. machine N with oracle for L'S

k-1
. 

By definition there is a machine M' working in polynomial time, and 
a polynomial q' such that:
 yL'  ∃v

1
{0,1}q'(|y|) ∀v

2
{0,1}q'(|y|) … Qv

k-1
{0,1}q'(|y|) . M'(y,v

1
,...,v

k-1
)=1

We observe that (for an appropriate polynomial q) 
 xL  ∃u

1
{0,1}q(|x|) ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

where M checks that:
● a prefix of u

1
 is of the form R, v1,1, ..., v1,n, where R is a run of N 

● if y is the i-th query to L' in R with answer yes, M'(y,v1,1,u2,...,uk-1)=1

● if y is a query to L' in R with answer no, M'(y,u2,...,uk)=0

(where u2,...,uk are prefixes of u2,...,uk of length q'(y))
Thus LS

k
.

p

p

' '
''

Fact 1
Class S

k
 contains precisely languages recognizable in polynomial 

time by nondeterministic Turing machines with an oracle for a 
problem from S

k-1
, and P

k
 contains their complements.
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Polynomial hierarchy

In particular:
● S

1
=NP

● P
1
=coNP

● S
2
 is sometimes denoted NPNP (NP with oracle in NP)

● S
2
 contains in particular all languages from NP and from coNP

p

p

p

p

Fact 1
Class S

k
 contains precisely languages recognizable in polynomial 

time by nondeterministic Turing machines with an oracle for a 
problem from S

k-1
, and P

k
 contains their complements.
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Class S
k
 contains languages L for which there is a machine M 

working in polynomial time, and a polynomial q such that:
 xL  ∃u

1
{0,1}q(|x|) ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

Class P
k
 contains complements of languages from S

k
, i.e., 

languages L for which there is a machine M working in polynomial 
time, and a polynomial q such that:
 xL  ∀u

1
{0,1}q(|x|) ∃u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

We also define PH=∪
k
S

k

How are these classes related?

p

p p

p
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Class S
k
 contains languages L for which there is a machine M 

working in polynomial time, and a polynomial q such that:
 xL  ∃u

1
{0,1}q(|x|) ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

Class P
k
 contains complements of languages from S

k
, i.e., 

languages L for which there is a machine M working in polynomial 
time, and a polynomial q such that:
 xL  ∀u

1
{0,1}q(|x|) ∃u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

We also define PH=∪
k
S

k

How are these classes related?

Fact 2: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Proof: Obvious (follows from Fact 1)

p

p p

p
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Fact 2: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Are these inclusions strict? And how are S
k
 and P

k
 related?
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pS
1

pS
2

⊆ pS
3

⊆ ⊆

pP
1
⊆ ⊆ ⊆pP

2
pP
3

P

coNP=

    NP=

...

...

⊆
⊆
⊆

⊆
⊆
⊆

⊆
⊆
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Fact 2: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Are these inclusions strict? And how are S
k
 and P

k
 related?

We don't know (it is believed that all these classes are different).

But there are only two possibilities:
● either all the classes are different, or
● they are different to some point, and then they start to be equal

Fact 3:
If S

k
=P

k
, then S

k
=S

k+1
=...=P

k
=P

k+1
=...=PH.

If P=NP, then P=S
1
=S

2
=...=P

1
=P

2
=...=PH. 
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1

pS
2

⊆ pS
3

⊆ ⊆

pP
1
⊆ ⊆ ⊆pP

2
pP
3

P
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    NP=

...

...

⊆
⊆
⊆

⊆
⊆
⊆

⊆
⊆
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Fact 3:
If S

k
=P

k
, then S

k
=S

k+1
=...=P

k
=P

k+1
=...=PH.

If P=NP, then P=S
1
=S

2
=...=P

1
=P

2
=...=PH.  

Proof (first part, the second part is analogous): 
Suppose that S

k
=P

k
, and take LS

k+1
. Then L is recognized by a

nondeterministic machine M with oracle for L'S
k
=P

k
, and L' is reco-

gnized by a nondeterministic machine M+ with oracle for L+Sk-1
, 

and the complement of L' is recognized by a nondeterministic 
machine M– with oracle for L–Sk-1

. We can assume that both M+ 

and M– use the same oracle L±={(i,x) : xLi}Sk-1
.

We modify machine M to a machine with oracle L± – instead of

asking a query to L', it guesses an accepting run of M+ or an 

accepting run of M–. Thus LS
k+1

.
Other equalities follow easily.

Polynomial hierarchy
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There are only two possibilities:
● either all the classes are different, or
● they are different to some point, and then they start to be equal

Complete language in S
k
?

Input: a sentence of the following form (with k blocks of quantifiers)
∃x11,...,x1n∀x21,...,x2n∃x21,...,x2n ...Qxk1,...,xkn f(x11,...,xkn)

Question: is the sentence true?

Polynomial hierarchy
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There are only two possibilities:
● either all the classes are different, or
● they are different to some point, and then they start to be equal

Complete language in S
k
?

Input: a sentence of the following form (with k blocks of quantifiers)
∃x11,...,x1n∀x21,...,x2n∃x21,...,x2n ...Qxk1,...,xkn f(x11,...,xkn)

Question: is the sentence true?                 (similarly for P
k
)

Complete language in PH?
Fact 4:
If there exists a PH-complete language, then PH=S

k
 for some k

Proof – The PH-complete language belongs to some S
k
, and

S
k
 is closed under reductions in polynomial time.
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Fact 2: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Fact 3:
If S

k
=P

k
, then S

k
=S

k+1
=...=P

k
=P

k+1
=...=PH.

If P=NP, then P=S
1
=S

2
=...=P

1
=P

2
=...=PH.  

Fact 4:
If there exists a PH-complete language, then PH=S

k
 for some k

Fact 5: PH⊆PSPACE

Proof: The S
k
-complete language mentioned above is a special

case of QBF, which belongs to PSPACE.

p p p p p p p p

pp p p p p

p p p p

p

p
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Fact 2: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Fact 3:
If S

k
=P

k
, then S

k
=S

k+1
=...=P

k
=P

k+1
=...=PH.

If P=NP, then P=S
1
=S

2
=...=P

1
=P

2
=...=PH.  

Fact 4:
If there exists a PH-complete language, then PH=S

k
 for some k

Fact 5: PH⊆PSPACE

Fact 6: If the classes S
k
 are all different, then PH≠PSPACE

Proof: Follows from Fact 4 – in PSPACE there is a complete 
language.

p p p p p p p p

pp p p p p

p p p p

p

p
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● Alternating Turing machines (ATM) generalize nondeterministic
ones (NTM)

● Both NTM and ATM are not a realistic model of computation 
(we cannot build such machines). But NTM help us to observe
a very natural phenomenon: a difference between finding 
a solution and verifying a solution.

● ATMs have a similar role for some languages, for which there are
no short witnesses, i.e., which cannot be characterized using
nondeterminism.

Alternating machines



  

Definition of ATM: 
● a configuration can have multiple successors (as in NTM)
● additionally states of the machine (and in effect its configurations)

are divided to existential and universal ones

Alternating machines



  

Definition of ATM: 
● a configuration can have multiple successors (as in NTM)
● additionally states of the machine (and in effect its configurations)

are divided to existential and universal ones
The set of wining configurations is defined as the smallest set s.t.:
● accepting configurations are winning
● every existential configuration, whose some successor is winning, 

is also winning
● every universal configuration, whose all successors are winning, 

is also winning
We accept a word w, if the initial configuration for this word is 
winning.
M works in time T(n) / in space S(n), if every computation fits in
this time / space.
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Definition of ATM: 
● a configuration can have multiple successors (as in NTM)
● additionally states of the machine (and in effect its configurations)

are divided to existential and universal ones
The set of wining configurations is defined as the smallest set s.t.:
● accepting configurations are winning
● every existential configuration, whose some successor is winning, 

is also winning
● every universal configuration, whose all successors are winning, 

is also winning
We accept a word w, if the initial configuration for this word is 
winning.
M works in time T(n) / in space S(n), if every computation fits in
this time / space. 

Observation:
NTM is a special case of an ATM – only existential states

Alternating machines



  

Equivalently: acceptance can be defined using a game:
● we consider the configuration graph (edges = possible transitions)
● players ∃ and ∀ alternatingly move a pawn (common to both

player) around the graph
● in existential states player ∃ decides, in universal states player ∀

decides (player ∃ wants to accept, player ∀ wants to reject)
● we accept a word, if player ∃ has a winning strategy – he can 

reach an accepting configuration regardless moves of player ∀ 

Alternating machines



  

Classes ATIME(T(n)), ASPACE(S(n)), 
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Alternating machines



  

Classes ATIME(T(n)), ASPACE(S(n)), 
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Proof AP⊆PSPACE 
Backtracking: we browse through all computations of the alternating
machine (such a computation can be represented in polynomial
space) 

Alternating machines



  

Classes ATIME(T(n)), ASPACE(S(n)), 
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Proof AL⊆P 
We construct the graph containing all reachable configurations of
the alternating machine – it is of polynomial size. Then in 
polynomial time we can find all winning configurations, 
by going backwards (starting from accepting configurations).

Alternating machines



  

Classes ATIME(T(n)), ASPACE(S(n)), 
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Proof PSPACE⊆AP 

It is enough to prove that QBF∈AP, as QBF is PSPACE-complete.
This is almost obvious – player ∃ chooses values of variables 
quantified existentially, and player ∀ chooses values of variables
quantified universally; at the end we deterministically compute the
value of the formula.
Actually: the algorithm for AP is simpler than for PSPACE. 
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Classes ATIME(T(n)), ASPACE(S(n)), 
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Proof P⊆AL 
● For an algorithm in P there is an equivalent boolean circuit, 

and we can construct it in logarithmic space.
● It is easy to give an algorithm in AL, which computes the value of

a circuit: players walk from the output gate, in OR gates player ∃ 
decides which predecessor is true, and in AND gates player ∀ 
decides which predecessor is supposed to be false.

● We do not generate the whole circuit, only particular fragments,
„on demand”.

Alternating machines



  

Consider alternating machines which:
● work in polynomial time
● the initial state is existential (universal)
● every computation leads to at most k-1 changes between 

existential and universal states

Fact
Such machines recognize languages from S

k
 (P

k
)

(we skip the formal proof, although it is easy)

Alternating machines
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Machines with a source of random bits (probabilistic machines):
● a deterministic machine
● an additional read-once tape (the head cannot move left along 

this tape)

Probabilistic machines



  

Machines with a source of random bits (probabilistic machines):
● a deterministic machine
● an additional read-once tape (the head cannot move left along 

this tape)

Notice that NP can be defined as follows: a language L is in NP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ ∃s. (w,s)∈LM

● w∉L ⇒ ∄s. (w,s)∈LM

(a word is in L iff some witness confirms this)

Probabilistic machines



  

Machines with a source of random bits (probabilistic machines):
● a deterministic machine
● an additional read-once tape (the head cannot move left along 

this tape)

Notice that NP can be defined as follows: a language L is in NP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ ∃s. (w,s)∈LM

● w∉L ⇒ ∄s. (w,s)∈LM

Class RP (randomized polynomial time): as above, but
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ ∄s. (w,s)∈LM

Intuition: a word is in L, if at least half of possible witnesses confirm
this.

Probabilistic machines



  

Class RP (randomized polynomial time): a language L is in RP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ ∄s. (w,s)∈LM

As s we can take sequences of length p(n), or infinite sequences,
does not matter.

Intuition: a word is in L, if at least half of possible witnesses confirm
this (but there are no witnesses for words not in L)

In other words: if a word is not in L, we will certainly reject;
if it is in L, then choosing transitions randomly, we will accept with
probability at least 0.5

Probabilistic machines



  

Class RP (randomized polynomial time): a language L is in RP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ ∄s. (w,s)∈LM

Remark: Some machines does not accept any language in the 
sense of RP. It is undecidable whether a machine is correct in the
sense of RP, even if we know the polynomial p(n) 

For this reason we do not know any RP-complete problem.
Intuition: we cannot reduce from every machine recognizing 
a language from RP, because we do not know how such machines
look like.

Probabilistic machines



  

Class RP (randomized polynomial time): a language L is in RP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ ∄s. (w,s)∈LM

Fact: P⊆RP⊆NP (both inclusions are obvious)

Probabilistic machines



  

Class RP (randomized polynomial time): a language L is in RP iff
there is a polynomial T(n) and a machine M with a source of random
bits, working in at most T(n) steps, and such that:
● w∈L ⇒ Prs[(w,s)∈LM]≥1-p=0.5
● w∉L ⇒ ∄s. (w,s)∈LM

Fact (amplification): in the definition of RP the number 0.5 can be
changed to any number from the interval (0,1), and the class of 
defined languages will remain the same

Proof: Let RP
p
 be the class with error probability p

Obviously RP
p
⊆RP

q
 when p≤q

We will now prove that RP
p
⊆RP

p2 
● Out of a machine M with error p we construct a machine M', which

on the same input chooses randomly two witnesses, and accepts
if some of them is a correct witness

● The running time doubles, so it remains polynomial
● The error probability decreases to p2 – M' is wrong only when 

M made a mistake twice
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Is this a realistic model?
● It is more realistic than nondeterministic or alternating machines:

we can run a probabilistic machine, give it some sequence of
bits as random bits, and obtain a result that is correct with some
probability.

● We obtain a result that is correct with some probability (and due to
amplification this probability can be arbitrarily high), but we cannot
be sure.

● How to generate bits that are really random? There exist physical 
random number generators (basing e.g. on quantum effects).
Problems: they are relatively slow, and can be biased (in particular
after some time, when they start to be broken).

● In practice, we use pseudo-random generators, that generate 
“random” bits using some algorithm. In practice, this works well,
as the generated sequence looks like a random one. 
But theoretically, we cannot be sure about the probability of
correctness. 

Probabilistic machines
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