Computational complexity

lecture 9

Polynomial hierarchy

The following problem is in NP:
INDSET = $\{(G, k)$: in graph G there is an independent set of size $\geq k\}$ Consider now a slightly more difficult problem: EXACT-INDSET $=\{(G, k)$: the largest independent set in G is of size $k\}$
We see no reason for this problem to be in NP...
What would be a witness?

Polynomial hierarchy

EXACT-INDSET $=\{(G, k):$ the largest independent set in G is of size $k\}$
A similar problem:
MIN-DNF $=\{\phi: \phi$ is a formula in the DNF form, not equivalent to any smaller formula in the DNF form\}
$=\{\phi: \forall \psi,|\psi|<|\phi| \Rightarrow \exists$ valuation s such that $\phi(\mathrm{s}) \neq \psi(\mathrm{s})\}$
In order to describe these problems, it is not enough to use one „exists" quantifier (as in NP), neither one "for all" quantifier (as in coNP). We have here a combination of two quantifiers.

Polynomial hierarchy

EXACT-INDSET = $\{(G, k)$: the largest independent set in G is of size $k\}$
A similar problem:
MIN-DNF $=\{\phi: \phi$ is a formula in the DNF form, not equivalent to any smaller formula in the DNF form\}
$=\{\phi: \forall \psi,|\psi|<|\phi| \Rightarrow \exists$ valuation s such that $\phi(\mathrm{s}) \neq \psi(\mathrm{s})\}$
In order to describe these problems, it is not enough to use one "exists" quantifier (as in NP), neither one „for all" quantifier (as in coNP). We have here a combination of two quantifiers.
Class Σ_{2}^{p} contains languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \exists u \in\{0,1\} q(|x|) \forall v \in\{0,1\} q(|x|) M(x, u, v)=1
$$

The language EXACT-INDSET is of this form:
$\exists S \forall S^{\prime} . S$ is an independent set of size k and
S^{\prime} is not an independent set of size $>k$

Polynomial hierarchy

Class Σ_{2}^{p} contains languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \exists u \in\{0,1\} q(|x|) \forall v \in\{0,1\} q(|x|) M(x, u, v)=1
$$

The language EXACT-INDSET is of this form
Class Π_{2}^{p} contains complements of languages from $\boldsymbol{\Sigma}_{2}^{\mathrm{p}}$; it is easy to see that it contains languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \forall u \in\{0,1\} q(|x|) \exists v \in\{0,1\} q(|x|) M(x, u, v)=1
$$

The language EXACT-INDSET is of this form as well:
$\forall S^{\prime} \exists S . S$ is an independent set of size k and S^{\prime} is not an independent set of size $>k$
Also the language MIN-DNF is of this form:
$\forall \psi \exists s .|\psi|<|\phi| \Rightarrow \phi(s) \neq \psi(s)$
However, it is believed that MIN-DNF does not belong to $\boldsymbol{\Sigma}_{2}^{p}$

Polynomial hierarchy

Class $\Sigma_{\mathrm{k}}^{\mathrm{p}}$ contains languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \exists u_{1} \in\{0,1\} q(|x|) \forall u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1
$$

Class Π_{k}^{p} contains complements of languages from Σ_{k}^{p}, i.e., languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \forall u_{1} \in\{0,1\} q(|x|) \exists u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1
$$

We also define $\mathbf{P H}=\cup_{k} \Sigma_{k}^{\mathrm{p}}$

Polynomial hierarchy

Class Σ_{k}^{p} contains languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \exists u_{1} \in\{0,1\} q(|x|) \forall u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1
$$

Class Π_{k}^{p} contains complements of languages from $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$, i.e., languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \forall u_{1} \in\{0,1\} q(|x|) \exists u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1
$$

We also define $\mathrm{PH}=\cup_{\mathrm{k}}{ }_{\mathrm{k}}^{\mathrm{p}}$

Fact 1

Class $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$ contains precisely languages recognizable in polynomial time by nondeterministic Turing machines with an oracle for a problem from Σ_{k-1}^{p}, and Π_{k}^{p} contains their complements.

Polynomial hierarchy

Fact 1
Class Σ_{k}^{p} contains precisely languages recognizable in polynomial time by nondeterministic Turing machines with an oracle for a problem from $\Sigma_{\mathrm{k}-1}^{\mathrm{p}}$, and $\Pi_{\mathrm{k}}^{\mathrm{p}}$ contains their complements.
Proof
Let $L \in \Sigma_{\mathrm{k}^{p}}^{\mathrm{p}}$ By definition there is a machine M working in polynomial time, and a polynomial q such that:
$x \in L \Leftrightarrow \exists u_{1} \in\{0,1\} q(|x|) \forall u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1$
Consider the language L^{\prime} defined by

$$
\left(x, u_{1}\right) \in L^{\prime} \Leftrightarrow \forall u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1
$$

The complement of L^{\prime} is in Σ_{k-1}^{p}.
It is easy to recognize L by a nondeterministic machine with oracle for (the complement of) L^{\prime}.

Polynomial hierarchy

Fact 1

Class $\Sigma_{\mathrm{k}}^{\mathrm{p}}$ contains precisely languages recognizable in polynomial time by nondeterministic Turing machines with an oracle for a problem from Σ_{k-1}^{p}, and Π_{k}^{p} contains their complements.
Proof
Let L be recognized by a nondet. machine N with oracle for $L^{\prime} \in \Sigma_{k-1}^{p}$. By definition there is a machine M^{\prime} working in polynomial time, and a polynomial q^{\prime} such that:

$$
\left.y \in L^{\prime} \Leftrightarrow \exists v_{1} \in\{0,1\}\right\}^{q^{\prime}(|y|)} \forall v_{2} \in\{0,1\} q^{q^{\prime}(|v|)} \ldots \bar{Q} v_{k-1} \in\{0,1\}^{q^{\prime}(|v|)} . M^{\prime}\left(y, v_{1}, \ldots, v_{k-1}\right)=1
$$ We observe that (for an appropriate polynomial q) $x \in L \Leftrightarrow \exists u_{1} \in\{0,1\} q(|x|) \forall u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1$ where M checks that:

- a prefix of u_{1} is of the form $R, v_{1,1}, \ldots, v_{1, n}$, where R is a run of N
- if y is the i-th query to L^{\prime} in R with answer yes, $M^{\prime}\left(y, v_{1,1}, u_{2}, \ldots, u_{k-1}\right)=1$
- if y is a query to L^{\prime} in R with answer no, $M^{\prime}\left(y, u_{2}^{\prime}, \ldots, u_{k}^{\prime}\right)=0$
(where $u_{2}^{\prime}, \ldots, u_{k}^{\prime}$ are prefixes of u_{2}, \ldots, u_{k} of length $q^{\prime}(y)$)
Thus $L \in \boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$.

Polynomial hierarchy

Fact 1
Class $\boldsymbol{\Sigma}_{k}^{p}$ contains precisely languages recognizable in polynomial time by nondeterministic Turing machines with an oracle for a problem from $\Sigma_{k-1}^{\mathrm{p}}$, and $\Pi_{\mathrm{k}}^{\mathrm{p}}$ contains their complements.

In particular:

- $\Sigma_{1}^{\mathrm{p}}=\mathrm{NP}$
- $\Pi_{1}^{\mathrm{p}}=\mathbf{c o N P}$
- $\boldsymbol{\Sigma}_{2}^{\mathrm{p}}$ is sometimes denoted $\mathbf{N P}^{\mathbf{N P}}$ (NP with oracle in $\mathbf{N P}$)
- $\boldsymbol{\Sigma}_{2}^{\mathrm{p}}$ contains in particular all languages from NP and from coNP

Polynomial hierarchy

Class $\Sigma_{\mathrm{k}}^{\mathrm{p}}$ contains languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \exists u_{1} \in\{0,1\} q(|x|) \forall u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1
$$

Class Π_{k}^{p} contains complements of languages from $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$, i.e., languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \forall u_{1} \in\{0,1\} q(|x|) \exists u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1
$$

We also define $\mathbf{P H}=\cup_{k} \Sigma_{k}^{p}$
How are these classes related?

Polynomial hierarchy

Class Σ_{k}^{p} contains languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \exists u_{1} \in\{0,1\} q(|x|) \forall u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1
$$

Class Π_{k}^{p} contains complements of languages from $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$, i.e., languages L for which there is a machine M working in polynomial time, and a polynomial q such that:
$x \in L \Leftrightarrow \forall u_{1} \in\{0,1\} q(|x|) \exists u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1$
We also define $\mathbf{P H}=\cup_{k} \Sigma_{k}^{p}$
How are these classes related?
Fact 2: $\Sigma_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Sigma_{k}^{p} \subseteq \Pi_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Pi_{k+1}^{p}$
Proof: Obvious (follows from Fact 1)

Polynomial hierarchy

Fact 2: $\Sigma_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Sigma_{k}^{p} \subseteq \Pi_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Pi_{k+1}^{p}$

Are these inclusions strict? And how are $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$ and $\Pi_{\mathrm{k}}^{\mathrm{p}}$ related?

Polynomial hierarchy

Fact 2: $\Sigma_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Sigma_{k}^{p} \subseteq \Pi_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Pi_{k+1}^{p}$

Are these inclusions strict? And how are $\Sigma_{\mathrm{k}}^{\mathrm{p}}$ and $\Pi_{\mathrm{k}}^{\mathrm{p}}$ related?
We don't know (it is believed that all these classes are different).
But there are only two possibilities:

- either all the classes are different, or
- they are different to some point, and then they start to be equal

Fact 3:
If $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}=\boldsymbol{\Pi}_{\mathrm{k}}^{\mathrm{p}}$, then $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}=\boldsymbol{\Sigma}_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\Pi_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\mathrm{PH}$.
If $\mathrm{P}=\mathrm{NP}$, then $\mathrm{P}=\Sigma_{1}^{\mathrm{p}}=\Sigma_{2}^{\mathrm{p}}=\ldots=\Pi_{1}^{\mathrm{p}}=\Pi_{2}^{\mathrm{p}}=\ldots=\mathrm{PH}$.

Polynomial hierarchy

Fact 3:
If $\Sigma_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}}^{\mathrm{p}}$, then $\Sigma_{\mathrm{k}}^{\mathrm{p}}=\Sigma_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\Pi_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\mathrm{PH}$.
If $\mathrm{P}=\mathrm{NP}$, then $\mathrm{P}=\Sigma_{1}^{\mathrm{p}}=\Sigma_{2}^{\mathrm{p}}=\ldots=\Pi_{1}^{\mathrm{p}}=\Pi_{2}^{\mathrm{p}}=\ldots=\mathrm{PH}$.
Proof (first part, the second part is analogous):
Suppose that $\Sigma_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}}^{\mathrm{p}}$, and take $L \in \Sigma_{\mathrm{k}+1}^{\mathrm{p}}$. Then L is recognized by a nondeterministic machine M with oracle for $L^{\prime} \in \Sigma_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}}^{\mathrm{p}}$, and L^{\prime} is recognized by a nondeterministic machine M_{+}with oracle for $L_{+} \in \Sigma_{\mathrm{k}-1}^{\mathrm{p}}$, and the complement of L^{\prime} is recognized by a nondeterministic machine M_{-}with oracle for $L_{-} \in \Sigma_{\mathrm{k}-1}^{\mathrm{p}}$. We can assume that both M_{+} and M_{-}use the same oracle $L_{ \pm}=\left\{(i, x): x \in L_{i}\right\} \in \Sigma_{\mathrm{k}-1}^{\mathrm{p}}$.
We modify machine M to a machine with oracle $L_{ \pm}$- instead of asking a query to L^{\prime}, it guesses an accepting run of M_{+}or an accepting run of M_{-}. Thus $L \in \Sigma_{\mathrm{k}+1}^{\mathrm{p}}$.
Other equalities follow easily.

Polynomial hierarchy

There are only two possibilities:

- either all the classes are different, or
- they are different to some point, and then they start to be equal

Complete language in Σ_{k}^{p} ?
Input: a sentence of the following form (with k blocks of quantifiers)

$$
\exists x_{11}, \ldots, x_{1 n} \forall x_{21}, \ldots, x_{2 n} \exists x_{21}, \ldots, x_{2 n} \ldots Q x_{k 1}, \ldots, x_{k n} \phi\left(x_{11}, \ldots, x_{k n}\right)
$$

Question: is the sentence true?

Polynomial hierarchy

There are only two possibilities:

- either all the classes are different, or
- they are different to some point, and then they start to be equal

Complete language in $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$?
Input: a sentence of the following form (with k blocks of quantifiers)

$$
\exists x_{11}, \ldots, x_{1 n} \forall x_{21}, \ldots, x_{2 n} \exists x_{21}, \ldots, x_{2 n} \ldots Q x_{k 1}, \ldots, x_{k n} \phi\left(x_{11}, \ldots, x_{k n}\right)
$$

Question: is the sentence true? (similarly for Π_{k}^{p})
Complete language in PH ?
Fact 4:
If there exists a $\mathbf{P H}$-complete language, then $\mathbf{P H}=\boldsymbol{\Sigma}_{k}^{p}$ for some k Proof - The PH-complete language belongs to some $\boldsymbol{\Sigma}_{\mathrm{k}^{\mathrm{p}}}^{\mathrm{p}}$, and $\Sigma_{\mathrm{k}}^{\mathrm{p}}$ is closed under reductions in polynomial time.

Polynomial hierarchy

Fact 2: $\Sigma_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Sigma_{k}^{p} \subseteq \Pi_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Pi_{k+1}^{p}$
Fact 3:
If $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}}^{\mathrm{p}}$, then $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}=\Sigma_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\Pi_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\mathrm{PH}$.
If $\mathrm{P}=\mathrm{NP}$, then $\mathrm{P}=\Sigma_{1}^{\mathrm{p}}=\Sigma_{2}^{\mathrm{p}}=\ldots=\Pi_{1}^{\mathrm{p}}=\Pi_{2}^{\mathrm{p}}=\ldots=\mathrm{PH}$.

Fact 4:

If there exists a $\mathbf{P H}$-complete language, then $\mathbf{P H}=\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$ for some k

Fact 5: $\mathbf{P H} \subseteq$ PSPACE

Proof: The $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$-complete language mentioned above is a special case of QBF, which belongs to PSPACE.

Polynomial hierarchy

Fact 2: $\Sigma_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Sigma_{k}^{p} \subseteq \Pi_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Pi_{k+1}^{p}$
Fact 3:
If $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}}^{\mathrm{p}}$, then $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}=\Sigma_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\Pi_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\mathrm{PH}$.
If $\mathrm{P}=\mathrm{NP}$, then $\mathrm{P}=\Sigma_{1}^{\mathrm{p}}=\Sigma_{2}^{\mathrm{p}}=\ldots=\Pi_{1}^{\mathrm{p}}=\Pi_{2}^{\mathrm{p}}=\ldots=\mathrm{PH}$.

Fact 4:

If there exists a $\mathbf{P H}$-complete language, then $\mathbf{P H}=\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$ for some k

Fact 5: PH \subseteq PSPACE

Fact 6: If the classes $\Sigma_{\mathrm{k}}^{\mathrm{p}}$ are all different, then $\mathbf{P H} \neq \mathbf{P S P A C E}$
Proof: Follows from Fact 4 - in PSPACE there is a complete language.

Alternating machines

- Alternating Turing machines (ATM) generalize nondeterministic ones (NTM)
- Both NTM and ATM are not a realistic model of computation (we cannot build such machines). But NTM help us to observe a very natural phenomenon: a difference between finding a solution and verifying a solution.
- ATMs have a similar role for some languages, for which there are no short witnesses, i.e., which cannot be characterized using nondeterminism.

Alternating machines

Definition of ATM:

- a configuration can have multiple successors (as in NTM)
- additionally states of the machine (and in effect its configurations) are divided to existential and universal ones

Alternating machines

Definition of ATM:

- a configuration can have multiple successors (as in NTM)
- additionally states of the machine (and in effect its configurations) are divided to existential and universal ones
The set of wining configurations is defined as the smallest set s.t.:
- accepting configurations are winning
- every existential configuration, whose some successor is winning, is also winning
- every universal configuration, whose all successors are winning, is also winning
We accept a word w, if the initial configuration for this word is winning.
M works in time $T(n) /$ in space $S(n)$, if every computation fits in this time / space.

Alternating machines

Definition of ATM:

- a configuration can have multiple successors (as in NTM)
- additionally states of the machine (and in effect its configurations) are divided to existential and universal ones
The set of wining configurations is defined as the smallest set s.t.:
- accepting configurations are winning
- every existential configuration, whose some successor is winning, is also winning
- every universal configuration, whose all successors are winning, is also winning
We accept a word w, if the initial configuration for this word is winning.
M works in time $T(n)$ / in space $S(n)$, if every computation fits in this time / space.
Observation:
NTM is a special case of an ATM - only existential states

Alternating machines

Equivalently: acceptance can be defined using a game:

- we consider the configuration graph (edges = possible transitions)
- players \exists and \forall alternatingly move a pawn (common to both player) around the graph
- in existential states player \exists decides, in universal states player \forall decides (player \exists wants to accept, player \forall wants to reject)
- we accept a word, if player \exists has a winning strategy - he can reach an accepting configuration regardless moves of player \forall

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)), $\operatorname{AP}=\cup_{k} \operatorname{ATIME}\left(n^{k}\right), \operatorname{AL=ASPACE}(\log n)$

Theorem

AL=P, AP=PSPACE (the same can be said more generally)

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)),
$\operatorname{AP}=\cup_{k} \operatorname{ATIME}\left(n^{k}\right), \operatorname{AL=ASPACE}(\log n)$
Theorem
AL=P, AP=PSPACE (the same can be said more generally)
Proof AP \subseteq PSPACE
Backtracking: we browse through all computations of the alternating machine (such a computation can be represented in polynomial space)

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)),
$\operatorname{AP}=\cup_{k} \operatorname{ATIME}\left(n^{k}\right), \operatorname{AL=ASPACE}(\log n)$
Theorem
AL=P, AP=PSPACE (the same can be said more generally)
Proof $\mathbf{A L \subseteq P}$
We construct the graph containing all reachable configurations of the alternating machine - it is of polynomial size. Then in polynomial time we can find all winning configurations, by going backwards (starting from accepting configurations).

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)),
$\operatorname{AP}=\cup_{k} \operatorname{ATIME}\left(n^{k}\right), \operatorname{AL=ASPACE}(\log n)$
Theorem
AL=P, AP=PSPACE (the same can be said more generally)
Proof PSPACE $\subseteq A P$
It is enough to prove that $\mathrm{QBF} \in \mathrm{AP}$, as QBF is PSPACE-complete.
This is almost obvious - player \exists chooses values of variables quantified existentially, and player \forall chooses values of variables quantified universally; at the end we deterministically compute the value of the formula.
Actually: the algorithm for AP is simpler than for PSPACE.

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)),
$\operatorname{AP}=\cup_{k} \operatorname{ATIME}\left(n^{k}\right), \operatorname{AL=ASPACE}(\log n)$
Theorem
AL=P, AP=PSPACE (the same can be said more generally)
Proof $\mathbf{P} \subseteq A L$

- For an algorithm in \mathbf{P} there is an equivalent boolean circuit, and we can construct it in logarithmic space.
- It is easy to give an algorithm in AL, which computes the value of a circuit: players walk from the output gate, in OR gates player \exists decides which predecessor is true, and in AND gates player \forall decides which predecessor is supposed to be false.
- We do not generate the whole circuit, only particular fragments, „on demand".

Alternating machines

Consider alternating machines which:

- work in polynomial time
- the initial state is existential (universal)
- every computation leads to at most $k-1$ changes between existential and universal states

Fact
Such machines recognize languages from $\Sigma_{k}^{p}\left(\Pi_{k}^{p}\right)$
(we skip the formal proof, although it is easy)

Probabilistic machines

Machines with a source of random bits (probabilistic machines):

- a deterministic machine
- an additional read-once tape (the head cannot move left along this tape)

Probabilistic machines

Machines with a source of random bits (probabilistic machines):

- a deterministic machine
- an additional read-once tape (the head cannot move left along this tape)

Notice that NP can be defined as follows: a language L is in NP iff there is a polynomial $p(n)$ and a machine M with a source of random bits, working in at most $p(n)$ steps, and such that:

- $w \in L \Rightarrow \exists$ s. $(w, s) \in L_{M}$
- $w \notin L \Rightarrow \nexists \mathrm{~s} .(w, s) \in L_{M}$
(a word is in L iff some witness confirms this)

Probabilistic machines

Machines with a source of random bits (probabilistic machines):

- a deterministic machine
- an additional read-once tape (the head cannot move left along this tape)

Notice that NP can be defined as follows: a language L is in NP iff there is a polynomial $p(n)$ and a machine M with a source of random bits, working in at most $p(n)$ steps, and such that:

- $w \in L \Rightarrow \exists$ s. $(w, s) \in L_{M}$
- $w \notin L \Rightarrow \nexists \mathrm{~s}$. $(w, s) \in L_{M}$

Class RP (randomized polynomial time): as above, but

- $w \in L \Rightarrow \operatorname{Pr}_{s}\left[(w, s) \in L_{M}\right] \geq 0.5$
- $w \notin L \Rightarrow \nexists s .(w, s) \in L_{M}$

Intuition: a word is in L, if at least half of possible witnesses confirm this.

Probabilistic machines

Class RP (randomized polynomial time): a language L is in RP iff there is a polynomial $p(n)$ and a machine M with a source of random bits, working in at most $p(n)$ steps, and such that:

- $w \in L \Rightarrow \operatorname{Pr}_{s}\left[(w, s) \in L_{M}\right] \geq 0.5$
- $w \notin L \Rightarrow \nexists \mathrm{~s}$. $(w, s) \in L_{M}$

As s we can take sequences of length $p(n)$, or infinite sequences, does not matter.

Intuition: a word is in L, if at least half of possible witnesses confirm this (but there are no witnesses for words not in L)
In other words: if a word is not in L, we will certainly reject; if it is in L, then choosing transitions randomly, we will accept with probability at least 0.5

Probabilistic machines

Class RP (randomized polynomial time): a language L is in RP iff there is a polynomial $p(n)$ and a machine M with a source of random bits, working in at most $p(n)$ steps, and such that:

- $w \in L \Rightarrow \operatorname{Pr}_{s}\left[(w, s) \in L_{M}\right] \geq 0.5$
- $w \notin L \Rightarrow \nexists s .(w, s) \in L_{M}$

Remark: Some machines does not accept any language in the sense of RP. It is undecidable whether a machine is correct in the sense of RP, even if we know the polynomial $p(n)$

For this reason we do not know any RP-complete problem. Intuition: we cannot reduce from every machine recognizing a language from RP, because we do not know how such machines look like.

Probabilistic machines

Class RP (randomized polynomial time): a language L is in RP iff there is a polynomial $p(n)$ and a machine M with a source of random bits, working in at most $p(n)$ steps, and such that:

- $w \in L \Rightarrow \operatorname{Pr}_{s}\left[(w, s) \in L_{M}\right] \geq 0.5$
- $w \notin L \Rightarrow \nexists \mathrm{~s} .(w, s) \in L_{M}$

Fact: $\mathbf{P} \subseteq \mathbf{R P} \subseteq \mathbf{N P}$ (both inclusions are obvious)

Probabilistic machines

Class RP (randomized polynomial time): a language L is in RP iff there is a polynomial $T(n)$ and a machine M with a source of random bits, working in at most $T(n)$ steps, and such that:

- $w \in L \Rightarrow P r_{s}\left[(w, s) \in L_{M}\right] \geq 1-p=0.5$
- $w \notin L \Rightarrow \nexists s .(w, s) \in L_{M}$

Fact (amplification): in the definition of RP the number 0.5 can be changed to any number from the interval $(0,1)$, and the class of defined languages will remain the same
Proof: Let $\mathbf{R P}_{p}$ be the class with error probability p
Obviously $\mathbf{R P}_{p} \subseteq \mathbf{R P}_{q}$ when $p \leq q$
We will now prove that $\mathbf{R P}_{p} \subseteq \mathbf{R P}_{p^{2}}$

- Out of a machine M with error p we construct a machine M^{\prime}, which on the same input chooses randomly two witnesses, and accepts if some of them is a correct witness
- The running time doubles, so it remains polynomial
- The error probability decreases to $p^{2}-M^{\prime}$ is wrong only when M made a mistake twice

Probabilistic machines

Is this a realistic model?

- It is more realistic than nondeterministic or alternating machines: we can run a probabilistic machine, give it some sequence of bits as random bits, and obtain a result that is correct with some probability.
- We obtain a result that is correct with some probability (and due to amplification this probability can be arbitrarily high), but we cannot be sure.
- How to generate bits that are really random? There exist physical random number generators (basing e.g. on quantum effects). Problems: they are relatively slow, and can be biased (in particular after some time, when they start to be broken).
- In practice, we use pseudo-random generators, that generate "random" bits using some algorithm. In practice, this works well, as the generated sequence looks like a random one.
But theoretically, we cannot be sure about the probability of correctness.

