Computational complexity

lecture 8

<u>Theorem</u> (Ladner, 1975) – existence of NP-intermediate problems: If $P \neq NP$, then there is a problem, which is in $NP \setminus P$, but is not NP-hard with respect to polynomial-time reductions (so even more with respect to logarithmic-space reductions).

<u>Theorem</u> (Ladner, 1975) – existence of NP-intermediate problems: If $P \neq NP$, then there is a problem, which is in $NP \setminus P$, but is not NP-hard with respect to polynomial-time reductions (so even more with respect to logarithmic-space reductions).

Proof:

Supposing that SAT \notin **P** we will give a language $L \in$ **NP** such that:

- L is not in **P**, and
- ullet SAT does not reduce to L in polynomial time

<u>Theorem</u> (Ladner, 1975) – existence of NP-intermediate problems: If $P \neq NP$, then there is a problem, which is in $NP \setminus P$, but is not NP-hard with respect to polynomial-time reductions (so even more with respect to logarithmic-space reductions).

Proof:

Supposing that SAT \notin **P** we will give a language $L \in$ **NP** such that:

- *L* is not in **P**, and
- ullet SAT does not reduce to L in polynomial time

We create L as a variant of SAT with an appropriate amount of padding. In general, with padding we can change a problem into a simpler one. We want to add enough padding so that the SAT problem stops to be **NP**-complete, but not too much, so that still it is not in **P**.

The definition will be:

$$L = \{w01f(|w|) : w \in SAT\}$$

for an appropriate function f

 $L = \{w01f(|w|) : w \in SAT\}$ for an appropriate function f.

We now define *f*

- Fix a computable enumeration $M_1, M_2, M_3, ...$ of Turing machines, such that M_i works in time $O(n^i)$, and every language in $\bf P$ is recognized by some M_i
- To this end, we take a list $M'_1, M'_2, M'_3, ...$ on which <u>every</u> Turing machine appears infinitely often. To M'_i we add a counter, which stops the machine after n^i steps this results in M_i

 $L = \{w01f(|w|) : w \in SAT\}$ for an appropriate function f.

We now define *f*

- Fix a computable enumeration $M_1, M_2, M_3, ...$ of Turing machines, such that M_i works in time $O(n^i)$, and every language in $\bf P$ is recognized by some M_i
- The function f is defined by the following algorithm:
- (a) take i=1, n=1
- (b) put $f(n)=n^i$
- (c) if there is a word v of length $\leq log(n)$ such that M_i incorrectly recognizes whether v belongs to L, then increase i by 1
- (d) increase n by 1, go back to (b)

 M_i works in time $O(n^i)$, every lang. in **P** is recognized by some M_i

```
L = \{w01f(|w|) : w \in SAT\} for f defined by:
```

- (a) take i=1, n=1
- (b) put $f(n)=n^i$
- (c) if there is a word v of length $\leq log(n)$ such that M_i incorrectly recognizes whether v belongs to L, then increase i by 1
- (d) increase n by 1, go back to (b)
- <u>Fact 1</u>: It can be checked in polynomial time whether a word is of the proper form (i.e., if the number of ones is appropriate).
- In order to compute f(n) we repeat the loop n times, in every repetition we check polynomially many words v (of logarithmic length)
- On every word v we run M_i , which works in time $O(\log^i n)$
- We can spend this time, as the input should have length $\geq f(n) \geq n^i$ (we interrupt the loop as soon as there are not enough ones)
- Remark: i is not a constant (time $O(log^i n)$ by itself is not polynomial)
- Remark 2: the simulation time depends on $|M_i|$, but $|M_i| = |i| = log(i) \le log(n)$, so this is OK

- M_i works in time $O(n^i)$, every lang. in **P** is recognized by some M_i
- $L=\{w01^{f(|w|)}: w\in SAT\}$ for f defined by:
- (a) take i=1, n=1
- (b) put $f(n)=n^i$
- (c) if there is a word v of length $\leq log(n)$ such that M_i incorrectly recognizes whether v belongs to L, then increase i by 1
- (d) increase n by 1, go back to (b)
- <u>Fact 1</u>: It can be checked in polynomial time whether a word is of the proper form (i.e., if the number of ones is appropriate).
- In order to compute f(n) we repeat the loop n times, in every repetition we check polynomially many words v (of logarithmic length)
- On every word v we run M_i , which works in time $O(\log^i n)$
- We can spend this time, as the input should have length $\geq f(n) \geq n^i$ (we interrupt the loop as soon as there are not enough ones)
- We also need to check whether $v \in L$ (where $|v| \le log n$)
 - \rightarrow we check the number of ones in v by the induction assumption
 - \rightarrow we check whether prefix \in SAT in time exponential in log(n)

 M_i works in time $O(n^i)$, every lang. in **P** is recognized by some M_i $L=\{w01^{f(|w|)}: w\in SAT\}$ for f defined by:

- (a) take i=1, n=1
- (b) put $f(n)=n^i$
- (c) if there is a word v of length $\leq log(n)$ such that M_i incorrectly recognizes whether v belongs to L, then increase i by 1
- (d) increase n by 1, go back to (b)
- <u>Fact 1</u>: It can be checked in polynomial time whether a word is of the proper form (i.e., if the number of ones is appropriate).

Corollary: $L \in \mathbf{NP}$

 M_i works in time $O(n^i)$, every lang. in **P** is recognized by some M_i $L=\{w01^{f(|w|)}: w\in SAT\}$ for f defined by:

- (a) take i=1, n=1
- (b) put $f(n)=n^i$
- (c) if there is a word v of length $\leq log(n)$ such that M_i incorrectly recognizes whether v belongs to L, then increase i by 1
- (d) increase n by 1, go back to (b)

Fact 2: if SAT \notin P then $L\notin$ P

- If $L \in \mathbf{P}$, then some M_i recognizes L, so from some moment on (i.e. for $n \ge n_0$ for some n_0) we have that $f(n) = n^i$
- Then it is easy to solve SAT in **P** (a contradiction):
 - \rightarrow if $|w| \ge n_0$ we append $|w|^i$ ones at the end, and we start M_i
 - \rightarrow for w shorter than n_0 the results can be hardcoded

 M_i works in time $O(n^i)$, every lang. in **P** is recognized by some M_i $L=\{w01^{f(|w|)}: w\in SAT\}$ for f defined by:

- (a) take i=1, n=1
- (b) put $f(n)=n^i$
- (c) if there is a word v of length $\leq log(n)$ such that M_i incorrectly recognizes whether v belongs to L, then increase i by 1
- (d) increase n by 1, go back to (b)

Fact 2: if SAT \notin P then $L\notin$ P

- If $L \in \mathbf{P}$, then some M_i recognizes L, so from some moment on (i.e. for $n \ge n_0$ for some n_0) we have that $f(n) = n^i$
- Then it is easy to solve SAT in **P** (a contradiction):
 - \rightarrow if $|w| \ge n_0$ we append $|w|^i$ ones at the end, and we start M_i
 - \rightarrow for w shorter than n_0 the results can be hardcoded
- <u>Corollary</u>: Because $L \notin \mathbf{P}$, the function f grows faster than every polynomial

 M_i works in time $O(n^i)$, every lang. in **P** is recognized by some M_i $L=\{w01^{f(|w|)}: w\in SAT\}$ for an appropriate f.

Fact 3: if SAT \notin P then L is not NP-hard

• Suppose that SAT reduces to L through a function g computable in time n^k . We will show a polynomial algorithm for SAT.

 M_i works in time $O(n^i)$, every lang. in **P** is recognized by some M_i $L=\{w01^{f(|w|)}: w\in SAT\}$ for an appropriate f.

Fact 3: if SAT \notin P then L is not NP-hard

- Suppose that SAT reduces to L through a function g computable in time n^k . We will show a polynomial algorithm for SAT.
- We know that there is n_0 such that for $n \ge n_0$ it holds that $f(n) > n^k$
- For formulas w shorter than n_0 the results can be hardcoded

 M_i works in time $O(n^i)$, every lang. in **P** is recognized by some M_i $L=\{w01^{f(|w|)}: w\in SAT\}$ for an appropriate f.

Fact 3: if SAT \notin P then L is not NP-hard

- Suppose that SAT reduces to L through a function g computable in time n^k . We will show a polynomial algorithm for SAT.
- We know that there is n_0 such that for $n \ge n_0$ it holds that $f(n) > n^k$
- For formulas w shorter than n_0 the results can be hardcoded
- For $|w| \ge n_0$ we consider the word g(w); it has length $\le |w|^k$. If g(w) is not of the form $w'01^{f(|w'|)}$, then it is not in L, we reject (by fact 1, this can be checked in **P**). Otherwise $w \in SAT \Leftrightarrow w' \in SAT$

 M_i works in time $O(n^i)$, every lang. in **P** is recognized by some M_i $L=\{w01^{f(|w|)}: w\in SAT\}$ for an appropriate f.

Fact 3: if SAT \notin P then L is not NP-hard

- Suppose that SAT reduces to L through a function g computable in time n^k . We will show a polynomial algorithm for SAT.
- We know that there is n_0 such that for $n \ge n_0$ it holds that $f(n) > n^k$
- For formulas w shorter than n_0 the results can be hardcoded
- For $|w| \ge n_0$ we consider the word g(w); it has length $\le |w|^k$. If g(w) is not of the form $w'01^{f(|w'|)}$, then it is not in L, we reject (by fact 1, this can be checked in **P**). Otherwise $w \in SAT \Leftrightarrow w' \in SAT$ Moreover, either $|w'| < n_0$, or we have that $|w|^k \ge |g(w)| > f(|w'|) > |w'|^k$, thus the new formula is shorter at least by 1.
- We repeat this in a loop; after a linear number of steps the input length decreases below n_0 , and we obtain a result.

- We have thus proved:
- Theorem (Ladner 1975)
- If **P**≠**NP**, then there is a problem, which is in **NP****P**, but is not **NP**-hard with respect to polynomial-time reductions (so even more with respect to logarithmic-space reductions).

CSP problems and the dichotomy theorem

The CSP problem

Input: variables $x_1,...,x_n$, domains $D_1,...,D_n$, constraints $C_1,...,C_m$ of the form (t,R), where t is a tuple of k variables, and R is a k-ary relation Question: are there $x_1 \in D_1,...,x_n \in D_n$ satisfying $C_1,...,C_m$? (a constraint (t,R) is satisfied if the tuple of variables t belong to the relation R)

Clearly CSP∈**NP**

CSP problems and the dichotomy theorem

The CSP problem

Input: variables $x_1,...,x_n$, domains $D_1,...,D_n$, constraints $C_1,...,C_m$ of the form (t,R), where t is a tuple of k variables, and R is a k-ary relation Question: are there $x_1 \in D_1,...,x_n \in D_n$ satisfying $C_1,...,C_m$? (a constraint (t,R) is satisfied if the tuple of variables t belong to the relation R)

Clearly CSP∈**NP**

Most natural **NP**-complete problems can be easily reduced to CSP (written as CSP).

E.g. 3-coloring:

- $x_1,...,x_n$ represent colors of nodes 1,...,n
- $D_1,...,D_n = \{1,2,3\}$
- for every edge k,l we have a constraint $x_k \neq x_l$ (i.e., R is the binary relation $\{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\}$)

CSP problems and the dichotomy theorem

The CSP problem

Input: variables $x_1,...,x_n$, domains $D_1,...,D_n$, constraints $C_1,...,C_m$ of the form (t,R), where t is a tuple of k variables, and R is a k-ary relation Question: are there $x_1 \in D_1,...,x_n \in D_n$ satisfying $C_1,...,C_m$? (a constraint (t,R) is satisfied if the tuple of variables t belong to the relation R)

Clearly CSP∈**NP**

Most natural **NP**-complete problems can be easily reduced to CSP (written as CSP).

Problem CSP(Γ) – like CSP, but only relations from a set Γ can be used

Theorem (2017): for every set Γ we either have CSP(Γ) \in **P**, or CSP(Γ) is **NP**-complete

Is it the case that every problem not in **NP** is **NP**-hard? Intuitively, **NP**-hard means hardest in **NP**, or even harder (so problems harder than **NP** should be **NP**-hard).

- Is it the case that every problem not in **NP** is **NP**-hard?
- Intuitively, **NP**-hard means hardest in **NP**, or even harder (so problems harder than **NP** should be **NP**-hard).
- But the definition is: L is **NP**-hard if we can reduce every problem from **NP** to L.
- So: can we reduce every problem from **NP**, to every (more difficult) problem not in **NP**?

- Is it the case that every problem not in **NP** is **NP**-hard?
- Intuitively, **NP**-hard means hardest in **NP**, or even harder (so problems harder than **NP** should be **NP**-hard).
- But the definition is: L is **NP**-hard if we can reduce every problem from **NP** to L.
- So: can we reduce every problem from **NP**, to every (more difficult) problem not in **NP**?
- The answer is **no** we have the following theorem:
- Theorem (Berman 1978)
- If P≠NP, then no language over a single-letter alphabet is NP-hard wrt. polynomial-time reductions (so even more wrt. logarithmic-space reductions).

Is it the case that every problem not in **NP** is **NP**-hard?

No – we have the following theorem:

Theorem (Berman 1978)

If $P \neq NP$, then no language over a single-letter alphabet is NP-hard.

- Notice that there is a language language over a single-letter alphabet that requires doubly-exponential running time (i.e., surely is not in **NP**): take any language L over $\{0,1\}$ requiring triple-exponential running time, and take $\{1^{|1w|_2}: w \in L\}$, where $|1w|_2$ is the number encoded in binary as 1w.
- There is also an undecidable language over a single-letter alphabet: $\{1^k: M_k \text{ halts on empty input}\}$
- These languages are not NP-hard, and not in NP (assuming $P \neq NP$).

Theorem (Berman 1978)

If **P**≠**NP**, then no language over a single-letter alphabet is **NP**-hard.

Proof

Let L be an **NP**-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting **P** \neq **NP**.

Theorem (Berman 1978)

If **P**≠**NP**, then no language over a single-letter alphabet is **NP**-hard.

Proof

Let L be an **NP**-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting **P** \neq **NP**. By assumption there is a reduction g from SAT to L.

The algorithm is as follows:

- We are given a formula φ
- We will keep a list of formulas $\psi_1,...,\psi_k$ such that: ϕ is satisfiable iff some of $\psi_1,...,\psi_k$ is satisfiable. Initially the list contains ϕ .

Theorem (Berman 1978)

If **P**≠**NP**, then no language over a single-letter alphabet is **NP**-hard.

Proof

Let L be an **NP**-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting **P** \neq **NP**. By assumption there is a reduction g from SAT to L.

The algorithm is as follows:

- We are given a formula φ
- We will keep a list of formulas $\psi_1,...,\psi_k$ such that: ϕ is satisfiable iff some of $\psi_1,...,\psi_k$ is satisfiable. Initially the list contains ϕ .
- We alternatingly repeat two kinds of steps:
- 1) Replace every ψ_i by two formulas: $\psi_i[true/x]$ and $\psi_i[false/x]$, obtained by substituting true/false for one of variables. (clearly ψ_i is satisfiable iff some of $\psi_i[true/x]$, $\psi_i[false/x]$ is satisfiable)

Theorem (Berman 1978)

If **P≠NP**, then no language over a single-letter alphabet is **NP**-hard.

Proof

Let L be an **NP**-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting **P** \neq **NP**. By assumption there is a reduction g from SAT to L.

The algorithm is as follows:

- We are given a formula φ
- We will keep a list of formulas $\psi_1,...,\psi_k$ such that: ϕ is satisfiable iff some of $\psi_1,...,\psi_k$ is satisfiable. Initially the list contains ϕ .
- We alternatingly repeat two kinds of steps:
- 1) Replace every ψ_i by two formulas: $\psi_i[true/x]$ and $\psi_i[false/x]$, obtained by substituting true/false for one of variables. (clearly ψ_i is satisfiable iff some of $\psi_i[true/x]$, $\psi_i[false/x]$ is satisfiable)
- 2) For every pair ψ_i , ψ_j such that $g(\psi_i) = g(\psi_j)$, remove ψ_i from the list, leave only ψ_i (notice that ψ_i is satisfiable iff some of ψ_i is satisfiable)

- We alternatingly repeat two kinds of steps:
- 1) Replace every ψ_i by two formulas: $\psi_i[true/x]$ and $\psi_i[false/x]$, obtained by substituting true/false for one of variables. (clearly ψ_i is satisfiable iff some of $\psi_i[true/x]$, $\psi_i[false/x]$ is satisfiable)
- 2) For every pair ψ_i , ψ_j such that $g(\psi_i) = g(\psi_j)$, remove ψ_i from the list, leave only ψ_i (notice that ψ_i is satisfiable iff some of ψ_i is satisfiable)
- The algorithm is correct. Why does it work in polynomial time?
- Recall that g is a polynomial-time reduction to a single-letter language. Thus $|g(\psi_i)| < p(|\psi_i|)$ for some polynomial p. Since there is only one single-letter word of every length, there are only $p(|\psi_i|) \le p(|\phi|)$ possibilities for $g(\psi_i)$.
- In effect, the list has length $\leq p(|\phi|)$ after every execution of step 2, and $\leq 2 \cdot p(|\phi|)$ after every execution of step 1.
- Moreover, every step can be performed in polynomial time.
- This finishes the proof.

Relativisation

Many proofs in the complexity theory uses Turing machines as "black-boxes" – the proofs are of the form:

- ullet assume that there is a machine M working in time ... recognizing ...
- Out of it, we create M', which executes M many times in a loop...
- ... then it negates the results, executes itself on every machine ...
- at the end we obtain a machine M''''', about which we know that it cannot exist, thus M could not exist.

Such proofs <u>relativize</u>, i.e., they work also when every machine in the world has access to some fixed oracle (that is, it can ask whether a word belongs to a language L, and immediately obtain an answer)

Relativisation

- Many proofs in the complexity theory uses Turing machines as "black-boxes" the proofs are of the form:
- ullet assume that there is a machine M working in time ... recognizing ...
- Out of it, we create M', which executes M many times in a loop...
- ...
- Such proofs <u>relativize</u>, i.e., they work also when every machine in the world has access to some fixed oracle.
- Examples of relativizing proofs: Turing theorem about undecidability, hierarchy theorems, gap theorems, Ladner's theorem, Immerman-Szelepcseny theorem, Savitch theorem, ...
- On the other hand, proofs based on circuits do not relativize (it is not at all clear what is an oracle for a circuit)
- The next theorem shows that using relativizing arguments we cannot solve the **P** vs. **NP** problem.

Theorem (Baker-Gill-Solovay, 1975)

There exist languages A and B such that $\mathbf{P}^{A} = \mathbf{N}\mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N}\mathbf{P}^{B}$

Theorem (Baker-Gill-Solovay, 1975)

There exist languages A and B such that $\mathbf{P}^A = \mathbf{NP}^A$ and $\mathbf{P}^B \neq \mathbf{NP}^B$ Proof

As A we can take QBF – we have:

NPQBF = NPSPACE = PSPACE = PQBF

Steps from the left:

- instead of asking the QBF oracle about a word, a machine can itself compute the answer (questions are of polynomial length, and QBF can be solved in polynomial space)
- Savitch theorem
- PSPACE-completeness of the QBF problem

Theorem (Baker-Gill-Solovay, 1975)

There exist languages A and B such that $\mathbf{P}^A = \mathbf{NP}^A$ and $\mathbf{P}^B \neq \mathbf{NP}^B$ Proof

As A we can take QBF – we have:

NPQBF = NPSPACE = PSPACE = PQBF

Steps from the left:

- instead of asking the QBF oracle about a word, a machine can itself compute the answer (questions are of polynomial length, and QBF can be solved in polynomial space)
- Savitch theorem
- PSPACE-completeness of the QBF problem

Does A=SAT work as well? $- NP^{SAT} \subseteq NP \subseteq P^{SAT}$

Theorem (Baker-Gill-Solovay, 1975)

There exist languages A and B such that $\mathbf{P}^A = \mathbf{NP}^A$ and $\mathbf{P}^B \neq \mathbf{NP}^B$ Proof

As A we can take QBF – we have:

NPQBF = NPSPACE = PSPACE = PQBF

Steps from the left:

- instead of asking the QBF oracle about a word, a machine can itself compute the answer (questions are of polynomial length, and QBF can be solved in polynomial space)
- Savitch theorem
- PSPACE-completeness of the QBF problem

Does A=SAT work as well? $-\frac{NPSAT}{SAT} = \frac{NPSAT}{SAT}$

NO – an **NP** algorithm for SAT doesn't give the inclusion **NP**^{SAT}⊆**NP** (maybe the external algorithm "prefers" to obtain that a formula is not satisfiable, and it will incorrectly compute its satisfiability) It is important that QBF can be solved in <u>deterministic</u> **PSPACE**

- Theorem (Baker-Gill-Solovay, 1975)
- There exist languages A and B such that $\mathbf{P}^A = \mathbf{NP}^A$ and $\mathbf{P}^B \neq \mathbf{NP}^B$ Proof
- We now construct an oracle B, and we consider the language $L=\{1^n: \text{ some word } w \text{ of length } n \text{ belongs to } B\}$
- Clearly $L \in \mathbf{NP}^B$ nondeterministic machine can guess some $w \in B$
- A deterministic machine recognizing L has a problem: it can only ask the oracle for consecutive words, but it has not enough time to check all of them. We only need to choose B so that indeed it is impossible to do anything better.

Theorem (Baker-Gill-Solovay, 1975)

There exist languages A and B such that $\mathbf{P}^A = \mathbf{NP}^A$ and $\mathbf{P}^B \neq \mathbf{NP}^B$ Proof

 $L=\{1^n: \text{ some word } w \text{ of length } n \text{ belongs to } B\}$

We now choose *B*:

- Fix a list M_1, M_2, M_3, \ldots of all Turing machines with oracle working in polynomial time
 - → an oracle is not a part of the definition of the machine,
 - \rightarrow for every M_i there should exist a polynomial p_i such that for every oracle the machine M_i works in time $p_i(n)$
 - \rightarrow if some M with oracle C recognizes a language L in polynomial time, then some M_i with oracle C also recognizes L
 - → such a list $M_1, M_2, M_3,...$ is created as in the proof of Ladner's theo.
 - → this time, we do not use the fact that the list is computable (conversely to the proof of the Ladner's theorem)
- We construct B gradually, cheating consecutive machines

 $L=\{1^n: \text{ some word } w \text{ of length } n \text{ belongs to } B\}$

We create $B = \bigcup_{i \in \mathbb{N}} B_i$ and a sequence n_i such that:

- $M_i^{B_i}$ incorrectly recognizes the word 1^{n_i}
- M_i^B agrees with $M_i^{B_i}$ on the word 1^{n_i}

We start with $B_0 = \emptyset$; then for consecutive *i*:

• we take n_i so large that for all j < i, machine M_j for on the word 1^{n_j} produces only queries shorter than n_i (thanks to this the machines that were cheated earlier remain cheated), and such that M_i on the word 1^{n_i} works in less than 2^{n_i} steps

 $L=\{1^n: \text{ some word } w \text{ of length } n \text{ belongs to } B\}$

We create $B = \bigcup_{i \in \mathbb{N}} B_i$ and a sequence n_i such that:

- $M_i^{B_i}$ incorrectly recognizes the word 1^{n_i}
- M_i^B agrees with $M_i^{B_i}$ on the word 1^{n_i}

We start with $B_0 = \emptyset$; then for consecutive *i*:

- we take n_i so large that for all j < i, machine M_j for on the word 1^{n_j} produces only queries shorter than n_i (thanks to this the machines that were cheated earlier remain cheated), and such that M_i on the word 1^{n_i} works in less than 2^{n_i} steps
- run $M_i^{B_{i-1}}$ on the word 1^{n_i}
- if it accepts, take $B_i = B_{i-1}$ then $1^{n_i} \notin L$, we have cheated M_i
- if it rejects, find a word w of length n_i about which M_i haven't asked (it exists, since M_i has made $<2^{n_i}$ step) and define $B_i=B_{i-1}\cup \{w\}$ Then $1^{n_i}\in L$, and we have cheated M_i

 $L=\{1^n: \text{ some word } w \text{ of length } n \text{ belongs to } B\}$

We create $B = \bigcup_{i \in \mathbb{N}} B_i$ and a sequence n_i such that:

- $M_i^{B_i}$ incorrectly recognizes the word 1^{n_i} The language B is computable, but in this theorem this is meaningless
- M_i^B agrees with $M_i^{B_i}$ on the word 1^{n_i}

We start with $B_0 = \emptyset$; then for consecutive *i*:

- we take n_i so large that for all j < i, machine M_j for on the word 1^{n_j} produces only queries shorter than n_i (thanks to this the machines that were cheated earlier remain cheated), and such that M_i on the word 1^{n_i} works in less than 2^{n_i} steps
- run $M_i^{B_{i-1}}$ on the word 1^{n_i}
- if it accepts, take $B_i = B_{i-1}$ then $1^{n_i} \notin L$, we have cheated M_i
- if it rejects, find a word w of length n_i about which M_i haven't asked (it exists, since M_i has made $<2^{n_i}$ step) and define $B_i=B_{i-1}\cup \{w\}$ Then $1^{n_i}\in L$, and we have cheated M_i

- The NP class was defined for decision problems ("yes/no"),
- e.g., does there exist a valuation satisfying a formula, does there exist a Hamiltonian cycle, ...
- We can also consider search problems,
- e.g., find a valuation satisfying a formula, find a Hamiltonian cycle, ...
- Of course search problems are not easier than decision problems.
 Thus if P≠NP, then search problems cannot be solved in polynomial time as well.
- And what if **P=NP**? Maybe it is possible to decide quickly whether there is a Hamiltonian cycle, but it is impossible to quickly find it?

- The NP class was defined for decision problems ("yes/no"),
- e.g., does there exist a valuation satisfying a formula, does there exist a Hamiltonian cycle, ...
- We can also consider search problems,
- e.g., find a valuation satisfying a formula, find a Hamiltonian cycle, ...
- Of course search problems are not easier than decision problems.
 Thus if P≠NP, then search problems cannot be solved in polynomial time as well.
- And what if **P=NP**? Maybe it is possible to decide quickly whether there is a Hamiltonian cycle, but it is impossible to quickly find it?
- Then it possible to solve also search problems in polynomial time.

Theorem

If P=NP, then for every language $L \in NP$ there is a polynomial algorithm that reads $v \in L$ and finds a witness for v.

We refer here to the definition of **NP** using witnesses:

NP contains languages of the form $\{v : \exists w. \ v\$w \in R\}$, where R is a relation recognizable in polynomial time and such that $v\$w \in R$ implies $|w| \le p(|v|)$ for some polynomial p.

Theorem

If P=NP, then for every language $L \in NP$ there is a polynomial algorithm that reads $v \in L$ and finds a witness for v.

We refer here to the definition of **NP** using witnesses:

NP contains languages of the form $\{v : \exists w. \ v\$w \in R\}$, where R is a relation recognizable in polynomial time and such that $v\$w \in R$ implies $|w| \le p(|v|)$ for some polynomial p.

Proof

Consider first the SAT problem – we assume that there is a polynomial-time algorithm A for SAT, we want to find a valuation:

- Using A we check whether the formula is satisfiable
- If yes, we set $x_1=1$ and we check whether it is still satisfiable
- Yes \Rightarrow keep $x_1=1$ and continue for a smaller formula
- No \Rightarrow set $x_1 = 0$ and continue for a smaller formula
- In this way we eliminate consecutive variables, and we obtain a whole valuation

Theorem

If P=NP, then for every language $L \in NP$ there is a polynomial algorithm that reads $v \in L$ and finds a witness for v.

We refer here to the definition of **NP** using witnesses:

NP contains languages of the form $\{v : \exists w. \ v\$w \in R\}$, where R is a relation recognizable in polynomial time and such that $v\$w \in R$ implies $|w| \le p(|v|)$ for some polynomial p.

<u>Proof</u>

- For SAT we already know, consider now an arbitrary problem from NP
- It is enough to see that the reduction from the Cook-Levin theorem (**NP**-hardness of SAT) is actually a Levin reduction (i.e., it allows to recover witnesses)