Computational complexity

lecture 8

Ladner's theorem

Theorem (Ladner, 1975) - existence of NP-intermediate problems: If $\mathbf{P} \neq \mathbf{N P}$, then there is a problem, which is in NP\P, but is not NP-hard with respect to polynomial-time reductions (so even more with respect to logarithmic-space reductions).

Ladner's theorem

Theorem (Ladner, 1975) - existence of NP-intermediate problems: If $\mathbf{P} \neq \mathbf{N P}$, then there is a problem, which is in NP\P, but is not NP-hard with respect to polynomial-time reductions (so even more with respect to logarithmic-space reductions). Proof:
Supposing that $\mathrm{SAT} \notin \mathbf{P}$ we will give a language $L \in \mathbf{N P}$ such that:

- L is not in \mathbf{P}, and
- SAT does not reduce to L in polynomial time

Ladner's theorem

Theorem (Ladner, 1975) - existence of NP-intermediate problems: If $\mathbf{P} \neq \mathbf{N P}$, then there is a problem, which is in NP\P, but is not NP-hard with respect to polynomial-time reductions (so even more with respect to logarithmic-space reductions).

Proof:

Supposing that $\mathrm{SAT} \notin \mathbf{P}$ we will give a language $L \in \mathbf{N P}$ such that:

- L is not in \mathbf{P}, and
- SAT does not reduce to L in polynomial time We create L as a variant of SAT with an appropriate amount of padding. In general, with padding we can change a problem into a simpler one. We want to add enough padding so that the SAT problem stops to be NP-complete, but not too much, so that still it is not in \mathbf{P}.
The definition will be:

$$
L=\{w 01 f(|w|): w \in \mathrm{SAT}\}
$$

for an appropriate function f

Ladner's theorem (*)

$L=\{w 01 f(|w|): w \in$ SAT $\}$ for an appropriate function f.
We now define f

- Fix a computable enumeration $M_{1}, M_{2}, M_{3}, \ldots$ of Turing machines, such that M_{i} works in time $O\left(n^{i}\right)$, and every language in \mathbf{P} is recognized by some M_{i}
- To this end, we take a list $M_{1}{ }_{1}, M_{2}{ }_{2}, M_{3}^{\prime}, \ldots$ on which every Turing machine appears infinitely often. To M_{i}^{\prime} we add a counter, which stops the machine after n^{i} steps - this results in M_{i}

Ladner's theorem (*)

$L=\{w 01 f(|w|): w \in$ SAT $\}$ for an appropriate function f.
We now define f

- Fix a computable enumeration $M_{1}, M_{2}, M_{3}, \ldots$ of Turing machines, such that M_{i} works in time $O\left(n^{i}\right)$, and every language in \mathbf{P} is recognized by some M_{i}
The function f is defined by the following algorithm:
(a) take $i=1, n=1$
(b) put $f(n)=n^{i}$
(c) if there is a word v of length $\leq \log (n)$ such that M_{i} incorrectly recognizes whether v belongs to L, then increase i by 1
(d) increase n by 1, go back to (b)

Ladner's theorem (*)

M_{i} works in time $O\left(n^{i}\right)$, every lang. in \mathbf{P} is recognized by some M_{i}
$L=\{w 01 f(|w|): w \in$ SAT $\}$ for f defined by:
(a) take $i=1, n=1$
(b) put $f(n)=n^{i}$
(c) if there is a word v of length $\leq \log (n)$ such that M_{i} incorrectly
recognizes whether v belongs to L, then increase i by 1
(d) increase n by 1 , go back to (b)

Fact 1: It can be checked in polynomial time whether a word is of the proper form (i.e., if the number of ones is appropriate).

- In order to compute $f(n)$ we repeat the loop n times, in every repetition we check polynomially many words v (of logarithmic length)
- On every word v we run M_{i}, which works in time $O\left(\log ^{i} n\right.$)
- We can spend this time, as the input should have length $\geq f(n) \geq n^{i}$ (we interrupt the loop as soon as there are not enough ones)
- Remark: i is not a constant (time $O\left(\log ^{i} n\right)$ by itself is not polynomial)
- Remark 2: the simulation time depends on $\left|M_{i}\right|$, but $\left|M_{i}\right|=|i|=\log (i) \leq \log (n)$, so this is OK

Ladner's theorem (*)

M_{i} works in time $O\left(n^{i}\right)$, every lang. in \mathbf{P} is recognized by some M_{i}
$L=\{w 01 f(|w|): w \in$ SAT $\}$ for f defined by:
(a) take $i=1, n=1$
(b) put $f(n)=n^{i}$
(c) if there is a word v of length $\leq \log (n)$ such that M_{i} incorrectly
recognizes whether v belongs to L, then increase i by 1
(d) increase n by 1 , go back to (b)

Fact 1: It can be checked in polynomial time whether a word is of the proper form (i.e., if the number of ones is appropriate).

- In order to compute $f(n)$ we repeat the loop n times, in every repetition we check polynomially many words v (of logarithmic length)
- On every word v we run M_{i}, which works in time $O\left(\log ^{i} n\right.$)
- We can spend this time, as the input should have length $\geq f(n) \geq n^{i}$ (we interrupt the loop as soon as there are not enough ones)
- We also need to check whether $v \in L$ (where $|v| \leq \log n$)
\rightarrow we check the number of ones in v by the induction assumption
\rightarrow we check whether prefix \in SAT in time exponential in $\log (n)$

Ladner's theorem (*)

M_{i} works in time $O\left(n^{i}\right)$, every lang. in \mathbf{P} is recognized by some M_{i}
$L=\{w 01 f(|w|): w \in$ SAT $\}$ for f defined by:
(a) take $i=1, n=1$
(b) put $f(n)=n^{i}$
(c) if there is a word v of length $\leq \log (n)$ such that M_{i} incorrectly recognizes whether v belongs to L, then increase i by 1
(d) increase n by 1 , go back to (b)

Fact 1: It can be checked in polynomial time whether a word is of the proper form (i.e., if the number of ones is appropriate). Corollary: $L \in \mathbf{N P}$

Ladner's theorem (*)

M_{i} works in time $O\left(n^{i}\right)$, every lang. in \mathbf{P} is recognized by some M_{i}
$L=\{w 01 f(|w|): w \in$ SAT $\}$ for f defined by:
(a) take $i=1, n=1$
(b) put $f(n)=n^{i}$
(c) if there is a word v of length $\leq \log (n)$ such that M_{i} incorrectly recognizes whether v belongs to L, then increase i by 1
(d) increase n by 1, go back to (b)

Fact 2: if SAT $\notin \mathbf{P}$ then $L \notin \mathbf{P}$

- If $L \in \mathbf{P}$, then some M_{i} recognizes L, so from some moment on
(i.e. for $n \geq n_{0}$ for some n_{0}) we have that $f(n)=n^{i}$
- Then it is easy to solve SAT in \mathbf{P} (a contradiction):
\rightarrow if $|w| \geq n_{0}$ we append $|w|^{i}$ ones at the end, and we start M_{i}
\rightarrow for w shorter than n_{0} the results can be hardcoded

Ladner's theorem (*)

M_{i} works in time $O\left(n^{i}\right)$, every lang. in \mathbf{P} is recognized by some M_{i}
$L=\{w 01 f(|w|): w \in$ SAT $\}$ for f defined by:
(a) take $i=1, n=1$
(b) put $f(n)=n^{i}$
(c) if there is a word v of length $\leq \log (n)$ such that M_{i} incorrectly recognizes whether v belongs to L, then increase i by 1
(d) increase n by 1, go back to (b)

Fact 2: if SAT $\notin \mathbf{P}$ then $L \notin \mathbf{P}$

- If $L \in \mathbf{P}$, then some M_{i} recognizes L, so from some moment on
(i.e. for $n \geq n_{0}$ for some n_{0}) we have that $f(n)=n^{i}$
- Then it is easy to solve SAT in \mathbf{P} (a contradiction):
\rightarrow if $|w| \geq n_{0}$ we append $|w|^{i}$ ones at the end, and we start M_{i}
\rightarrow for w shorter than n_{0} the results can be hardcoded
Corollary: Because $L \notin \mathbf{P}$, the function f grows faster than every polynomial

Ladner's theorem (*)

M_{i} works in time $O\left(n^{i}\right)$, every lang. in \mathbf{P} is recognized by some M_{i}
$L=\{w 01 f(\mid w): w \in S A T\}$ for an appropriate f.
Fact 3: if SAT $\notin \mathbf{P}$ then L is not $\mathbf{N P}$-hard

- Suppose that SAT reduces to L through a function g computable in time n^{k}. We will show a polynomial algorithm for SAT.

Ladner's theorem (*)

M_{i} works in time $O\left(n^{i}\right)$, every lang. in \mathbf{P} is recognized by some M_{i}
$L=\{w 01 f(|w|): w \in$ SAT $\}$ for an appropriate f.
Fact 3: if SAT $\notin \mathbf{P}$ then L is not $\mathbf{N P}$-hard

- Suppose that SAT reduces to L through a function g computable in time n^{k}. We will show a polynomial algorithm for SAT.
- We know that there is n_{0} such that for $n \geq n_{0}$ it holds that $f(n)>n^{k}$
- For formulas w shorter than n_{0} the results can be hardcoded

Ladner's theorem (*)

M_{i} works in time $O\left(n^{i}\right)$, every lang. in \mathbf{P} is recognized by some M_{i}
$L=\{w 01 f(|w|): w \in$ SAT $\}$ for an appropriate f.
Fact 3: if SAT $\notin \mathbf{P}$ then L is not $\mathbf{N P}$-hard

- Suppose that SAT reduces to L through a function g computable in time n^{k}. We will show a polynomial algorithm for SAT.
- We know that there is n_{0} such that for $n \geq n_{0}$ it holds that $f(n)>n^{k}$
- For formulas w shorter than n_{0} the results can be hardcoded
- For $|w| \geq n_{0}$ we consider the word $g(w)$; it has length $\leq|w|^{k}$. If $g(w)$ is not of the form $w^{\prime} 0 f^{f\left(w^{\prime}\right)}$, then it is not in L, we reject (by fact 1 , this can be checked in \mathbf{P}). Otherwise $w \in \operatorname{SAT} \Leftrightarrow w^{\prime} \in$ SAT

Ladner's theorem (*)

M_{i} works in time $O\left(n^{i}\right)$, every lang. in \mathbf{P} is recognized by some M_{i}
$L=\{w 01 f(|w|): w \in$ SAT $\}$ for an appropriate f.
Fact 3: if SAT $\notin \mathbf{P}$ then L is not $\mathbf{N P}$-hard

- Suppose that SAT reduces to L through a function g computable in time n^{k}. We will show a polynomial algorithm for SAT.
- We know that there is n_{0} such that for $n \geq n_{0}$ it holds that $f(n)>n^{k}$
- For formulas w shorter than n_{0} the results can be hardcoded
- For $|w| \geq n_{0}$ we consider the word $g(w)$; it has length $\leq|w|^{k}$. If $g(w)$ is not of the form $w^{\prime} 0 f^{f\left(w^{\prime}\right)}$, then it is not in L, we reject (by fact 1 , this can be checked in \mathbf{P}). Otherwise $w \in$ SAT $\Leftrightarrow w^{\prime} \in$ SAT Moreover, either $\left|w^{\prime}\right|<n_{0}$, or we have that $|w|^{k} \geq|g(w)|>f\left(\left|w^{\prime}\right|\right)>\left|w^{\prime}\right|^{k}$, thus the new formula is shorter at least by 1.
- We repeat this in a loop; after a linear number of steps the input length decreases below n_{0}, and we obtain a result.

Ladner's theorem

We have thus proved:
Theorem (Ladner 1975)
If $\mathbf{P} \neq \mathbf{N P}$, then there is a problem, which is in NP\P, but is not NP-hard with respect to polynomial-time reductions (so even more with respect to logarithmic-space reductions).

CSP problems and the dichotomy theorem

The CSP problem

 Input: variables x_{1}, \ldots, x_{n}, domains D_{1}, \ldots, D_{n}, constraints C_{1}, \ldots, C_{m} of the form (t, R), where t is a tuple of k variables, and R is a k-ary relation Question: are there $x_{1} \in D_{1}, \ldots, x_{n} \in D_{n}$ satisfying C_{1}, \ldots, C_{m} ? (a constraint (t, R) is satisfied if the tuple of variables t belong to the relation R) Clearly CSP $\in \mathbf{N P}$
CSP problems and the dichotomy theorem

The CSP problem

 Input: variables x_{1}, \ldots, x_{n}, domains D_{1}, \ldots, D_{n}, constraints C_{1}, \ldots, C_{m} of the form (t, R), where t is a tuple of k variables, and R is a k-ary relation Question: are there $x_{1} \in D_{1}, \ldots, x_{n} \in D_{n}$ satisfying C_{1}, \ldots, C_{m} ? (a constraint (t, R) is satisfied if the tuple of variables t belong to the relation R)
Clearly CSP $\in \mathbf{N P}$

Most natural NP-complete problems can be easily reduced to CSP (written as CSP).
E.g. 3-coloring:

- x_{1}, \ldots, x_{n} - represent colors of nodes $1, \ldots, n$
- $D_{1}, \ldots, D_{n}=\{1,2,3\}$
- for every edge k, l we have a constraint $x_{k} \neq x_{l}$
(i.e., R is the binary relation $\{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\})$

CSP problems and the dichotomy theorem

The CSP problem

 Input: variables x_{1}, \ldots, x_{n}, domains D_{1}, \ldots, D_{n}, constraints C_{1}, \ldots, C_{m} of the form (t, R), where t is a tuple of k variables, and R is a k-ary relation Question: are there $x_{1} \in D_{1}, \ldots, x_{n} \in D_{n}$ satisfying C_{1}, \ldots, C_{m} ? (a constraint (t, R) is satisfied if the tuple of variables t belong to the relation R)
Clearly CSP $\in \mathbf{N P}$

Most natural NP-complete problems can be easily reduced to CSP (written as CSP).

Problem CSP (Γ) - like CSP, but only relations from a set Γ can be used
Theorem (2017): for every set Γ we either have $\operatorname{CSP}(\Gamma) \in \mathbf{P}$, or CSP(Г) is NP-complete

Berman's theorem

Is it the case that every problem not in NP is NP-hard? Intuitively, NP-hard means hardest in NP, or even harder (so problems harder than NP should be NP-hard).

Berman's theorem

Is it the case that every problem not in NP is NP-hard? Intuitively, NP-hard means hardest in NP, or even harder (so problems harder than NP should be NP-hard).
But the definition is: L is NP-hard if we can reduce every problem from NP to L.
So: can we reduce every problem from NP, to every (more difficult) problem not in NP?

Berman's theorem

Is it the case that every problem not in NP is NP-hard? Intuitively, NP-hard means hardest in NP, or even harder (so problems harder than NP should be NP-hard).
But the definition is: L is NP-hard if we can reduce every problem from NP to L.
So: can we reduce every problem from NP, to every (more difficult) problem not in NP?
The answer is no - we have the following theorem:
Theorem (Berman 1978)
If $\mathbf{P} \neq \mathbf{N P}$, then no language over a single-letter alphabet is NP-hard wrt. polynomial-time reductions (so even more wrt. logarithmic-space reductions)

Berman's theorem

Is it the case that every problem not in NP is NP-hard?
No - we have the following theorem:
Theorem (Berman 1978)
If $\mathbf{P} \neq \mathbf{N P}$, then no language over a single-letter alphabet is NP-hard. Notice that there is a language language over a single-letter alphabet that requires doubly-exponential running time (i.e., surely is not in NP): take any language L over $\{0,1\}$ requiring triple-exponential running time, and take $\left\{1^{|1 w|_{2}}: w \in L\right\}$, where $|1 w|_{2}$ is the number encoded in binary as 1 w .
There is also an undecidable language over a single-letter alphabet: $\left\{1^{k}: M_{k}\right.$ halts on empty input $\}$
These languages are not NP-hard, and not in NP (assuming $\mathbf{P} \neq \mathbf{N P}$).

Berman's theorem (*)

Theorem (Berman 1978)
If $\mathbf{P} \neq \mathbf{N P}$, then no language over a single-letter alphabet is NP-hard.
Proof
Let L be an NP-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting $\mathbf{P} \neq \mathbf{N P}$.

Berman's theorem (*)

Theorem (Berman 1978)
If $\mathbf{P} \neq \mathbf{N P}$, then no language over a single-letter alphabet is NP-hard. Proof
Let L be an NP-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting $\mathbf{P} \neq \mathbf{N P}$. By assumption there is a reduction g from SAT to L.
The algorithm is as follows:

- We are given a formula ϕ
- We will keep a list of formulas $\psi_{1}, \ldots, \psi_{k}$ such that: ϕ is satisfiable iff some of $\psi_{1}, \ldots, \psi_{k}$ is satisfiable. Initially the list contains ϕ.

Berman's theorem (*)

Theorem (Berman 1978)
If $\mathbf{P} \neq \mathbf{N P}$, then no language over a single-letter alphabet is NP-hard. Proof
Let L be an NP-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting $\mathbf{P} \neq \mathbf{N P}$.
By assumption there is a reduction g from SAT to L.
The algorithm is as follows:

- We are given a formula ϕ
- We will keep a list of formulas $\psi_{1}, \ldots, \psi_{k}$ such that: ϕ is satisfiable iff some of $\psi_{1}, \ldots, \psi_{k}$ is satisfiable. Initially the list contains ϕ.
- We alternatingly repeat two kinds of steps:

1) Replace every ψ_{i} by two formulas: $\psi_{i}[$ true $/ x]$ and $\psi_{i}[f a l s e / x]$, obtained by substituting true/false for one of variables. (clearly ψ_{i} is satisfiable iff some of $\psi_{i}\left[\right.$ true/x], $\psi_{i}[$ false/x] is satisfiable)

Berman's theorem (*)

Theorem (Berman 1978)
If $\mathbf{P} \neq \mathbf{N P}$, then no language over a single-letter alphabet is NP-hard. Proof
Let L be an NP-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting $\mathbf{P} \neq \mathbf{N P}$.
By assumption there is a reduction g from SAT to L.
The algorithm is as follows:

- We are given a formula ϕ
- We will keep a list of formulas $\psi_{1}, \ldots, \psi_{k}$ such that: ϕ is satisfiable iff some of $\psi_{1}, \ldots, \psi_{k}$ is satisfiable. Initially the list contains ϕ.
- We alternatingly repeat two kinds of steps:

1) Replace every ψ_{i} by two formulas: $\psi_{i}[$ true $/ x]$ and $\psi_{i}[f a l s e / x]$, obtained by substituting true/false for one of variables. (clearly ψ_{i} is satisfiable iff some of $\psi_{i}[$ true $/ x], \psi_{i}[f a l s e / x]$ is satisfiable)
2) For every pair ψ_{i}, ψ_{j} such that $g\left(\psi_{i}\right)=g\left(\psi_{j}\right)$, remove ψ_{i} from the list, leave only ψ_{j} (notice that ψ_{i} is satisfiable iff some of ψ_{j} is satisfiable)

Berman's theorem (*)

We alternatingly repeat two kinds of steps:

1) Replace every ψ_{i} by two formulas: $\psi_{i}[$ true $/ x]$ and $\psi_{i}[$ false $/ x]$, obtained by substituting true/false for one of variables. (clearly ψ_{i} is satisfiable iff some of $\psi_{i}[$ true $/ x], \psi_{i}[$ false/x] is satisfiable)
2) For every pair ψ_{i}, ψ_{j} such that $g\left(\psi_{i}\right)=g\left(\psi_{j}\right)$, remove ψ_{i} from the list, leave only ψ_{j} (notice that ψ_{i} is satisfiable iff some of ψ_{j} is satisfiable)
The algorithm is correct. Why does it work in polynomial time?

- Recall that g is a polynomial-time reduction to a single-letter language. Thus $\left|g\left(\psi_{i}\right)\right|<p\left(\left|\psi_{i}\right|\right)$ for some polynomial p. Since there is only one single-letter word of every length, there are only $p\left(\left|\psi_{i}\right|\right) \leq p(|\phi|)$ possibilities for $g\left(\psi_{i}\right)$.
- In effect, the list has length $\leq p(|\phi|)$ after every execution of step 2, and $\leq 2 \cdot p(|\phi|)$ after every execution of step 1.
- Moreover, every step can be performed in polynomial time.

This finishes the proof.

Relativisation

Many proofs in the complexity theory uses Turing machines as "black-boxes" - the proofs are of the form:

- assume that there is a machine M working in time ... recognizing ...
- Out of it, we create M^{\prime}, which executes M many times in a loop...
- ... then it negates the results, executes itself on every machine ...
- at the end we obtain a machine $M^{\prime \prime \prime "}{ }^{\prime \prime}$, about which we know that it cannot exist, thus M could not exist.
Such proofs relativize, i.e., they work also when every machine in the world has access to some fixed oracle (that is, it can ask whether a word belongs to a language L, and immediately obtain an answer)

Relativisation

Many proofs in the complexity theory uses Turing machines as "black-boxes" - the proofs are of the form:

- assume that there is a machine M working in time ... recognizing ... - Out of it, we create M^{\prime}, which executes M many times in a loop... - ...

Such proofs relativize, i.e., they work also when every machine in the world has access to some fixed oracle.
Examples of relativizing proofs: Turing theorem about undecidability, hierarchy theorems, gap theorems, Ladner's theorem, Immerman-Szelepcseny theorem, Savitch theorem, ...
On the other hand, proofs based on circuits do not relativize (it is not at all clear what is an oracle for a circuit)
The next theorem shows that using relativizing arguments we cannot solve the \mathbf{P} vs. NP problem.

Baker-Gill-Solovay theorem

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that $\mathbf{P}^{A}=\mathbf{N P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N P}^{B}$

Baker-Gill-Solovay theorem

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that $\mathbf{P}^{A}=\mathbf{N} \mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N} \mathbf{P}^{B}$ Proof
As A we can take QBF - we have:
NPQBF \subseteq NPSPACE=PSPACE=PQBF
Steps from the left:

- instead of asking the QBF oracle about a word, a machine can itself compute the answer (questions are of polynomial length, and QBF can be solved in polynomial space)
- Savitch theorem
- PSPACE-completeness of the QBF problem

Baker-Gill-Solovay theorem

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that $\mathbf{P}^{A}=\mathbf{N} \mathbf{P}^{A}$ and $\mathbf{P}^{B \neq \mathbf{N}} \mathbf{P}^{B}$ Proof
As A we can take QBF - we have:
NPQBF \subseteq NPSPACE=PSPACE=PQBF
Steps from the left:

- instead of asking the QBF oracle about a word, a machine can itself compute the answer (questions are of polynomial length, and QBF can be solved in polynomial space)
- Savitch theorem
- PSPACE-completeness of the QBF problem

Does $A=$ SAT work as well? - NPSAT \subseteq NP \subseteq PSAT

Baker-Gill-Solovay theorem

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that $\mathbf{P}^{A}=\mathbf{N} \mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N} \mathbf{P}^{B}$ Proof
As A we can take QBF - we have:
NPQBF \subseteq NPSPACE=PSPACE=PQBF
Steps from the left:

- instead of asking the QBF oracle about a word, a machine can itself compute the answer (questions are of polynomial length, and QBF can be solved in polynomial space)
- Savitch theorem
- PSPACE-completeness of the QBF problem

Does $A=$ SAT work as well? - NPSAT \subseteq NP $\subseteq P S A T$
NO - an NP algorithm for SAT doesn't give the inclusion NPSAT \subseteq NP (maybe the external algorithm „prefers" to obtain that a formula is not satisfiable, and it will incorrectly compute its satisfiability) It is important that QBF can be solved in deterministic PSPACE

Baker-Gill-Solovay theorem (*)

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that $\mathbf{P}^{A}=\mathbf{N P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N P}^{B}$ Proof
We now construct an oracle B, and we consider the language $L=\left\{1^{n}\right.$: some word w of length n belongs to $\left.B\right\}$

- Clearly $L \in \mathbf{N P}^{B}$ - nondeterministic machine can guess some $w \in B$
- A deterministic machine recognizing L has a problem: it can only ask the oracle for consecutive words, but it has not enough time to check all of them. We only need to choose B so that indeed it is impossible to do anything better.

Baker-Gill-Solovay theorem (*)

Theorem (Baker-Gill-Solovay, 1975)

There exist languages A and B such that $\mathbf{P}^{A}=\mathbf{N} \mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N} \mathbf{P}^{B}$ Proof
$L=\left\{1^{n}\right.$: some word w of length n belongs to $\left.B\right\}$
We now choose B :

- Fix a list $M_{1}, M_{2}, M_{3}, \ldots$ of all Turing machines with oracle working in polynomial time
\rightarrow an oracle is not a part of the definition of the machine,
\rightarrow for every M_{i} there should exist a polynomial p_{i} such that for every oracle the machine M_{i} works in time $p_{i}(n)$
\rightarrow if some M with oracle C recognizes a language L in polynomial time, then some M_{i} with oracle C also recognizes L
\rightarrow such a list $M_{1}, M_{2}, M_{3}, \ldots$ is created as in the proof of Ladner's theo.
\rightarrow this time, we do not use the fact that the list is computable (conversely to the proof of the Ladner's theorem)
- We construct B gradually, cheating consecutive machines

Baker-Gill-Solovay theorem (*)

$L=\left\{1^{n}\right.$: some word w of length n belongs to $\left.B\right\}$
We create $B=\bigcup_{i \in \mathbb{N}} B_{i}$ and a sequence n_{i} such that:

- $M_{i}^{B_{i}}$ incorrectly recognizes the word $1^{n_{i}}$
- M_{i}^{B} agrees with $M_{i}^{B_{i}}$ on the word $1^{n_{i}}$

We start with $B_{0}=\varnothing$; then for consecutive i :

- we take n_{i} so large that for all $j<i$, machine M_{j} for on the word $1^{n_{j}}$ produces only queries shorter than n_{i} (thanks to this the machines that were cheated earlier remain cheated), and such that M_{i} on the word $1^{n_{i}}$ works in less than $2^{n_{i}}$ steps

Baker-Gill-Solovay theorem (*)

$L=\left\{1^{n}\right.$: some word w of length n belongs to $\left.B\right\}$
We create $B=\cup_{i \in \mathbb{N}} B_{i}$ and a sequence n_{i} such that:

- $M_{i}^{B_{i}}$ incorrectly recognizes the word $1^{n_{i}}$
- M_{i}^{B} agrees with $M_{i}^{B_{i}}$ on the word $1^{n_{i}}$

We start with $B_{0}=\varnothing$; then for consecutive i :

- we take n_{i} so large that for all $j<i$, machine M_{j} for on the word $1^{n_{j}}$ produces only queries shorter than n_{i} (thanks to this the machines that were cheated earlier remain cheated), and such that M_{i} on the word $1^{n_{i}}$ works in less than $2^{n_{i}}$ steps
- run $M_{i}^{B_{i-1}}$ on the word $1^{n_{i}}$
- if it accepts, take $B_{i}=B_{i-1}$ - then $1^{n_{i}} \notin L$, we have cheated M_{i}
- if it rejects, find a word w of length n_{i} about which M_{i} haven't asked (it exists, since M_{i} has made $<2^{n_{i}}$ step) and define $B_{i}=B_{i-1} \cup\{w\}$ Then $1^{n_{i}} \in L$, and we have cheated M_{i}

Baker-Gill-Solovay theorem (*)

$L=\left\{1^{n}\right.$: some word w of length n belongs to $\left.B\right\}$
We create $B=\cup_{i \in \mathbb{N}} B_{i}$ and a sequence n_{i} such that:

- $M_{i}^{B_{i}}$ incorrectly recognizes the word $1^{n_{i}}$
- M_{i}^{B} agrees with $M_{i}^{B_{i}}$ on the word $1^{n_{i}}$

The language B is computable, but in this theorem this is meaningless

We start with $B_{0}=\varnothing$; then for consecutive i :

- we take n_{i} so large that for all $j<i$, machine M_{j} for on the word $1^{n_{j}}$ produces only queries shorter than n_{i} (thanks to this the machines that were cheated earlier remain cheated), and such that M_{i} on the word $1^{n_{i}}$ works in less than $2^{n_{i}}$ steps
- run $M_{i}^{B_{i-1}}$ on the word $1^{n_{i}}$
- if it accepts, take $B_{i}=B_{i-1}$ - then $1^{n_{i}} \notin L$, we have cheated M_{i}
- if it rejects, find a word w of length n_{i} about which M_{i} haven't asked (it exists, since M_{i} has made $<2^{n_{i}}$ step) and define $B_{i}=B_{i-1} \cup\{w\}$ Then $1^{n_{i}} \in L$, and we have cheated M_{i}

Search problems

The NP class was defined for decision problems („yes/no"), e.g., does there exist a valuation satisfying a formula, does there exist a Hamiltonian cycle, ...
We can also consider search problems, e.g., find a valuation satisfying a formula, find a Hamiltonian cycle, ...

- Of course search problems are not easier than decision problems. Thus if $\mathbf{P} \neq \mathbf{N P}$, then search problems cannot be solved in polynomial time as well.
- And what if $\mathbf{P}=\mathbf{N P}$? Maybe it is possible to decide quickly whether there is a Hamiltonian cycle, but it is impossible to quickly find it?

Search problems

The NP class was defined for decision problems („yes/no"), e.g., does there exist a valuation satisfying a formula, does there exist a Hamiltonian cycle, ...
We can also consider search problems, e.g., find a valuation satisfying a formula, find a Hamiltonian cycle, ...

- Of course search problems are not easier than decision problems. Thus if $\mathbf{P} \neq \mathbf{N P}$, then search problems cannot be solved in polynomial time as well.
- And what if $\mathbf{P}=\mathbf{N P}$? Maybe it is possible to decide quickly whether there is a Hamiltonian cycle, but it is impossible to quickly find it?
- Then it possible to solve also search problems in polynomial time.

Search problems

Theorem

If $\mathbf{P}=\mathbf{N P}$, then for every language $L \in \mathbf{N P}$ there is a polynomial algorithm that reads $v \in L$ and finds a witness for v.

We refer here to the definition of NP using witnesses:
NP contains languages of the form $\{v: \exists w . v \$ w \in R\}$, where R is a relation recognizable in polynomial time and such that $v \$ w \in R$ implies $|w| \leq p(|v|)$ for some polynomial p.

Search problems

Theorem

If $\mathbf{P}=\mathbf{N P}$, then for every language $L \in \mathbf{N P}$ there is a polynomial algorithm that reads $v \in L$ and finds a witness for v.

We refer here to the definition of NP using witnesses:
NP contains languages of the form $\{v: \exists w . v \$ w \in R\}$, where R is a relation recognizable in polynomial time and such that $v \$ w \in R$ implies $|w| \leq p(|v|)$ for some polynomial p.
Proof
Consider first the SAT problem - we assume that there is a poly-nomial-time algorithm A for SAT, we want to find a valuation:

- Using A we check whether the formula is satisfiable
- If yes, we set $x_{1}=1$ and we check whether it is still satisfiable
- Yes \Rightarrow keep $x_{1}=1$ and continue for a smaller formula
- No \Rightarrow set $x_{1}=0$ and continue for a smaller formula
- In this way we eliminate consecutive variables, and we obtain a whole valuation

Search problems

Theorem

If $\mathbf{P}=\mathbf{N P}$, then for every language $L \in \mathbf{N P}$ there is a polynomial algorithm that reads $v \in L$ and finds a witness for v.

We refer here to the definition of NP using witnesses:
NP contains languages of the form $\{v: \exists w . v \$ w \in R\}$, where R is a relation recognizable in polynomial time and such that $v \$ w \in R$ implies $|w| \leq p(|v|)$ for some polynomial p.
Proof

- For SAT we already know, consider now an arbitrary problem from NP
- It is enough to see that the reduction from the Cook-Levin theorem (NP-hardness of SAT) is actually a Levin reduction (i.e., it allows to recover witnesses)

