
  

Computational complexity

lecture 8



  

Theorem (Ladner, 1975) – existence of NP-intermediate problems:
If P≠NP, then there is a problem, which is in NP\P, but is not  
NP-hard with respect to polynomial-time reductions (so even more 
with respect to logarithmic-space reductions).

Ladner's theorem



  

Theorem (Ladner, 1975) – existence of NP-intermediate problems:
If P≠NP, then there is a problem, which is in NP\P, but is not  
NP-hard with respect to polynomial-time reductions (so even more 
with respect to logarithmic-space reductions).
Proof:
Supposing that SAT∉P we will give a language L∈NP such that:
● L is not in P, and 
● SAT does not reduce to L in polynomial time

Ladner's theorem



  

Theorem (Ladner, 1975) – existence of NP-intermediate problems:
If P≠NP, then there is a problem, which is in NP\P, but is not  
NP-hard with respect to polynomial-time reductions (so even more 
with respect to logarithmic-space reductions).
Proof:
Supposing that SAT∉P we will give a language L∈NP such that:
● L is not in P, and 
● SAT does not reduce to L in polynomial time
We create L as a variant of SAT with an appropriate amount of 
padding. In general, with padding we can change a problem into
a simpler one. We want to add enough padding so that the SAT 
problem stops to be NP-complete, but not too much, so that still
it is not in P.
The definition will be:

L={w01f(|w|) : w∈SAT}
for an appropriate function f

Ladner's theorem



  

L={w01f(|w|) : w∈SAT} for an appropriate function f. 
We now define f
● Fix a computable enumeration M1,M2,M3,... of Turing machines,

such that Mi works in time O(ni), and every language in P is 
recognized by some Mi 

● To this end, we take a list M'1,M'2,M'3,... on which every Turing
machine appears infinitely often. To M'i we add a counter, which
stops the machine after ni steps – this results in Mi 

Ladner's theorem (*)



  

L={w01f(|w|) : w∈SAT} for an appropriate function f. 
We now define f
● Fix a computable enumeration M1,M2,M3,... of Turing machines,

such that Mi works in time O(ni), and every language in P is 
recognized by some Mi 

The function f is defined by the following algorithm:
(a) take i=1, n=1
(b) put f(n)=ni

(c) if there is a word v of length ≤log(n) such that Mi incorrectly 
   recognizes whether v belongs to L, then increase i by 1

(d) increase n by 1, go back to (b)

Ladner's theorem (*)



  

Mi works in time O(ni), every lang. in P is recognized by some Mi 

L={w01f(|w|) : w∈SAT} for f defined by:
(a) take i=1, n=1
(b) put f(n)=ni

(c) if there is a word v of length ≤log(n) such that Mi incorrectly 
   recognizes whether v belongs to L, then increase i by 1

(d) increase n by 1, go back to (b)
Fact 1: It can be checked in polynomial time whether a word is of
the proper form (i.e., if the number of ones is appropriate).
● In order to compute f(n) we repeat the loop n times, in every repe-

tition we check polynomially many words v (of logarithmic length)
● On every word v we run Mi, which works in time O(login)
● We can spend this time, as the input should have length ≥f(n)≥ni 

(we interrupt the loop as soon as there are not enough ones)
● Remark: i is not a constant (time O(login) by itself is not polynomial)
● Remark 2: the simulation time depends on |Mi|, but |Mi|=|i|=log(i)≤log(n), 

so this is OK

Ladner's theorem (*)



  

Mi works in time O(ni), every lang. in P is recognized by some Mi 

L={w01f(|w|) : w∈SAT} for f defined by:
(a) take i=1, n=1
(b) put f(n)=ni

(c) if there is a word v of length ≤log(n) such that Mi incorrectly 
   recognizes whether v belongs to L, then increase i by 1

(d) increase n by 1, go back to (b)
Fact 1: It can be checked in polynomial time whether a word is of
the proper form (i.e., if the number of ones is appropriate).
● In order to compute f(n) we repeat the loop n times, in every repe-

tition we check polynomially many words v (of logarithmic length)
● On every word v we run Mi, which works in time O(login)
● We can spend this time, as the input should have length ≥f(n)≥ni 

(we interrupt the loop as soon as there are not enough ones)
● We also need to check whether vL (where |v|≤log n)

➔ we check the number of ones in v by the induction assumption 
➔ we check whether prefixSAT in time exponential in log(n)

Ladner's theorem (*)



  

Mi works in time O(ni), every lang. in P is recognized by some Mi 

L={w01f(|w|) : w∈SAT} for f defined by:
(a) take i=1, n=1
(b) put f(n)=ni

(c) if there is a word v of length ≤log(n) such that Mi incorrectly 
   recognizes whether v belongs to L, then increase i by 1

(d) increase n by 1, go back to (b)
Fact 1: It can be checked in polynomial time whether a word is of
the proper form (i.e., if the number of ones is appropriate).
Corollary: L∈NP

Ladner's theorem (*)



  

Mi works in time O(ni), every lang. in P is recognized by some Mi 

L={w01f(|w|) : w∈SAT} for f defined by:
(a) take i=1, n=1
(b) put f(n)=ni

(c) if there is a word v of length ≤log(n) such that Mi incorrectly 
   recognizes whether v belongs to L, then increase i by 1

(d) increase n by 1, go back to (b)
Fact 2: if SATP then LP
● If LP, then some Mi recognizes L, so from some moment on

(i.e. for n≥n0 for some n0) we have that f(n)=ni

● Then it is easy to solve SAT in P (a contradiction):
➔ if |w|≥n0 we append |w|i ones at the end, and we start Mi 
➔ for w shorter than n0 the results can be hardcoded

Ladner's theorem (*)



  

Mi works in time O(ni), every lang. in P is recognized by some Mi 

L={w01f(|w|) : w∈SAT} for f defined by:
(a) take i=1, n=1
(b) put f(n)=ni

(c) if there is a word v of length ≤log(n) such that Mi incorrectly 
   recognizes whether v belongs to L, then increase i by 1

(d) increase n by 1, go back to (b)
Fact 2: if SATP then LP
● If LP, then some Mi recognizes L, so from some moment on

(i.e. for n≥n0 for some n0) we have that f(n)=ni

● Then it is easy to solve SAT in P (a contradiction):
➔ if |w|≥n0 we append |w|i ones at the end, and we start Mi 
➔ for w shorter than n0 the results can be hardcoded

Corollary: Because LP, the function f grows faster than every
polynomial

Ladner's theorem (*)



  

Mi works in time O(ni), every lang. in P is recognized by some Mi 

L={w01f(|w|) : w∈SAT} for an appropriate f. 
Fact 3: if SATP then L is not NP-hard
● Suppose that SAT reduces to L through a function g computable

in time nk. We will show a polynomial algorithm for SAT.

Ladner's theorem (*)



  

Mi works in time O(ni), every lang. in P is recognized by some Mi 

L={w01f(|w|) : w∈SAT} for an appropriate f. 
Fact 3: if SATP then L is not NP-hard
● Suppose that SAT reduces to L through a function g computable

in time nk. We will show a polynomial algorithm for SAT.
● We know that there is n0 such that for n≥n0 it holds that f(n)>nk

● For formulas w shorter than n0 the results can be hardcoded

Ladner's theorem (*)



  

Mi works in time O(ni), every lang. in P is recognized by some Mi 

L={w01f(|w|) : w∈SAT} for an appropriate f. 
Fact 3: if SATP then L is not NP-hard
● Suppose that SAT reduces to L through a function g computable

in time nk. We will show a polynomial algorithm for SAT.
● We know that there is n0 such that for n≥n0 it holds that f(n)>nk

● For formulas w shorter than n0 the results can be hardcoded
● For |w|≥n0 we consider the word g(w); it has length ≤|w|k.

If g(w) is not of the form w'01f(|w'|), then it is not in L, we reject 
(by fact 1, this can be checked in P). Otherwise w∈SAT ⇔ w'∈SAT    

Ladner's theorem (*)



  

Mi works in time O(ni), every lang. in P is recognized by some Mi 

L={w01f(|w|) : w∈SAT} for an appropriate f. 
Fact 3: if SATP then L is not NP-hard
● Suppose that SAT reduces to L through a function g computable

in time nk. We will show a polynomial algorithm for SAT.
● We know that there is n0 such that for n≥n0 it holds that f(n)>nk

● For formulas w shorter than n0 the results can be hardcoded
● For |w|≥n0 we consider the word g(w); it has length ≤|w|k.

If g(w) is not of the form w'01f(|w'|), then it is not in L, we reject 
(by fact 1, this can be checked in P). Otherwise w∈SAT ⇔ w'∈SAT    

Moreover, either |w'|<n0, or we have that |w|k≥|g(w)|>f(|w'|)>|w'|k, 
thus the new formula is shorter at least by 1.

● We repeat this in a loop; after a linear number of steps the input
length decreases below n0, and we obtain a result.

Ladner's theorem (*)



  

We have thus proved:
Theorem (Ladner 1975)
If P≠NP, then there is a problem, which is in NP\P, but is not  
NP-hard with respect to polynomial-time reductions (so even more 
with respect to logarithmic-space reductions).

Ladner's theorem



  

The CSP problem
Input: variables x1,...,xn, domains D1,...,Dn, constraints C1,...,Cm of the 
form (t,R), where t is a tuple of k variables, and R is a k-ary relation
Question: are there x1∈D1,...,xn∈Dn satisfying C1,...,Cm?
(a constraint (t,R) is satisfied if the tuple of variables t belong to the relation R)

Clearly CSP∈NP

CSP problems and the dichotomy theorem



  

The CSP problem
Input: variables x1,...,xn, domains D1,...,Dn, constraints C1,...,Cm of the 
form (t,R), where t is a tuple of k variables, and R is a k-ary relation
Question: are there x1∈D1,...,xn∈Dn satisfying C1,...,Cm?
(a constraint (t,R) is satisfied if the tuple of variables t belong to the relation R)

Clearly CSP∈NP

Most natural NP-complete problems can be easily reduced to CSP
(written as CSP).

E.g. 3-coloring: 
● x1,...,xn – represent colors of nodes 1,...,n
● D1,...,Dn={1,2,3}
● for every edge k,l we have a constraint xk≠xl

(i.e., R is the binary relation {(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)})

CSP problems and the dichotomy theorem



  

The CSP problem
Input: variables x1,...,xn, domains D1,...,Dn, constraints C1,...,Cm of the 
form (t,R), where t is a tuple of k variables, and R is a k-ary relation
Question: are there x1∈D1,...,xn∈Dn satisfying C1,...,Cm?
(a constraint (t,R) is satisfied if the tuple of variables t belong to the relation R)

Clearly CSP∈NP

Most natural NP-complete problems can be easily reduced to CSP
(written as CSP).

Problem CSP(G) – like CSP, but only relations from a set G can be 
used
Theorem (2017): for every set G we either have CSP(G)∈P, 
or CSP(G) is NP-complete

CSP problems and the dichotomy theorem



  

Is it the case that every problem not in NP is NP-hard?

Intuitively, NP-hard means hardest in NP, or even harder 
(so problems harder than NP should be NP-hard).

Berman's theorem



  

Is it the case that every problem not in NP is NP-hard?

Intuitively, NP-hard means hardest in NP, or even harder 
(so problems harder than NP should be NP-hard).

But the definition is: L is NP-hard if we can reduce every problem
from NP to L. 
So: can we reduce every problem from NP, to every (more difficult)
problem not in NP?

Berman's theorem



  

Is it the case that every problem not in NP is NP-hard?

Intuitively, NP-hard means hardest in NP, or even harder 
(so problems harder than NP should be NP-hard).

But the definition is: L is NP-hard if we can reduce every problem
from NP to L. 
So: can we reduce every problem from NP, to every (more difficult)
problem not in NP?

The answer is no – we have the following theorem:

Theorem (Berman 1978)
If P≠NP, then no language over a single-letter alphabet is NP-hard
wrt. polynomial-time reductions (so even more wrt. logarithmic-space reductions).

Berman's theorem



  

Is it the case that every problem not in NP is NP-hard?

No – we have the following theorem:

Theorem (Berman 1978)
If P≠NP, then no language over a single-letter alphabet is NP-hard.

Notice that there is a language language over a single-letter alpha-
bet that requires doubly-exponential running time (i.e., surely is not
in NP): take any language L over {0,1} requiring triple-exponential 
running time, and take {1|1w|2 : w∈L}, where |1w|2 is the number

encoded in binary as 1w.

There is also an undecidable language over a single-letter alpha-
bet: {1k : Mk halts on empty input}

These languages are not NP-hard, and not in NP (assuming P≠NP).

Berman's theorem



  

Theorem (Berman 1978)
If P≠NP, then no language over a single-letter alphabet is NP-hard.

Proof
Let L be an NP-hard language over a single-letter alphabet. We will 
give a polynomial-time algorithm for SAT, contradicting P≠NP.

Berman's theorem (*)



  

Theorem (Berman 1978)
If P≠NP, then no language over a single-letter alphabet is NP-hard.

Proof
Let L be an NP-hard language over a single-letter alphabet. We will 
give a polynomial-time algorithm for SAT, contradicting P≠NP.
By assumption there is a reduction g from SAT to L.

The algorithm is as follows:
● We are given a formula f
● We will keep a list of formulas y1,...,yk such that: f is satisfiable iff

some of y1,...,yk is satisfiable. Initially the list contains f.

Berman's theorem (*)



  

Theorem (Berman 1978)
If P≠NP, then no language over a single-letter alphabet is NP-hard.

Proof
Let L be an NP-hard language over a single-letter alphabet. We will 
give a polynomial-time algorithm for SAT, contradicting P≠NP.
By assumption there is a reduction g from SAT to L.

The algorithm is as follows:
● We are given a formula f
● We will keep a list of formulas y1,...,yk such that: f is satisfiable iff

some of y1,...,yk is satisfiable. Initially the list contains f.
● We alternatingly repeat two kinds of steps:
1) Replace every yi by two formulas: yi[true/x] and yi[false/x],

  obtained by substituting true/false for one of variables.
  (clearly yi is satisfiable iff some of yi[true/x], yi[false/x] is satisfiable)

Berman's theorem (*)



  

Theorem (Berman 1978)
If P≠NP, then no language over a single-letter alphabet is NP-hard.

Proof
Let L be an NP-hard language over a single-letter alphabet. We will 
give a polynomial-time algorithm for SAT, contradicting P≠NP.
By assumption there is a reduction g from SAT to L.

The algorithm is as follows:
● We are given a formula f
● We will keep a list of formulas y1,...,yk such that: f is satisfiable iff

some of y1,...,yk is satisfiable. Initially the list contains f.
● We alternatingly repeat two kinds of steps:
1) Replace every yi by two formulas: yi[true/x] and yi[false/x],

  obtained by substituting true/false for one of variables.
  (clearly yi is satisfiable iff some of yi[true/x], yi[false/x] is satisfiable)

2) For every pair yi,yj such that g(yi)=g(yj), remove yi from the list,

  leave only yj (notice that yi is satisfiable iff some of yj is satisfiable) 

Berman's theorem (*)



  

We alternatingly repeat two kinds of steps:
1) Replace every yi by two formulas: yi[true/x] and yi[false/x],

  obtained by substituting true/false for one of variables.
  (clearly yi is satisfiable iff some of yi[true/x], yi[false/x] is satisfiable)

2) For every pair yi,yj such that g(yi)=g(yj), remove yi from the list,

  leave only yj (notice that yi is satisfiable iff some of yj is satisfiable) 

The algorithm is correct. Why does it work in polynomial time?
● Recall that g is a polynomial-time reduction to a single-letter 

language. Thus |g(yi)|<p(|yi|) for some polynomial p.

Since there is only one single-letter word of every length, there 
are only p(|yi|)≤p(|f|) possibilities for g(yi).

● In effect, the list has length ≤p(|f|) after every execution of step 2,
and ≤2.p(|f|) after every execution of step 1.

● Moreover, every step can be performed in polynomial time.

This finishes the proof.

Berman's theorem (*)



  

Many proofs in the complexity theory uses Turing machines as 
“black-boxes” – the proofs are of the form:
● assume that there is a machine M working in time ... recognizing ...
● Out of it, we create M', which executes M many times in a loop...
● ... then it negates the results, executes itself on every machine ...
● at the end we obtain a machine M'''''', about which we know that

it cannot exist, thus M could not exist.

Such proofs relativize, i.e., they work also when every machine 
in the world has access to some fixed oracle (that is, it can ask
whether a word belongs to a language L, and immediately obtain
an answer)

Relativisation



  

Many proofs in the complexity theory uses Turing machines as 
“black-boxes” – the proofs are of the form:
● assume that there is a machine M working in time ... recognizing ...
● Out of it, we create M', which executes M many times in a loop...
● ... 

Such proofs relativize, i.e., they work also when every machine 
in the world has access to some fixed oracle.

Examples of relativizing proofs: Turing theorem about undecidability,
hierarchy theorems, gap theorems, Ladner's theorem, 
Immerman-Szelepcseny theorem, Savitch theorem, ...

On the other hand, proofs based on circuits do not relativize 
(it is not at all clear what is an oracle for a circuit)

The next theorem shows that using relativizing arguments we 
cannot solve the P vs. NP problem.

Relativisation



  

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that PA=NPA and PB≠NPB

Baker-Gill-Solovay theorem



  

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that PA=NPA and PB≠NPB

Proof
As A we can take QBF – we have:

NPQBF⊆NPSPACE=PSPACE=PQBF

Steps from the left:
● instead of asking the QBF oracle about a word, a machine can

itself compute the answer (questions are of polynomial length, 
and QBF can be solved in polynomial space)

● Savitch theorem
● PSPACE-completeness of the QBF problem

Baker-Gill-Solovay theorem



  

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that PA=NPA and PB≠NPB

Proof
As A we can take QBF – we have:

NPQBF⊆NPSPACE=PSPACE=PQBF

Steps from the left:
● instead of asking the QBF oracle about a word, a machine can

itself compute the answer (questions are of polynomial length, 
and QBF can be solved in polynomial space)

● Savitch theorem
● PSPACE-completeness of the QBF problem

Does A=SAT work as well? – NPSAT⊆NP⊆PSAT

Baker-Gill-Solovay theorem



  

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that PA=NPA and PB≠NPB

Proof
As A we can take QBF – we have:

NPQBF⊆NPSPACE=PSPACE=PQBF

Steps from the left:
● instead of asking the QBF oracle about a word, a machine can

itself compute the answer (questions are of polynomial length, 
and QBF can be solved in polynomial space)

● Savitch theorem
● PSPACE-completeness of the QBF problem

Does A=SAT work as well? – NPSAT⊆NP⊆PSAT

NO – an NP algorithm for SAT doesn't give the inclusion NPSAT⊆NP
(maybe the external algorithm „prefers” to obtain that a formula is
not satisfiable, and it will incorrectly compute its satisfiability)
It is important that QBF can be solved in deterministic PSPACE

Baker-Gill-Solovay theorem



  

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that PA=NPA and PB≠NPB

Proof
We now construct an oracle B, and we consider the language

L={1n : some word w of length n belongs to B}
● Clearly L∈NPB – nondeterministic machine can guess some w∈B
● A deterministic machine recognizing L has a problem: it can only

ask the oracle for consecutive words, but it has not enough time
to check all of them. We only need to choose B so that indeed
it is impossible to do anything better.

Baker-Gill-Solovay theorem (*)



  

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that PA=NPA and PB≠NPB

Proof
L={1n : some word w of length n belongs to B}

We now choose B:
● Fix a list M1,M2,M3,... of all Turing machines with oracle working

in polynomial time
➔ an oracle is not a part of the definition of the machine, 
➔ for every Mi there should exist a polynomial pi such that for every

oracle the machine Mi works in time pi(n)
➔ if some M with oracle C recognizes a language L in polynomial

time, then some Mi with oracle C also recognizes L
➔ such a list M1,M2,M3,... is created as in the proof of Ladner's theo.
➔ this time, we do not use the fact that the list is computable 

(conversely to the proof of the Ladner's theorem)
● We construct B gradually, cheating consecutive machines 

Baker-Gill-Solovay theorem (*)



  

L={1n : some word w of length n belongs to B}

We create B=∪iℕBi and a sequence ni such that:

● Mi
Bi incorrectly recognizes the word 1ni

● Mi
B agrees with Mi

Bi on the word 1ni

We start with B0=∅; then for consecutive i:

● we take ni so large that for all j<i, machine Mj for on the word 1nj 
produces only queries shorter than ni (thanks to this the machines
that were cheated earlier remain cheated), and such that Mi on

the word 1ni works in less than 2ni steps

Baker-Gill-Solovay theorem (*)



  

L={1n : some word w of length n belongs to B}

We create B=∪iℕBi and a sequence ni such that:

● Mi
Bi incorrectly recognizes the word 1ni

● Mi
B agrees with Mi

Bi on the word 1ni

We start with B0=∅; then for consecutive i:

● we take ni so large that for all j<i, machine Mj for on the word 1nj 
produces only queries shorter than ni (thanks to this the machines
that were cheated earlier remain cheated), and such that Mi on

the word 1ni works in less than 2ni steps
● run Mi

Bi-1 on the word 1ni

● if it accepts, take Bi=Bi-1 – then 1ni∉L, we have cheated Mi

● if it rejects, find a word w of length ni about which Mi haven't asked

(it exists, since Mi has made <2ni step) and define Bi=Bi-1∪{w}

Then 1ni∈L, and we have cheated Mi

Baker-Gill-Solovay theorem (*)



  

L={1n : some word w of length n belongs to B}

We create B=∪iℕBi and a sequence ni such that:

● Mi
Bi incorrectly recognizes the word 1ni

● Mi
B agrees with Mi

Bi on the word 1ni

We start with B0=∅; then for consecutive i:

● we take ni so large that for all j<i, machine Mj for on the word 1nj 
produces only queries shorter than ni (thanks to this the machines
that were cheated earlier remain cheated), and such that Mi on

the word 1ni works in less than 2ni steps
● run Mi

Bi-1 on the word 1ni

● if it accepts, take Bi=Bi-1 – then 1ni∉L, we have cheated Mi

● if it rejects, find a word w of length ni about which Mi haven't asked

(it exists, since Mi has made <2ni step) and define Bi=Bi-1∪{w}

Then 1ni∈L, and we have cheated Mi

The language B is computable, but
in this theorem this is meaningless

Baker-Gill-Solovay theorem (*)



  

The NP class was defined for decision problems („yes/no”),
e.g., does there exist a valuation satisfying a formula, 
        does there exist a Hamiltonian cycle, ...
We can also consider search problems,
e.g., find a valuation satisfying a formula, 
        find a Hamiltonian cycle, ...
● Of course search problems are not easier than decision problems.

Thus if P≠NP, then search problems cannot be solved in polyno-
mial time as well.

● And what if P=NP? Maybe it is possible to decide quickly whether
there is a Hamiltonian cycle, but it is impossible to quickly find it?

Search problems



  

The NP class was defined for decision problems („yes/no”),
e.g., does there exist a valuation satisfying a formula, 
        does there exist a Hamiltonian cycle, ...
We can also consider search problems,
e.g., find a valuation satisfying a formula, 
        find a Hamiltonian cycle, ...
● Of course search problems are not easier than decision problems.

Thus if P≠NP, then search problems cannot be solved in polyno-
mial time as well.

● And what if P=NP? Maybe it is possible to decide quickly whether
there is a Hamiltonian cycle, but it is impossible to quickly find it?

● Then it possible to solve also search problems in polynomial time.

Search problems



  

Theorem
If P=NP, then for every language LNP there is a polynomial
algorithm that reads vL and finds a witness for v.

We refer here to the definition of NP using witnesses:
NP contains languages of the form {v : ∃w. v$w∈R}, where R is a relation
recognizable in polynomial time and such that v$w∈R implies |w|≤p(|v|) for some
polynomial p.

Search problems



  

Theorem
If P=NP, then for every language LNP there is a polynomial
algorithm that reads vL and finds a witness for v.

We refer here to the definition of NP using witnesses:
NP contains languages of the form {v : ∃w. v$w∈R}, where R is a relation
recognizable in polynomial time and such that v$w∈R implies |w|≤p(|v|) for some
polynomial p.

Proof
Consider first the SAT problem – we assume that there is a poly-
nomial-time algorithm A for SAT, we want to find a valuation:
● Using A we check whether the formula is satisfiable
● If yes, we set x1=1 and we check whether it is still satisfiable
● Yes  keep ⇒ x1=1 and continue for a smaller formula
● No  set ⇒ x1=0 and continue for a smaller formula
● In this way we eliminate consecutive variables, and we obtain

a whole valuation

Search problems



  

Theorem
If P=NP, then for every language LNP there is a polynomial
algorithm that reads vL and finds a witness for v.

We refer here to the definition of NP using witnesses:
NP contains languages of the form {v : ∃w. v$w∈R}, where R is a relation
recognizable in polynomial time and such that v$w∈R implies |w|≤p(|v|) for some
polynomial p.

Proof
● For SAT we already know, consider now an arbitrary problem 

from NP
● It is enough to see that the reduction from the Cook-Levin 

theorem (NP-hardness of SAT) is actually a Levin reduction
(i.e., it allows to recover witnesses)

Search problems


	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44

