Computational complexity

lecture 7

Reductions

Idea:

- problem A reduces to problem B if while knowing how to solve B it is easy to solve A as well
- if B is easy, then A is easy as well
- if A is difficult, then B is difficult as well

There are multiple kinds of reductions...

Turing reductions / Cook reductions

\rightarrow A language L is Turing-reducible to K if there exist a machine with an oracle for K, which recognizes L
\rightarrow By limiting the resources of M, one can talk about polynomial-time Turing reductions (often called Cook reductions), logarithmic-space Turing reductions, etc.

Observe that every language $L \in \mathbf{N P}$ can be reduced to $\bar{L} \in \mathbf{c o N P}$: it is enough to call the oracle for \bar{L}, and negate the answer.
But we don't know whether NP is contained in coNP.
This is rather inconvenient: we prefer not to have reductions between independent classes.
Thus Cook reductions are not so popular.
We prefer Karp reductions (next slide), having better properties.

Karp reductions

 Idea: we can make only a single query to the language K, and we cannot negate the answer.
Karp reductions

Idea: we can make only a single query to the language K, and we cannot negate the answer.
A language $L \subseteq \Sigma^{*}$ is Karp-reducible to $K \subseteq \Gamma^{*}$ if there exists a function $f: \Sigma^{*} \rightarrow \Gamma^{*}$ computable in logarithmic space (sometimes: in polynomial time), such that $w \in L \Leftrightarrow f(w) \in K$ for every word $w \in \Sigma^{*}$.

Karp reductions

Idea: we can make only a single query to the language K, and we cannot negate the answer.
A language $L \subseteq \Sigma^{*}$ is Karp-reducible to $K \subseteq \Gamma^{*}$ if there exists a function $f: \Sigma^{*} \rightarrow \Gamma^{*}$ computable in logarithmic space (sometimes: in polynomial time), such that $w \in L \Leftrightarrow f(w) \in K$ for every word $w \in \Sigma^{*}$.

Fact: If L is Karp-reducible to K, then it is also Turing-reducible to K (with the same restrictions on resources)

Proof

- We have a machine computing f.
- We treat it as a machine with oracle for K, which at the very end asks a single question.

Levin reductions

- Turing reductions and Karp reductions are for decision problems (i.e., languages - does there exist ...)
- For problems in NP we often want to find a solution / a witness (e.g., a Hamiltonian cycle), not only decide that it exists.
- The idea of Levin reductions: additionally a witness for the first problem allows to recover a witness for the second problem.

Levin reductions

- Turing reductions and Karp reductions are for decision problems (i.e., languages - does there exist ...)
- For problems in NP we often want to find a solution / a witness (e.g., a Hamiltonian cycle), not only decide that it exists.
- The idea of Levin reductions: additionally a witness for the first problem allows to recover a witness for the second problem.

Definition:

- It is a reduction between relations $R_{1}, R_{2} \subseteq \Sigma^{*} \times \Sigma^{*}$
- R_{1} is Levin-reducible to R_{2} if there are functions $f: \Sigma^{*} \rightarrow \Sigma^{*}$,
$g, h: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$ (computable in logarithmic space / polynomial time) such that:

$$
\begin{aligned}
& R_{1}(x, y) \Rightarrow R_{2}(f(x), g(x, y)) \\
& \left.R_{2}(f(x), z) \Rightarrow R_{1}(x, h(x, z)) \quad \text { (for all } x, y, z \in \Sigma^{*}\right)
\end{aligned}
$$

Levin reductions

- Turing reductions and Karp reductions are for decision problems (i.e., languages - does there exist ...)
- For problems in NP we often want to find a solution / a witness (e.g., a Hamiltonian cycle), not only decide that it exists.
- The idea of Levin reductions: additionally a witness for the first problem allows to recover a witness for the second problem.

Definition:

- It is a reduction between relations $R_{1}, R_{2} \subseteq \Sigma^{*} \times \Sigma^{*}$
- R_{1} is Levin-reducible to R_{2} if there are functions $f: \Sigma^{*} \rightarrow \Sigma^{*}$,
$g, h: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$ (computable in logarithmic space / polynomial time) such that:

```
R1(x,y)=> R R (f(x),g(x,y))
R2}(f(x),z)=>\mp@subsup{R}{1}{}(x,h(x,z))\quad (for all x,y,z\in\mp@subsup{\Sigma}{}{*}
```

Fact
The function f itself gives a Karp-reduction from $\exists R_{1}$ to $\exists R_{2}$

Reductions

Which reductions are better?

- Turing-reductions are closer to intuitions (e.g. if we can search for a Hamiltonian cycle in a single graph, then we can also search for Hamiltonian cycles in two graphs - but how to show a Karp reduction)
- but Turing reductions are too easy to find, e.g., every language can be reduced to its complement, which blurs differences between NP and coNP
- in practice, it is usually possible to show a Karp reduction, thus since this notion is stronger, we use it
- for the same reason, we prefer reductions in logarithmic space over reductions in polynomial time
- in practice, we usually can even show a Levin reduction, but these are reductions between relations, not between languages, so they are not so popular

Completeness

Let C be a complexity class.
A language L is $\underline{C \text {-complete (with respect to logarithmic-space Karp }}$ reductions) if

- $L \in C$, and
- L is $\underline{C \text {-hard, i.e., every language from } C \text { Karp-reduces to } L \text { in }, ~}$ logarithmic space

It is surprising that complete problems exist at all!

NP-completeness

Theorem
The following language is NP-complete
$T M S A T=\left\{\left(M, 1^{t}, w\right): M\right.$ accepts w in at most t steps $\}$ (where M is a nondeterministic Turing machine)

NP-completeness

Theorem

The following language is NP-complete
$T M S A T=\left\{\left(M, 1^{t}, w\right): M\right.$ accepts w in at most t steps $\}$ (where M is a nondeterministic Turing machine)

Proof

Clearly TMSAT NP: we simulate the run of M on w for at most t steps (this is polynomial in $|M|+t+|w|$).
NP-hardness: Consider a language $L \in \mathbf{N P}$, recognized by a nondet. machine M working in polynomial time $T(n)$. Then for every w, $w \in L \Leftrightarrow\left(M, 1^{T(|w|)}, w\right) \in T M S A T$, and the word $\left(M, 1^{T(|w|)}, w\right)$ can be computed in logarithmic space.

NP-completeness

Theorem

The following language is NP-complete
TMSAT $=\left\{\left(M, 1^{t}, w\right): M\right.$ accepts w in at most t steps $\}$ (where M is a nondeterministic Turing machine)

Proof

Clearly TMSAT \in NP: we simulate the run of M on w for at most t steps (this is polynomial in $|M|+t+|w|$).
NP-hardness: Consider a language $L \in \mathbf{N P}$, recognized by a nondet. machine M working in polynomial time $T(n)$. Then for every w, $w \in L \Leftrightarrow\left(M, 1^{T(|w|)}, w\right) \in T M S A T$, and the word $\left(M, 1^{T(|w|)}, w\right)$ can be computed in logarithmic space.

TMSAT is not a very useful problem.
Are there natural problems that are NP-complete?

NP-completeness of the SAT problem

SAT problem: for a given boolean formula with variables (written in the infix notation, with full bracketing, variables written as numbers) decide whether it is satisfiable (i.e., whether there is a valuation of variables under which the formula evaluates to true)

$$
\text { e.g., }\left(\left(x_{1} \vee x_{2}\right) \wedge\left(\left(\neg x_{1}\right) \vee\left(\neg x_{2}\right)\right)\right) \text { is true for } x_{1}=1, x_{2}=0
$$

Theorem (Cook, 1971)
The SAT problem is NP-complete.

NP-completeness of the SAT problem

SAT problem: for a given boolean formula with variables (written in the infix notation, with full bracketing, variables written as numbers) decide whether it is satisfiable (i.e., whether there is a valuation of variables under which the formula evaluates to true)
e.g., $\left(\left(x_{1} \vee x_{2}\right) \wedge\left(\left(\neg x_{1}\right) \vee\left(\neg x_{2}\right)\right)\right)$ is true for $x_{1}=1, x_{2}=0$

Theorem (Cook, 1971)
The SAT problem is NP-complete.
Proof

- It is easy to see that SAT $\in \mathbf{N P}$ - we guess a valuation which makes the formula true
- It remains to prove NP-hardness

NP-completeness of the SAT problem

- Fix a language L recognized by a nondeterministic machine M in time bounded by a polynomial $p(n)$
- Basing on the input word w, we need to construct (in logarithmic space) a formula ϕ such that $w \in L \Leftrightarrow \phi$ is satisfiable
- Idea: variables store a run of M on the word w, the formula ensures correctness of the run. [somehow similarly as when converting a machine into a circuit]

NP-completeness of the SAT problem

- Fix a language L recognized by a nondeterministic machine M in time bounded by a polynomial $p(n)$
- Basing on the input word w, we need to construct (in logarithmic space) a formula ϕ such that $w \in L \Leftrightarrow \phi$ is satisfiable
- Idea: variables store a run of M on the word w, the formula ensures correctness of the run.
[somehow similarly as when converting a machine into a circuit]
- Three kinds of variables:
$\rightarrow t_{i c k}$ - in step k, the letter in the i-th cell of the tape is c
$\rightarrow s_{q k}-$ in step k the machine is in state q
$\rightarrow h_{i k}$ - in step k the head is on position i
- we have polynomially many variables - $O\left((p(n))^{2}\right)$

NP-completeness of the SAT problem

Variables:
$\rightarrow t_{\text {ick }}$ - in step k, the letter in the i-th cell of the tape is c
$\rightarrow s_{q k}-$ in step k the machine is in state q
$\rightarrow h_{i k}$ - in step k the head is on position i
The formula - a conjunctions of things to check (of polynomial size):

- the initial tape contents, head position, and state are as expected:

$$
s_{q_{0} 1} \wedge h_{01} \wedge t_{0 \triangleright 1} \wedge t_{1 w_{1} 1} \wedge \ldots \wedge t_{n w_{n}} \wedge t_{(n+1) \perp 1} \wedge \ldots \wedge t_{p(n) \perp 1}
$$

NP-completeness of the SAT problem

Variables:
$\rightarrow t_{\text {ick }}$ - in step k, the letter in the i-th cell of the tape is c
$\rightarrow s_{q k}-$ in step k the machine is in state q
$\rightarrow h_{i k}$ - in step k the head is on position i
The formula - a conjunctions of things to check (of polynomial size):

- the initial tape contents, head position, and state are as expected:

$$
s_{q_{0} 1} \wedge h_{01} \wedge t_{0 \triangleright 1} \wedge t_{1 w_{1} 1} \wedge \ldots \wedge t_{n w_{n}} \wedge t_{(n+1) \perp 1} \wedge \ldots \wedge t_{p(n) \perp 1}
$$

- at most one state at a moment
$\neg s_{q k} \vee \neg s_{q^{\prime} k}$ when $1 \leq k \leq p(n), q \neq q^{\prime}$

NP-completeness of the SAT problem

Variables:
$\rightarrow t_{\text {ick }}$ - in step k, the letter in the i-th cell of the tape is c
$\rightarrow s_{q k}-$ in step k the machine is in state q
$\rightarrow h_{i k}$ - in step k the head is on position i
The formula - a conjunctions of things to check (of polynomial size):

- the initial tape contents, head position, and state are as expected:

$$
s_{q_{0} 1} \wedge h_{01} \wedge t_{0 \triangleright 1} \wedge t_{1 w_{1} 1} \wedge \ldots \wedge t_{n w_{n}} 1 \wedge t_{(n+1) \perp 1} \wedge \ldots \wedge t_{p(n) \perp 1}
$$

- at most one state at a moment

$$
\neg s_{q k} \vee \neg s_{q^{\prime} k} \quad \text { when } 1 \leq k \leq p(n), q \neq q^{\prime}
$$

- at most one head position at a moment
- at most one symbol in a cell at a moment
- symbols not under the head remain unchanged

$$
h_{j k} \wedge t_{i c k} \rightarrow t_{i c(k+1)} \quad \text { when } 1 \leq k \leq p(n), q \neq q^{\prime}, i \neq j^{\prime}
$$

NP-completeness of the SAT problem

Variables:
$\rightarrow t_{\text {ick }}$ - in step k, the letter in the i-th cell of the tape is c
$\rightarrow s_{q k}-$ in step k the machine is in state q
$\rightarrow h_{i k}$ - in step k the head is on position i
The formula - a conjunctions of things to check (of polynomial size):

- the initial tape contents, head position, and state are as expected:

$$
s_{q_{0} 1} \wedge h_{01} \wedge t_{0 \triangleright 1} \wedge t_{1 w_{1} 1} \wedge \ldots \wedge t_{n w_{n}} \wedge t_{(n+1) \perp 1} \wedge \ldots \wedge t_{p(n) \perp 1}
$$

- at most one state at a moment

$$
\neg s_{q k} \vee \neg s_{q^{\prime} k} \text { when } 1 \leq k \leq p(n), q \neq q^{\prime}
$$

- at most one head position at a moment
- at most one symbol in a cell at a moment
- symbols not under the head remain unchanged

$$
h_{j k} \wedge t_{i c k} \rightarrow t_{i c(k+1)} \text { when } 1 \leq k \leq p(n), q \neq q^{\prime}, i \neq j^{\prime}
$$

- a transition is performed (an alternative over possible transitions):

$$
t_{i c k} \wedge s_{q k} \wedge h_{i k} \rightarrow V_{\left(t_{i c^{\prime}(k+1)} \wedge s_{q^{\prime}(k+1)} \wedge h_{(i \pm 1)(k+1)}\right)}
$$

NP-completeness of the SAT problem

The formula - a conjunctions of things to check (of polynomial size): - the initial tape contents, head position, and state are as expected:

$$
s_{q_{0} 1} \wedge \dot{h}_{01} \wedge t_{0 \triangleright 1} \wedge t_{1 w_{1} 1} \wedge \ldots \wedge t_{n w_{n}} \wedge t_{(n+1) \perp 1} \wedge \ldots \wedge t_{p(n) \perp 1}
$$

- at most one state at a moment

$$
\neg s_{q k} \vee \neg s_{q^{\prime} k} \text { when } 1 \leq k \leq p(n), q \neq q^{\prime}
$$

- at most one head position at a moment
- at most one symbol in a cell at a moment
- symbols not under the head remain unchanged

$$
h_{j k} \wedge t_{i c k} \rightarrow t_{i c(k+1)} \quad \text { when } 1 \leq k \leq p(n), q \neq q^{\prime}, i \neq j^{\prime}
$$

- a transition is performed (an alternative over possible transitions):

$$
t_{i c k} \wedge s_{q k} \wedge h_{i k} \rightarrow V_{\left(t_{i c^{\prime}(k+1)} \wedge s_{q^{\prime}(k+1)} \wedge h_{(i \pm 1)(k+1)}\right)}
$$

- acceptance:
$V_{s_{q k}}$
This formula can be easily generated in logarithmic space.

NP-completeness

There is a long list of NP-complete problems:

- Hamiltonian path problem
- Traveling salesman problem
- Clique problem
- Knapsack problem
- Subgraph isomorphism problem
- Subset sum problem
- Vertex cover problem
- Independent set problem
- Dominating set problem
- Graph coloring problem

NP-hardness shown by reduction from some other NP-complete problem (e.g., from SAT).
Theorem
If L_{1} reduces to L_{2}, and L_{2} reduces to L_{3}, then L_{1} reduces to L_{3}. Proof
Functions computable in logarithmic space can be composed.

P-completeness of HORNSAT

HORNSAT problem: satisfiability of CNF formulas in which every clause has at most 1 positive literal
e.g., $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge x_{2} \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$ is of this form formulas of this form can be seen as implications (without alternatives on the right): $\left(x_{2} \wedge x_{3} \rightarrow x_{1}\right) \wedge\left(\top \rightarrow x_{2}\right) \wedge\left(x_{1} \wedge x_{2} \rightarrow \perp\right)$
e.g., $\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$ is not of this form
(there is an alternative on the right of an implication)
Theorem
The HORNSAT problem is \mathbf{P}-complete.

P-completeness of HORNSAT

HORNSAT problem: satisfiability of CNF formulas in which every clause has at most 1 positive literal
e.g., $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge x_{2} \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$ is of this form
formulas of this form can be seen as implications (without alternatives on the right): $\left(x_{2} \wedge x_{3} \rightarrow x_{1}\right) \wedge\left(\top \rightarrow x_{2}\right) \wedge\left(x_{1} \wedge x_{2} \rightarrow \perp\right)$
e.g., $\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$ is not of this form
(there is an alternative on the right of an implication)
Theorem
The HORNSAT problem is \mathbf{P}-complete.
Proof
HORNSAT is in P: saturation (as in Prolog) - initially, we suppose that all variables are false; then we change false to true according implications in the formula

P-completeness of HORNSAT

HORNSAT problem: satisfiability of CNF formulas in which every clause has at most 1 positive literal
e.g., $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge x_{2} \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$ is of this form
formulas of this form can be seen as implications (without alternatives on the right): $\left(x_{2} \wedge x_{3} \rightarrow x_{1}\right) \wedge\left(\top \rightarrow x_{2}\right) \wedge\left(x_{1} \wedge x_{2} \rightarrow \perp\right)$
e.g., $\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$ is not of this form
(there is an alternative on the right of an implication)

Theorem

The HORNSAT problem is \mathbf{P}-complete.
Proof
HORNSAT is in P: saturation (as in Prolog) - initially, we suppose that all variables are false; then we change false to true according implications in the formula
P-hardness: if a machine is deterministic, the formula from the previous proof is (almost) in the HORN-CNF form (an alternative of positive literals was appearing only while choosing a transition)

polyL-completeness

Tutorials: the class polyL has no complete problems.
Corollary: P=polyL

- however, we don't know any specific problem on which they differ
- we do don't even know whether they are incomparable, or whether some of them is contained in the other

L-completeness

Almost every language in L is complete
(except the empty language, and the language containing all words)

NL-completeness

Theorem Reachability in a directed graph is NL-complete

NL-completeness

Theorem

Reachability in a directed graph is NL-complete
Proof
It belongs to NL: we just walk in the graph Hardness:

- Let L be recognized by a nondeterministic machine M working in logarithmic space
- we can assume that at the end M erases the contents of the tape, so that there is only one accepting configuration
- we get a word w of length n, we want to construct a graph
- as nodes we take configurations (there are polynomially many, as they are of logarithmic size)
- for every configuration, it is easy to write (in L) its successors,
- it is also easy to enumerate (in L) all configurations
- question to REACHABILITY: is there a path from the initial configuration (for word w) to the accepting configuration?

PSPACE-completeness of QBF

QBF problem

input: boolean formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ with variables x_{1}, \ldots, x_{n} question: is the following sentence true:

$$
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \phi\left(x_{1}, \ldots, x_{n}\right)
$$

Theorem
The QBF problem is PSPACE-complete. (the problem remains PSPACE-complete even if we require that ϕ is in the CNF)

PSPACE-completeness of QBF

QBF problem

input: boolean formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ with variables x_{1}, \ldots, x_{n} question: is the following sentence true:

$$
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \phi\left(x_{1}, \ldots, x_{n}\right)
$$

Theorem
The QBF problem is PSPACE-complete.
(the problem remains PSPACE-complete even if we require that ϕ is in the CNF) Proof
QBF is in PSPACE: we browse all possible valuations in lexicographic order... (backtracking) for a fixed valuation, obviously we can compute the value of ϕ in PSPACE

PSPACE-completeness of QBF

Theorem
The QBF problem $\left(\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \phi\left(x_{1}, \ldots, x_{n}\right)\right)$ is PSPACE-complete. Proof (PSPACE-hardness)

- A similar trick as in the Savitch theorem.
- Let L be a language recognized by a machine M working in polynomial space
- having an input word w of length n, we want to construct a formula

PSPACE-completeness of QBF

Theorem

The QBF problem $\left(\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \phi\left(x_{1}, \ldots, x_{n}\right)\right)$ is PSPACE-complete. Proof (PSPACE-hardness)

- A similar trick as in the Savitch theorem.
- Let L be a language recognized by a machine M working in polynomial space
- having an input word w of length n, we want to construct a formula
- configurations of M can be encoded in $p(n)$ bits, for some polynomial p
- for every i we will write a formula $\psi_{i}\left(x_{1}, \ldots, x_{p(n)}, y_{1}, \ldots, y_{p(n)}\right)$ saying that from the configuration $x_{1}, \ldots, x_{p(n)}$ it is possible to reach the configuration $y_{1}, \ldots, y_{p(n)}$ in at most 2^{i} steps of M
- at the very end, it is enough to check whether the formula $\psi_{p(n)}\left(x_{1}, \ldots, x_{p(n)}, y_{1}, \ldots, y_{p(n)}\right)$ is true, where $x_{1}, \ldots, x_{p(n)}$ encodes the initial configuration, and $y_{1}, \ldots, y_{p(n)}$ encodes the accepting configuration (we can assume that it is fixed, or we can add some existential quantification)

PSPACE-completeness of QBF

Theorem

The QBF problem $\left(\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \phi\left(x_{1}, \ldots, x_{n}\right)\right)$ is PSPACE-complete. Proof (PSPACE-hardness)

- for every i we want to write a formula $\psi_{i}\left(x_{1}, \ldots, x_{p(n)}, y_{1}, \ldots, y_{p(n)}\right)$ saying that from the configuration $x_{1}, \ldots, x_{p(n)}$ it is possible to reach the configuration $y_{1}, \ldots, y_{p(n)}$ in at most 2^{i} steps of M
- For $i=0$, either the configurations are equal, or M performs a single step between them - this can be easily written using a formula (as while proving that SAT is NP-hard)
- The formula can be easily generated in logarithmic space

PSPACE-completeness of QBF

Theorem

The QBF problem $\left(\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \phi\left(x_{1}, \ldots, x_{n}\right)\right)$ is PSPACE-complete. Proof (PSPACE-hardness)

- for every i we want to write a formula $\psi_{i}\left(x_{1}, \ldots, x_{p(n)}, y_{1}, \ldots, y_{p(n)}\right)$ saying that from the configuration $x_{1}, \ldots, x_{p(n)}$ it is possible to reach the configuration $y_{1}, \ldots, y_{p(n)}$ in at most 2^{i} steps of M
- For $i=0$, either the configurations are equal, or M performs a single step between them - this can be easily written using a formula (as while proving that SAT is NP-hard)
- The formula can be easily generated in logarithmic space
- A naive idea for $i>0: \psi_{i+1}(x, y)=\exists z .\left(\psi_{i}(x, z) \wedge \psi_{i}(z, y)\right)$
- This does not work, since the formula grows exponentially

PSPACE-completeness of QBF

Theorem

The QBF problem $\left(\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \phi\left(x_{1}, \ldots, x_{n}\right)\right)$ is PSPACE-complete. Proof (PSPACE-hardness)

- for every i we want to write a formula $\psi_{i}\left(x_{1}, \ldots, x_{p(n)}, y_{1}, \ldots, y_{p(n)}\right)$ saying that from the configuration $x_{1}, \ldots, x_{p(n)}$ it is possible to reach the configuration $y_{1}, \ldots, y_{p(n)}$ in at most 2^{i} steps of M
- For $i=0$, either the configurations are equal, or M performs a single step between them - this can be easily written using a formula (as while proving that SAT is NP-hard)
- The formula can be easily generated in logarithmic space
- A naive idea for $i>0: \psi_{i+1}(x, y)=\exists z .\left(\psi_{i}(x, z) \wedge \psi_{i}(z, y)\right)$
- This does not work, since the formula grows exponentially
- One has to use ψ_{i} only once:

$$
\psi_{i+1}(x, y)=\exists z . \forall r . \forall t .\left((r=x \wedge t=z) \vee(r=z \wedge t=y) \rightarrow \psi_{i}(r, t)\right)
$$

- This is not in QBF, but quantifiers from ψ_{i} can be moved to the front of the formula (assuming that variable names are unique)

PSPACE-completeness of QBF

The QBF problem ($\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \phi\left(x_{1}, \ldots, x_{n}\right)$) is PSPACE-complete. Proof (PSPACE-hardness)

- for every i we want to write a formula $\psi_{i}\left(x_{1}, \ldots, x_{p(n)}, y_{1}, \ldots, y_{p(n)}\right)$ saying that from the configuration $x_{1}, \ldots, x_{p(n)}$ it is possible to reach the configuration $y_{1}, \ldots, y_{p(n)}$ in at most 2^{i} steps of M
- For $i=0$, either the configurations are equal, or M performs a single step between them - this can be easily written using a formula (as while proving that SAT is NP-hard)
- The formula can be easily generated in logarithmic space
- One has to use ψ_{i} only once:

$$
\psi_{i+1}(x, y)=\exists z . \forall r . \forall t .\left((r=x \wedge t=z) \vee(r=z \wedge t=y) \rightarrow \psi_{i}(r, t)\right)
$$

- This is not in QBF, but quantifiers from ψ_{i} can be moved to the front of the formula (assuming that variable names are unique)
- Again, this can be easily created in logarithmic space: first comparisons of appropriate variables, then ψ_{0}
- Remark: for PSPACE one usually relaxes the definition of hardness, and allows for reductions in P (instead of "in L")

Complete problems - summary

NP - SAT, Hamiltonian cycle, clique, subset sum, dominating set, ... P - HORNSAT
polyL - no complete problems
L - almost every language is complete NL - reachability in directed graphs PSPACE - QBF

It is enough to solve a complete problem
Fact
If a C-complete problem is in class D (and D is closed under composition with functions computable in \mathbf{L}), then $C \subseteq D$ Proof - obvious

Corollary:

If reachability in directed graphs is in coNL, then NL=coNL If SAT is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$ etc.

Plan for the nearest future

- NL=coNL
- existence of NP-intermediate problems
- difficult problems that are not NP-hard
- relativisation and the Baker-Gill-Solovay theorem
- decision problems vs search problems
- polynomial hierarchy
- alternating machines
- probabilistic machines

NL=coNL

Theorem Immerman-Szelepcseny (1987) Unreachability in directed graphs is in NL.

Thus NL=coNL, since reachability in directed graphs is NL-complete.

Remark
Reachability in undirected graphs is in L (Reingold, 2004) (this is a rather difficult theorem)

Previous lecture: PSPACE=NPSPACE=coNPSPACE

NL=coNL

Theorem Immerman-Szelepcseny (1987) Unreachability in directed graphs is in NL. Proof

- Idea: in NL we can not only check reachability, but also count reachable nodes

NL=coNL (*)

Theorem Immerman-Szelepcseny (1987) Unreachability in directed graphs is in NL. Proof

- Idea: in NL we can not only check reachability, but also count reachable nodes
- First consider such an algorithm in NL: given two numbers k and q, output q different nodes reachable from node s in $\leq k$ steps, and accept (if there are less such nodes, reject)
- Solution: a loop - set a counter to 0 , then for every node v in the graph, nondeterministically: either ignore v, or guess a path of length $\leq k$ from s to v, output v, and increase the counter

NL=coNL (*)

Theorem Immerman-Szelepcseny (1987)

 Unreachability in directed graphs is in NL.
Proof

- We can: given k and q, output q different nodes reachable from s in $\leq k$ steps, and accept (if there are less such nodes, reject)
- Main trick: using this algorithm, we will compute (by induction) $q_{k}-$ a number of nodes reachable from s in $\leq k$ steps
- $q_{0}=1$
- Given q_{k} we compute q_{k+1} as follows:
\rightarrow set q_{k+1} to 1 (we include s)
\rightarrow for every other node v, output q_{k} nodes reachable in $\leq k$ steps from s; if among them there is a node u such that (u, v) is an edge, then increase q_{k+1} (we do not store the whole list of q_{k} nodes; we rather check the condition on-the-fly)
- It is now easy to finish: compute q_{n}, output all q_{n} nodes reachable in $\leq n$ steps, and check that the target node does not appear

NL=coNL

Question: why cannot we prove in a similar way that $\mathbf{N P}=\mathbf{c o N P}$? E.g., that SAT is in coNP?

NL=coNL

Question: why cannot we prove in a similar way that $\mathbf{N P}=\mathbf{c o N P}$? E.g., that SAT is in coNP?

- The proof is based on counting: in NL we can not only check reachability, but also count (and enumerate) reachable nodes.
- However, in polynomial time, even nondeterministically, we cannot count all valuations satisfying a given formula - there are exponentially many of them, so if we would like to count them "one-by-one", polynomial time is not enough.

NL=coNL

Corollary from the Immerman-Szelepcseny theorem: for every space-constructible function $S(n) \geq \log (n)$ NSPACE(S(n))=coNSPACE(S(n))

Proof: on tutorials
We use a technique called padding

