

Computational complexity

lecture 7

Idea:
● problem A reduces to problem B if while knowing how to solve B

it is easy to solve A as well
● if B is easy, then A is easy as well
● if A is difficult, then B is difficult as well

There are multiple kinds of reductions...

Reductions

➔ A language L is Turing-reducible to K if there exist a machine with
an oracle for K, which recognizes L

➔ By limiting the resources of M, one can talk about polynomial-time
Turing reductions (often called Cook reductions),
logarithmic-space Turing reductions, etc.

Observe that every language L∈NP can be reduced to L∈coNP:
it is enough to call the oracle for L, and negate the answer.
But we don't know whether NP is contained in coNP.
This is rather inconvenient: we prefer not to have reductions
between independent classes.
Thus Cook reductions are not so popular.
We prefer Karp reductions (next slide), having better properties.

Turing reductions / Cook reductions

Idea: we can make only a single query to the language K, and we
cannot negate the answer.

Karp reductions

Idea: we can make only a single query to the language K, and we
cannot negate the answer.

A language L⊆S* is Karp-reducible to K⊆G* if there exists a function
f:S*→G* computable in logarithmic space (sometimes: in polynomial

time), such that w∈L⇔f(w)∈K for every word w∈S*.

Karp reductions

Idea: we can make only a single query to the language K, and we
cannot negate the answer.

A language L⊆S* is Karp-reducible to K⊆G* if there exists a function
f:S*→G* computable in logarithmic space (sometimes: in polynomial

time), such that w∈L⇔f(w)∈K for every word w∈S*.

Fact: If L is Karp-reducible to K, then it is also Turing-reducible to K
(with the same restrictions on resources)

Proof
● We have a machine computing f.
● We treat it as a machine with oracle for K, which at the very

end asks a single question.

Karp reductions

● Turing reductions and Karp reductions are for decision problems
(i.e., languages – does there exist …)

● For problems in NP we often want to find a solution / a witness
(e.g., a Hamiltonian cycle), not only decide that it exists.

● The idea of Levin reductions: additionally a witness for the first
problem allows to recover a witness for the second problem.

Levin reductions

● Turing reductions and Karp reductions are for decision problems
(i.e., languages – does there exist …)

● For problems in NP we often want to find a solution / a witness
(e.g., a Hamiltonian cycle), not only decide that it exists.

● The idea of Levin reductions: additionally a witness for the first
problem allows to recover a witness for the second problem.

Definition:
● It is a reduction between relations R1,R2⊆S*×S*

● R1 is Levin-reducible to R2 if there are functions f:S*→S*,
g,h:S*×S*→S* (computable in logarithmic space / polynomial time)
such that:
R1(x,y) R2(f(x),g(x,y))
R2(f(x),z) R1(x,h(x,z)) (for all x,y,z∈S*)

Levin reductions

● Turing reductions and Karp reductions are for decision problems
(i.e., languages – does there exist …)

● For problems in NP we often want to find a solution / a witness
(e.g., a Hamiltonian cycle), not only decide that it exists.

● The idea of Levin reductions: additionally a witness for the first
problem allows to recover a witness for the second problem.

Definition:
● It is a reduction between relations R1,R2⊆S*×S*

● R1 is Levin-reducible to R2 if there are functions f:S*→S*,
g,h:S*×S*→S* (computable in logarithmic space / polynomial time)
such that:
R1(x,y) R2(f(x),g(x,y))
R2(f(x),z) R1(x,h(x,z)) (for all x,y,z∈S*)

Fact
The function f itself gives a Karp-reduction from R1 to R2

Levin reductions

Which reductions are better?
● Turing-reductions are closer to intuitions (e.g. if we can search for

a Hamiltonian cycle in a single graph, then we can also search for
Hamiltonian cycles in two graphs – but how to show a Karp
reduction)

● but Turing reductions are too easy to find, e.g., every language
can be reduced to its complement, which blurs differences
between NP and coNP

● in practice, it is usually possible to show a Karp reduction, thus
since this notion is stronger, we use it

● for the same reason, we prefer reductions in logarithmic space
over reductions in polynomial time

● in practice, we usually can even show a Levin reduction, but these
are reductions between relations, not between languages, so
they are not so popular

Reductions

Let C be a complexity class.
A language L is C-complete (with respect to logarithmic-space Karp
reductions) if
● L∈C, and
● L is C-hard, i.e., every language from C Karp-reduces to L in

logarithmic space

lt is surprising that complete problems exist at all!

Completeness

Theorem
The following language is NP-complete

TMSAT={(M,1t,w) : M accepts w in at most t steps}
 (where M is a nondeterministic Turing machine)

NP-completeness

Theorem
The following language is NP-complete

TMSAT={(M,1t,w) : M accepts w in at most t steps}
 (where M is a nondeterministic Turing machine)

Proof
Clearly TMSAT∈NP: we simulate the run of M on w for at most t
steps (this is polynomial in |M|+t+|w|).
NP-hardness: Consider a language L∈NP, recognized by a nondet.
machine M working in polynomial time T(n). Then for every w,
w∈L⇔(M,1T(|w|),w)∈TMSAT, and the word (M,1T(|w|),w) can be
computed in logarithmic space.

NP-completeness

Theorem
The following language is NP-complete

TMSAT={(M,1t,w) : M accepts w in at most t steps}
 (where M is a nondeterministic Turing machine)

Proof
Clearly TMSAT∈NP: we simulate the run of M on w for at most t
steps (this is polynomial in |M|+t+|w|).
NP-hardness: Consider a language L∈NP, recognized by a nondet.
machine M working in polynomial time T(n). Then for every w,
w∈L⇔(M,1T(|w|),w)∈TMSAT, and the word (M,1T(|w|),w) can be
computed in logarithmic space.

TMSAT is not a very useful problem.
Are there natural problems that are NP-complete?

NP-completeness

SAT problem: for a given boolean formula with variables (written in
the infix notation, with full bracketing, variables written as numbers)
decide whether it is satisfiable (i.e., whether there is a valuation of
variables under which the formula evaluates to true)
e.g., ((x1∨x2)∧((¬x1)∨(¬x2))) is true for x1=1,x2=0

Theorem (Cook, 1971)
The SAT problem is NP-complete.

NP-completeness of the SAT problem

SAT problem: for a given boolean formula with variables (written in
the infix notation, with full bracketing, variables written as numbers)
decide whether it is satisfiable (i.e., whether there is a valuation of
variables under which the formula evaluates to true)
e.g., ((x1∨x2)∧((¬x1)∨(¬x2))) is true for x1=1,x2=0

Theorem (Cook, 1971)
The SAT problem is NP-complete.
Proof
● It is easy to see that SAT∈NP – we guess a valuation which

makes the formula true
● It remains to prove NP-hardness

NP-completeness of the SAT problem

● Fix a language L recognized by a nondeterministic machine M
in time bounded by a polynomial p(n)

● Basing on the input word w, we need to construct (in logarithmic
space) a formula f such that w∈L ⇔ f is satisfiable

● Idea: variables store a run of M on the word w,
the formula ensures correctness of the run.
[somehow similarly as when converting a machine into a circuit]

NP-completeness of the SAT problem

● Fix a language L recognized by a nondeterministic machine M
in time bounded by a polynomial p(n)

● Basing on the input word w, we need to construct (in logarithmic
space) a formula f such that w∈L ⇔ f is satisfiable

● Idea: variables store a run of M on the word w,
the formula ensures correctness of the run.
[somehow similarly as when converting a machine into a circuit]

● Three kinds of variables:
➔ tick – in step k, the letter in the i-th cell of the tape is c
➔ sqk – in step k the machine is in state q
➔ hik – in step k the head is on position i

● we have polynomially many variables – O((p(n))2)

NP-completeness of the SAT problem

Variables:
➔ tick – in step k, the letter in the i-th cell of the tape is c
➔ sqk – in step k the machine is in state q
➔ hik – in step k the head is on position i

The formula – a conjunctions of things to check (of polynomial size):
● the initial tape contents, head position, and state are as expected:

sq01
∧h01∧t0▹1∧t1w11

∧...∧tnwn1
∧t(n+1)⟂1∧...∧tp(n)⟂1

NP-completeness of the SAT problem

Variables:
➔ tick – in step k, the letter in the i-th cell of the tape is c
➔ sqk – in step k the machine is in state q
➔ hik – in step k the head is on position i

The formula – a conjunctions of things to check (of polynomial size):
● the initial tape contents, head position, and state are as expected:

sq01
∧h01∧t0▹1∧t1w11

∧...∧tnwn1
∧t(n+1)⟂1∧...∧tp(n)⟂1

● at most one state at a moment
¬sqk∨¬sq'k when 1≤k≤p(n), q≠q'

NP-completeness of the SAT problem

Variables:
➔ tick – in step k, the letter in the i-th cell of the tape is c
➔ sqk – in step k the machine is in state q
➔ hik – in step k the head is on position i

The formula – a conjunctions of things to check (of polynomial size):
● the initial tape contents, head position, and state are as expected:

sq01
∧h01∧t0▹1∧t1w11

∧...∧tnwn1
∧t(n+1)⟂1∧...∧tp(n)⟂1

● at most one state at a moment
¬sqk∨¬sq'k when 1≤k≤p(n), q≠q'

● at most one head position at a moment
● at most one symbol in a cell at a moment
● symbols not under the head remain unchanged

hjk∧tick→tic(k+1) when 1≤k≤p(n), q≠q', i≠j'

NP-completeness of the SAT problem

Variables:
➔ tick – in step k, the letter in the i-th cell of the tape is c
➔ sqk – in step k the machine is in state q
➔ hik – in step k the head is on position i

The formula – a conjunctions of things to check (of polynomial size):
● the initial tape contents, head position, and state are as expected:

sq01
∧h01∧t0▹1∧t1w11

∧...∧tnwn1
∧t(n+1)⟂1∧...∧tp(n)⟂1

● at most one state at a moment
¬sqk∨¬sq'k when 1≤k≤p(n), q≠q'

● at most one head position at a moment
● at most one symbol in a cell at a moment
● symbols not under the head remain unchanged

hjk∧tick→tic(k+1) when 1≤k≤p(n), q≠q', i≠j'
● a transition is performed (an alternative over possible transitions):

tick∧sqk∧hik→∨(tic'(k+1)∧sq'(k+1)∧h(i1)(k+1))

NP-completeness of the SAT problem

The formula – a conjunctions of things to check (of polynomial size):
● the initial tape contents, head position, and state are as expected:

sq01
∧h01∧t0▹1∧t1w11

∧...∧tnwn1
∧t(n+1)⟂1∧...∧tp(n)⟂1

● at most one state at a moment
¬sqk∨¬sq'k when 1≤k≤p(n), q≠q'

● at most one head position at a moment
● at most one symbol in a cell at a moment
● symbols not under the head remain unchanged

hjk∧tick→tic(k+1) when 1≤k≤p(n), q≠q', i≠j'
● a transition is performed (an alternative over possible transitions):

tick∧sqk∧hik→∨(tic'(k+1)∧sq'(k+1)∧h(i1)(k+1))
● acceptance:

∨sqk

This formula can be easily generated in logarithmic space.

NP-completeness of the SAT problem

There is a long list of NP-complete problems:
● Hamiltonian path problem
● Traveling salesman problem
● Clique problem
● Knapsack problem
● Subgraph isomorphism problem
● Subset sum problem
● Vertex cover problem
● Independent set problem
● Dominating set problem
● Graph coloring problem
NP-hardness shown by reduction from some other NP-complete
problem (e.g., from SAT).
Theorem
If L1 reduces to L2, and L2 reduces to L3, then L1 reduces to L3.

Proof
Functions computable in logarithmic space can be composed.

NP-completeness

HORNSAT problem: satisfiability of CNF formulas in which every
clause has at most 1 positive literal
e.g., (x1∨¬x2∨¬x3)∧x2∧(¬x1∨¬x2) is of this form

formulas of this form can be seen as implications (without alterna-
tives on the right): (x2∧x3→x1)∧(⊤→x2)∧(x1∧x2→⊥)

e.g., (x1∨x2)∧(¬x1∨¬x2) is not of this form
(there is an alternative on the right of an implication)

Theorem
The HORNSAT problem is P-complete.

P-completeness of HORNSAT

HORNSAT problem: satisfiability of CNF formulas in which every
clause has at most 1 positive literal
e.g., (x1∨¬x2∨¬x3)∧x2∧(¬x1∨¬x2) is of this form

formulas of this form can be seen as implications (without alterna-
tives on the right): (x2∧x3→x1)∧(⊤→x2)∧(x1∧x2→⊥)

e.g., (x1∨x2)∧(¬x1∨¬x2) is not of this form
(there is an alternative on the right of an implication)

Theorem
The HORNSAT problem is P-complete.
Proof
HORNSAT is in P: saturation (as in Prolog) – initially, we suppose
that all variables are false; then we change false to true according
implications in the formula

P-completeness of HORNSAT

HORNSAT problem: satisfiability of CNF formulas in which every
clause has at most 1 positive literal
e.g., (x1∨¬x2∨¬x3)∧x2∧(¬x1∨¬x2) is of this form

formulas of this form can be seen as implications (without alterna-
tives on the right): (x2∧x3→x1)∧(⊤→x2)∧(x1∧x2→⊥)

e.g., (x1∨x2)∧(¬x1∨¬x2) is not of this form
(there is an alternative on the right of an implication)

Theorem
The HORNSAT problem is P-complete.
Proof
HORNSAT is in P: saturation (as in Prolog) – initially, we suppose
that all variables are false; then we change false to true according
implications in the formula
P-hardness: if a machine is deterministic, the formula from the
previous proof is (almost) in the HORN-CNF form
(an alternative of positive literals was appearing only while choosing
a transition)

P-completeness of HORNSAT

Tutorials: the class polyL has no complete problems.

Corollary: P≠polyL
● however, we don't know any specific problem on which they differ
● we do don't even know whether they are incomparable,

or whether some of them is contained in the other

polyL-completeness

Almost every language in L is complete
(except the empty language, and the language containing all words)

L-completeness

Theorem
Reachability in a directed graph is NL-complete

NL-completeness

Theorem
Reachability in a directed graph is NL-complete
Proof
It belongs to NL: we just walk in the graph
Hardness:
● Let L be recognized by a nondeterministic machine M working in

logarithmic space
● we can assume that at the end M erases the contents of the tape,

so that there is only one accepting configuration
● we get a word w of length n, we want to construct a graph
● as nodes we take configurations (there are polynomially many,

as they are of logarithmic size)
● for every configuration, it is easy to write (in L) its successors,
● it is also easy to enumerate (in L) all configurations
● question to REACHABILITY: is there a path from the initial

configuration (for word w) to the accepting configuration?

NL-completeness

QBF problem
input: boolean formula f(x1,...,xn) with variables x1,...,xn

question: is the following sentence true:
∃x1∀x2∃x3∀x4 ...f(x1,...,xn)

Theorem
The QBF problem is PSPACE-complete.
(the problem remains PSPACE-complete even if we require that f is in the CNF)

PSPACE-completeness of QBF

QBF problem
input: boolean formula f(x1,...,xn) with variables x1,...,xn

question: is the following sentence true:
∃x1∀x2∃x3∀x4 ...f(x1,...,xn)

Theorem
The QBF problem is PSPACE-complete.
(the problem remains PSPACE-complete even if we require that f is in the CNF)

Proof
QBF is in PSPACE: we browse all possible valuations in lexico-
graphic order... (backtracking)
for a fixed valuation, obviously we can compute the value of f
in PSPACE

PSPACE-completeness of QBF

Theorem
The QBF problem (∃x1∀x2∃x3∀x4 ...f(x1,...,xn)) is PSPACE-complete.

Proof (PSPACE-hardness)
● A similar trick as in the Savitch theorem.
● Let L be a language recognized by a machine M working in

polynomial space
● having an input word w of length n, we want to construct a formula

PSPACE-completeness of QBF

Theorem
The QBF problem (∃x1∀x2∃x3∀x4 ...f(x1,...,xn)) is PSPACE-complete.

Proof (PSPACE-hardness)
● A similar trick as in the Savitch theorem.
● Let L be a language recognized by a machine M working in

polynomial space
● having an input word w of length n, we want to construct a formula
● configurations of M can be encoded in p(n) bits, for some

polynomial p
● for every i we will write a formula yi(x1,...,xp(n),y1,...,yp(n)) saying that

from the configuration x1,...,xp(n) it is possible to reach the configu-
ration y1,...,yp(n) in at most 2i steps of M

● at the very end, it is enough to check whether the formula
yp(n)(x1,...,xp(n),y1,...,yp(n)) is true, where x1,...,xp(n) encodes the initial
configuration, and y1,...,yp(n) encodes the accepting configuration
(we can assume that it is fixed, or we can add some existential quantification)

PSPACE-completeness of QBF

Theorem
The QBF problem (∃x1∀x2∃x3∀x4 ...f(x1,...,xn)) is PSPACE-complete.

Proof (PSPACE-hardness)
● for every i we want to write a formula yi(x1,...,xp(n),y1,...,yp(n)) saying

that from the configuration x1,...,xp(n) it is possible to reach
the configuration y1,...,yp(n) in at most 2i steps of M

● For i=0, either the configurations are equal, or M performs a single
step between them – this can be easily written using a formula
(as while proving that SAT is NP-hard)

● The formula can be easily generated in logarithmic space

PSPACE-completeness of QBF

Theorem
The QBF problem (∃x1∀x2∃x3∀x4 ...f(x1,...,xn)) is PSPACE-complete.

Proof (PSPACE-hardness)
● for every i we want to write a formula yi(x1,...,xp(n),y1,...,yp(n)) saying

that from the configuration x1,...,xp(n) it is possible to reach
the configuration y1,...,yp(n) in at most 2i steps of M

● For i=0, either the configurations are equal, or M performs a single
step between them – this can be easily written using a formula
(as while proving that SAT is NP-hard)

● The formula can be easily generated in logarithmic space
● A naive idea for i>0: yi+1(x,y)=∃z.(yi(x,z)∧yi(z,y))
● This does not work, since the formula grows exponentially

PSPACE-completeness of QBF

Theorem
The QBF problem (∃x1∀x2∃x3∀x4 ...f(x1,...,xn)) is PSPACE-complete.

Proof (PSPACE-hardness)
● for every i we want to write a formula yi(x1,...,xp(n),y1,...,yp(n)) saying

that from the configuration x1,...,xp(n) it is possible to reach
the configuration y1,...,yp(n) in at most 2i steps of M

● For i=0, either the configurations are equal, or M performs a single
step between them – this can be easily written using a formula
(as while proving that SAT is NP-hard)

● The formula can be easily generated in logarithmic space
● A naive idea for i>0: yi+1(x,y)=∃z.(yi(x,z)∧yi(z,y))
● This does not work, since the formula grows exponentially
● One has to use yi only once:

yi+1(x,y)=∃z.∀r.∀t.((r=x∧t=z)∨(r=z∧t=y)→yi(r,t))
● This is not in QBF, but quantifiers from yi can be moved to the

front of the formula (assuming that variable names are unique)

PSPACE-completeness of QBF

The QBF problem (∃x1∀x2∃x3∀x4 ...f(x1,...,xn)) is PSPACE-complete.

Proof (PSPACE-hardness)
● for every i we want to write a formula yi(x1,...,xp(n),y1,...,yp(n)) saying

that from the configuration x1,...,xp(n) it is possible to reach
the configuration y1,...,yp(n) in at most 2i steps of M

● For i=0, either the configurations are equal, or M performs a single
step between them – this can be easily written using a formula
(as while proving that SAT is NP-hard)

● The formula can be easily generated in logarithmic space
● One has to use yi only once:

yi+1(x,y)=∃z.∀r.∀t.((r=x∧t=z)∨(r=z∧t=y)→yi(r,t))
● This is not in QBF, but quantifiers from yi can be moved to the

front of the formula (assuming that variable names are unique)
● Again, this can be easily created in logarithmic space: first compa-

risons of appropriate variables, then y0
● Remark: for PSPACE one usually relaxes the definition of hard-

ness, and allows for reductions in P (instead of “in L”)

PSPACE-completeness of QBF

NP – SAT, Hamiltonian cycle, clique, subset sum, dominating set, ...

P – HORNSAT
polyL – no complete problems
L – almost every language is complete
NL – reachability in directed graphs
PSPACE - QBF

Complete problems – summary

Fact
If a C-complete problem is in class D (and D is closed under
composition with functions computable in L), then C⊆D
Proof – obvious

Corollary:
If reachability in directed graphs is in coNL, then NL=coNL
If SAT is in P, then P=NP
etc.

It is enough to solve a complete problem

● NL=coNL
● existence of NP-intermediate problems
● difficult problems that are not NP-hard
● relativisation and the Baker-Gill-Solovay theorem
● decision problems vs search problems
● polynomial hierarchy
● alternating machines
● probabilistic machines

Plan for the nearest future

Theorem Immerman-Szelepcseny (1987)
Unreachability in directed graphs is in NL.

Thus NL=coNL, since reachability in directed graphs
is NL-complete.

Remark
Reachability in undirected graphs is in L (Reingold, 2004)
(this is a rather difficult theorem)

Previous lecture: PSPACE=NPSPACE=coNPSPACE

NL=coNL

Theorem Immerman-Szelepcseny (1987)
Unreachability in directed graphs is in NL.
Proof
● Idea: in NL we can not only check reachability, but also count

reachable nodes

NL=coNL

Theorem Immerman-Szelepcseny (1987)
Unreachability in directed graphs is in NL.
Proof
● Idea: in NL we can not only check reachability, but also count

reachable nodes
● First consider such an algorithm in NL: given two numbers

k and q, output q different nodes reachable from node s in ≤k steps,
and accept (if there are less such nodes, reject)

● Solution: a loop – set a counter to 0, then for every node v in the
graph, nondeterministically: either ignore v, or guess a path of
length ≤k from s to v, output v, and increase the counter

NL=coNL (*)

Theorem Immerman-Szelepcseny (1987)
Unreachability in directed graphs is in NL.
Proof
● We can: given k and q, output q different nodes reachable from s

in ≤k steps, and accept (if there are less such nodes, reject)
● Main trick: using this algorithm, we will compute (by induction)

qk – a number of nodes reachable from s in ≤k steps
● q0=1
● Given qk we compute qk+1 as follows:

➔ set qk+1 to 1 (we include s)
➔ for every other node v, output qk nodes reachable in ≤k steps

from s; if among them there is a node u such that (u,v) is an edge,
then increase qk+1 (we do not store the whole list of qk nodes; we rather
check the condition on-the-fly)

● It is now easy to finish: compute qn, output all qn nodes reachable
in ≤n steps, and check that the target node does not appear

NL=coNL (*)

Question: why cannot we prove in a similar way that NP=coNP?
E.g., that SAT is in coNP?

NL=coNL

Question: why cannot we prove in a similar way that NP=coNP?
E.g., that SAT is in coNP?

● The proof is based on counting: in NL we can not only check
reachability, but also count (and enumerate) reachable nodes.

● However, in polynomial time, even nondeterministically, we cannot
count all valuations satisfying a given formula – there are
exponentially many of them, so if we would like to count them
“one-by-one”, polynomial time is not enough.

NL=coNL

Corollary from the Immerman-Szelepcseny theorem:
for every space-constructible function S(n)≥log(n)
NSPACE(S(n))=coNSPACE(S(n))

Proof: on tutorials
We use a technique called padding

NL=coNL

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49

