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Homework: 
available on the webpage,

deadline: 26.11.2018



  

Already finished:
● Deterministic Turing machines – basic facts
● Boolean circuits

Next topic:
● Nondeterministic Turing machines, reductions

Later:
● Probabilistic computations
● Fixed parameter tractability (FPT)
● Interactive proofs
● Alternating Turing machines
● Probabilistically checkable proofs (PCP)
● ...

Overview



  

We introduce the following changes to the definition of Turing machines:
● a transition relation instead of a transition function:

dQGkQGk{L,R,Z}k 
● there is no rejecting state (it is useless)

Nondeterministic Turing machines



  

We introduce the following changes to the definition of Turing machines:
● a transition relation instead of a transition function:

dQGkQGk{L,R,Z}k 
● there is no rejecting state (it is useless)
●  a transition relation on configurations
● a run of a machine: any sequence of configuration which respects

the transition relation
● a machine accepts a word w if there exists an accepting run over

this word

Nondeterministic Turing machines



  

We introduce the following changes to the definition of Turing machines:
● a transition relation instead of a transition function:

dQGkQGk{L,R,Z}k 
● there is no rejecting state (it is useless)
●  a transition relation on configurations
● a run of a machine: any sequence of configuration which respects

the transition relation
● a machine accepts a word w if there exists an accepting run over

this word
● A machine works in time T(n) if every run (not only the accepting

one) halts after at most T(n) steps
● A machine works in space S(n) if every run (not only the accepting

one) uses at most S(n) tape cells and halts

Nondeterministic Turing machines



  

A machine works in space S(n) if every run (not only the accepting
one) uses at most S(n) tape cells and halts
● for a deterministic machine there was Sipser's theorem, saying

that the halting property can be introduced without increasing
memory usage ( we could remove the condition “and halts”
from the above definition)

● for a nondeterministic machine the Sipser's construction 
(simulating the computation backwards) does not work

Nondeterministic Turing machines



  

A machine works in space S(n) if every run (not only the accepting
one) uses at most S(n) tape cells and halts
● for a deterministic machine there was Sipser's theorem, saying

that the halting property can be introduced without increasing
memory usage ( we could remove the condition “and halts”
from the above definition)

● for a nondeterministic machine the Sipser's construction 
(simulating the computation backwards) does not work

● but the construction with a counter of steps does work 
(if the number of steps has exceeded the maximal number of 
configurations for the current memory usage, then the machine
entered a loop)

● this construction does not increase memory usage as soon as
S(n)≥log(n)

● thus the condition “and halts” is not so important

Nondeterministic Turing machines



  

● A machine works in time T(n) if every run (not only the accepting
one) halts after at most T(n) steps

● A machine works in space S(n) if every run (not only the accepting
one) uses at most S(n) tape cells and halts

● NTIME(T(n)) – languages recognizable in time O(T(n)) on a 
nondeterministic machine

● NSPACE(S(n)) – languages recognizable in space O(S(n)) on a 
nondeterministic machine
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● A machine works in time T(n) if every run (not only the accepting
one) halts after at most T(n) steps

● A machine works in space S(n) if every run (not only the accepting
one) uses at most S(n) tape cells and halts

● NTIME(T(n)) – languages recognizable in time O(T(n)) on a 
nondeterministic machine

● NSPACE(S(n)) – languages recognizable in space O(S(n)) on a 
nondeterministic machine

● NL=NSPACE(log n) 
● NP=k∈ℕNTIME(nk)

● NPSPACE=k∈ℕNSPACE(nk)
● itp.

Nondeterministic Turing machines



  

An example of a language in NP – the language of (codes of) these
graphs in which there exists a Hamiltonian cycle

How do we recognize it? 
● walk in the graph, arbitrarily choosing the next node to visit – 

remember visited nodes, and ensure that every node is visited
at most once; 

● if every node was visited (exactly once), and there is an edge to
the starting node, then accept

Nondeterministic Turing machines



  

An alternative definition of NP – using witnesses:
● A relation R is defined as the language of words of the form v$w 

(where v,w∈S* and $∉S)
● A relation R is called polynomial if:

➔ R∈P  and
➔ there exists a polynomial p such that v$w∈R implies |w|≤p(|v|)

● The projection of a relation R is defined as ∃R={v : ∃w. v$w∈R}

A model with witnesses



  

An alternative definition of NP – using witnesses:
● A relation R is defined as the language of words of the form v$w 

(where v,w∈S* and $∉S)
● A relation R is called polynomial if:

➔ R∈P  and
➔ there exists a polynomial p such that v$w∈R implies |w|≤p(|v|)

● The projection of a relation R is defined as ∃R={v : ∃w. v$w∈R}

An example of a language in NP – the language of (codes of) these
graphs in which there exists a Hamiltonian cycle
● it is of the form ∃R for 

R={graph $ consecutive nodes on a Hamiltonian cycle in this graph}
● it is easy to recognize R in polynomial time
● the second part (a cycle) is no longer than the first one (a graph)

A model with witnesses



  

Theorem
L∈NP  there exists a polynomial relation R such that L=∃R

A model with witnesses



  

Theorem
L∈NP  there exists a polynomial relation R such that L=∃R
Proof
 By definition, the length of witnesses is bounded by some
polynomial p. We create a machine M, which after the input word 
(nondeterministically) writes an arbitrary word of length ≤p(n) 
(in particular M counts the length of the word that it writes, and 
finishes writing it, if it gets longer than p(n)); then M executes the
(deterministic) machine recognizing R.
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Theorem
L∈NP  there exists a polynomial relation R such that L=∃R
Proof
 By definition, the length of witnesses is bounded by some
polynomial p. We create a machine M, which after the input word 
(nondeterministically) writes an arbitrary word of length ≤p(n) 
(in particular M counts the length of the word that it writes, and 
finishes writing it, if it gets longer than p(n)); then M executes the
(deterministic) machine recognizing R.
 L is recognized by a nondeterministic machine M in time p(n). 
Then on every accepted word v there exists a sequence of 
transitions of M performed in consecutive steps of an accepting run;
this sequence has length ≤p(|v|). To R we take input words together
with codes of accepting runs. This relation is polynomial; in 
particular, it can be recognized by a deterministic machine in 
polynomial time (remark: notice that a “transition” comes from a set of 
constant size)

A model with witnesses



  

Theorem
L∈NP  there exists a polynomial relation R such that L=∃R
Similarly we can define another time-complexity classes, e.g., 
languages from NEXPTIME are projections of relations such that:

➔ can be recognized in P
➔ there exists an exponential function f such that 

v$w∈R implies |w|≤f(|v|)

A model with witnesses



  

Theorem
L∈NP  there exists a polynomial relation R such that L=∃R
Similarly we can define another time-complexity classes, e.g., 
languages from NEXPTIME are projections of relations such that:

➔ can be recognized in P
➔ there exists an exponential function f such that 

v$w∈R implies |w|≤f(|v|)

What about space-complexity classes, e.g., NL?
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Theorem
L∈NP  there exists a polynomial relation R such that L=∃R
Similarly we can define another time-complexity classes, e.g., 
languages from NEXPTIME are projections of relations such that:

➔ can be recognized in P
➔ there exists an exponential function f such that 

v$w∈R implies |w|≤f(|v|)

What about space-complexity classes, e.g., NL?
● a witness of logarithmic length?
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Theorem
L∈NP  there exists a polynomial relation R such that L=∃R
Similarly we can define another time-complexity classes, e.g., 
languages from NEXPTIME are projections of relations such that:

➔ can be recognized in P
➔ there exists an exponential function f such that 

v$w∈R implies |w|≤f(|v|)

What about space-complexity classes, e.g., NL?
● a witness of logarithmic length? – too short
● a witness of polynomial length, recognizing in L?
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Theorem
L∈NP  there exists a polynomial relation R such that L=∃R
Similarly we can define another time-complexity classes, e.g., 
languages from NEXPTIME are projections of relations such that:

➔ can be recognized in P
➔ there exists an exponential function f such that 

v$w∈R implies |w|≤f(|v|)

What about space-complexity classes, e.g., NL?
● a witness of logarithmic length? – too short
● a witness of polynomial length, recognizing in L?

 – too much: gives the whole NP
● a witness of polynomial length, which can be read only once

(the head does not move left), recognizing in L – OK

A model with witnesses



  

For every class C, the class coC consists of complements of
languages from C.
● for trivial reasons, deterministic classes are equal to its co-classes,

e.g., P=coP
● for nondeterministic classes this is not clear
● e.g., the language of graph, in which there DOES NOT exist an

Hamiltonian cycle
➔ belongs to coNP
➔ but is it in NP? – what can be taken as a witness?

Classes of complements



  

For every class C, the class coC consists of complements of
languages from C.
● for trivial reasons, deterministic classes are equal to its co-classes,

e.g., P=coP
● for nondeterministic classes this is not clear
● e.g., the language of graph, in which there DOES NOT exist an

Hamiltonian cycle
➔ belongs to coNP
➔ but is it in NP? – what can be taken as a witness?

● An open problem: does NP≠coNP?
(if NP≠coNP then also NP≠P)

● Another open problem: does NP∩coNP=P?
We don't have too many problems, for which we know that they 
are in NP∩coNP, but we do not know whether they are in P.

Classes of complements



  

We don't have too many problems, for which we know that they 
are in NP∩coNP, but we do not know whether they are in P:
➔ For a long time checking that a number is prime was a problem

with this property, but now we know that it is in P
➔ Example: factoring ∈ NP∩coNP (decision variant of factoring: 

does n have a prime factor <k?) – prime factorization is a witness 
in both directions.
This suggests that NP∩coNP≠P, as we believe that factoring 
cannot be done in polynomial time.

➔ Another example: some game problems, e.g.
parity_games ∈ NP∩coNP (next slide)

NP∩coNP



  

● We are given a directed graph, with nodes labeled by numbers
● Players alternatingly move (one, common) pawn along edges

of the graph – ad infinitum
● We look for the greatest number appearing infinitely often – if it is

odd, then player 1 wins; if it is even, player 2 wins

Parity games

1 2 3 43 5



  

● We are given a directed graph, with nodes labeled by numbers
● Players alternatingly move (one, common) pawn along edges

of the graph – ad infinitum
● We look for the greatest number appearing infinitely often – if it is

odd, then player 1 wins; if it is even, player 2 wins
● Alternatively: we play only to the first repetition of a pair (node, player_number)

and we look for the greatest number on the created cycle
● Question: does player 1 wins (has a wining strategy)?
● It is in NP: a strategy of player 1 is a polynomial size witness, 

which can be verified in polynomial time
● It is in coNP as well – a strategy of player 2 is ...
● not known to be in P
● can be solved in O(nc+log n)

   
1 2 3 43 5

Parity games



  

Theorem
DTIME(f(n))⊆NTIME(f(n)), DSPACE(f(n))⊆NSPACE(f(n))

Proof
Trivial, since a deterministic machine is a special case of a 
nondeterministic machine.

Determinization



  

Theorem
NTIME(f(n))⊆DSPACE(f(n))

Proof
● We have a nondetermin. machine M working in time g(n)=O(f(n)).

We want to check whether it has an accepting run on a given input.

Determinization



  

Theorem
NTIME(f(n))⊆DSPACE(f(n))

Proof
● We have a nondetermin. machine M working in time g(n)=O(f(n)).

We want to check whether it has an accepting run on a given input.
● Allocate space g(n) and generate there all possible words w of this

length, one after another (assume for a moment that g(n) is
space constructible)

● For every generated word w simulate M on the input word,
treating w is a sequence of consecutive choices of M
(the input word should not be destroyed)
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Theorem
NTIME(f(n))⊆DSPACE(f(n))

Proof
● We have a nondetermin. machine M working in time g(n)=O(f(n)).

We want to check whether it has an accepting run on a given input.
● Allocate space g(n) and generate there all possible words w of this

length, one after another (assume for a moment that g(n) is
space constructible)

● For every generated word w simulate M on the input word,
treating w is a sequence of consecutive choices of M
(the input word should not be destroyed)

● We need space g(n) for the sequences of choices, and at most g(n)
for the memory of M

● We can succeed also without assuming that g(n) is space 
constructible: we start from short sequences of choices; 
if during the simulation of M we see that the sequence is too short, 
we make it longer.

Determinization



  

Theorem
NTIME(f(n))⊆DSPACE(f(n))

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Determinization



  

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
● We have a nondeterm. machine M working in space g(n)=O(f(n)).

W.l.o.g. we assume that M has only one working tape.

Determinization



  

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
● We have a nondeterm. machine M working in space g(n)=O(f(n)).

W.l.o.g. we assume that M has only one working tape.
● A configuration of M on a fixed input of length n can be 

represented as:
➔ contents of the working tape, with a marker over the position 

of the head – (2|G|)g(n) possibilities
➔ a position of the head on the input tape – n+2 possibilities
➔ a state (a constant number of possibilities)

● Altogether, there are dg(n)+log(n) configurations (for some constant d)

Determinization



  

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
● We have a nondeterm. machine M working in space g(n)=O(f(n)).

W.l.o.g. we assume that M has only one working tape.
● A configuration of M on a fixed input of length n can be 

represented as:
➔ contents of the working tape, with a marker over the position 

of the head – (2|G|)g(n) possibilities
➔ a position of the head on the input tape – n+2 possibilities
➔ a state (a constant number of possibilities)

● Altogether, there are dg(n)+log(n) configurations (for some constant d)
● Checking that there is an accepting run amount to checking

reachability in the (directed) configuration graph.
● Reachability can be solved in time polynomial in the size of the

graph (i.e., in the number of configurations).

Determinization



  

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
Remark 1 – If we want to generate all configurations using space 
g(n), we have to assume that g(n) is space constructible (or at least
constructible in time O(cf(n)+log(n))). But we do not need to do this – 
we can construct the configuration graph “on the fly”: we only need
to be able to generate configurations reachable from a given 
configuration in a single step (to this end, space-constructibility
of f(n) is not needed).

Determinization



  

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
Remark 1 – If we want to generate all configurations using space 
g(n), we have to assume that g(n) is space constructible (or at least
constructible in time O(cf(n)+log(n))). But we do not need to do this – 
we can construct the configuration graph “on the fly”: we only need
to be able to generate configurations reachable from a given 
configuration in a single step (to this end, space-constructibility
of f(n) is not needed).
Remark 2 – the input is not treated as a part of a configuration; 
thus in order to generate configurations reachable from a given 
configuration in a single step we have to inspect the input word.

Determinization



  

Corollaries
L⊆NL⊆P⊆NP⊆PSPACE

Supposedly, all the inclusions are strict, but we only know that 
some of them has to be strict (space hierarchy theorem).

Determinization



  

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Fact: the reachability problem is in NL.

Proof: the machine remembers the current node, and guesses the
next node (alternatively: a path in the graph can be taken as a witness)

Reachability in a directed graph



  

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Theorem: the reachability problem is in DSPACE((log n)2).

Reachability in a directed graph



  

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Theorem: the reachability problem is in DSPACE((log n)2).

Proof: 
● consider a more general problem PATH(x,y,k): is there a path from

x to y of length at most 2k?

Reachability in a directed graph



  

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Theorem: the reachability problem is in DSPACE((log n)2).

Proof: 
● consider a more general problem PATH(x,y,k): is there a path from

x to y of length at most 2k?
● can be easily solved for k=0
● in order to solve this for some k>0, we browse all nodes z, and for

each of them we ask whether PATH(x,z,k-1) and PATH(z,y,k-1)

Reachability in a directed graph



  

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Theorem: the reachability problem is in DSPACE((log n)2).

Proof: 
● consider a more general problem PATH(x,y,k): is there a path from

x to y of length at most 2k?
● can be easily solved for k=0
● in order to solve this for some k>0, we browse all nodes z, and for

each of them we ask whether PATH(x,z,k-1) and PATH(z,y,k-1)
● recursion – we need a stack, on which we store triples (x,y,k)
● every triple has size log(n), and there are log(n) of them (it is 

enough to consider k≤log(n)) – thus memory usage is O((log n)2)

Reachability in a directed graph



  

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

(earlier, we have shown that NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Determinization



  

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Proof
● We have a nondet. machine M working in space g(n)=O(f(n)).
● Consider the graph of configurations fitting in space ≤g(n) – there 

is dg(n) of them, for some d, because g(n)=W(log n) 
● Every such configuration can be stored in space O(f(n))
● We are interested in reachability in this graph (to every accepting

configuration) – using the previous theorem, we obtain a solution
working in space O((log dg(n))2)=O(f(n)2)

Determinization



  

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Proof
● We have a nondet. machine M working in space g(n)=O(f(n)).
● Consider the graph of configurations fitting in space ≤g(n) – there 

is dg(n) of them, for some d, because g(n)=W(log n) 
● Every such configuration can be stored in space O(f(n))
● We are interested in reachability in this graph (to every accepting

configuration) – using the previous theorem, we obtain a solution
working in space O((log dg(n))2)=O(f(n)2)

● Remark 1: we do not compute and remember the whole graph;
we only check single edges at the very bottom of the recursion
(can y be reached from x in a single step)

Determinization



  

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Proof – Remark 2: 
● It would be useful to assume that g(n) is space constructible: 

we need to browse all accepting configurations / configurations z, 
fitting in space ≤g(n); we need to start with appropriate k=log(dg(n)) 

Determinization



  

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Proof – Remark 2: 
● It would be useful to assume that g(n) is space constructible: 

we need to browse all accepting configurations / configurations z, 
fitting in space ≤g(n); we need to start with appropriate k=log(dg(n)) 

● However, we can succeed without this assumption: 
for consecutive values of S we check whether M accepts in space
S, and whether M reaches a configuration in which it wants to
increase the memory usage over S (if so, we increase S by 1,
and we repeat)
 

Determinization



  

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Corollaries: 

NPSPACE=PSPACE=coNPSPACE

Next time, we will also prove that NL=coNL.

It seems that nondeterminism has smaller impact on space 
complexity than on time complexity (since probably P≠NP≠coNP)
(but we do not know whether L=NL; it's quite possible that they differ)

Determinization



  

Idea: 
● problem A reduces to problem B if while knowing how to solve B 

it is easy to solve A as well
● if B is easy, then A is easy as well
● if A is difficult, then B is difficult as well

There are multiple kinds of reductions...

Reductions



  

An oracle machine, with an oracle for a language K:
● a deterministic Turing machine
● a separate “query tape” used for writing queries to the oracle 

(write only, i.e., the head mover only right; its length is not included
in the space complexity)

● special states q?, qyes, qno for calling the oracle
● after entering state q?, the state changes to qyes if the word on the

query tape is in K / to qno if it is not in K; the query tape becomes
empty and the head returns to its first cell (all this happens 
in a single step)

➔ A language L is Turing-reducible to K if there exist a machine with
an oracle for K, which recognizes L 

Turing reductions / Cook reductions



  

An oracle machine, with an oracle for a language K:
● a deterministic Turing machine
● a separate “query tape” used for writing queries to the oracle 

(write only, i.e., the head mover only right; its length is not included
in the space complexity)

● special states q?, qyes, qno for calling the oracle
● after entering state q?, the state changes to qyes if the word on the

query tape is in K / to qno if it is not in K; the query tape becomes
empty and the head returns to its first cell (all this happens 
in a single step)

➔ A language L is Turing-reducible to K if there exist a machine with
an oracle for K, which recognizes L 

➔ By limiting the resources of M, one can talk about polynomial-time
Turing reductions (often called Cook reductions), 
logarithmic-space Turing reductions, etc.

Turing reductions / Cook reductions



  

➔ A language L is Turing-reducible to K if there exist a machine with
an oracle for K, which recognizes L 

➔ By limiting the resources of M, one can talk about polynomial-time
Turing reductions (often called Cook reductions), 
logarithmic-space Turing reductions, etc.

Observe that every language L∈NP can be reduced to L∈coNP: 
it is enough to call the oracle for L, and negate the answer. 
But we don't know whether NP is contained in coNP.
This is rather inconvenient: we prefer not to have reductions 
between independent classes.
Thus Cook reductions are not so popular.
We prefer Karp reductions (next slide), having better properties.

Turing reductions / Cook reductions
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