

Computational complexity

lecture 6

Homework:
available on the webpage,

deadline: 26.11.2018

Already finished:
● Deterministic Turing machines – basic facts
● Boolean circuits

Next topic:
● Nondeterministic Turing machines, reductions

Later:
● Probabilistic computations
● Fixed parameter tractability (FPT)
● Interactive proofs
● Alternating Turing machines
● Probabilistically checkable proofs (PCP)
● ...

Overview

We introduce the following changes to the definition of Turing machines:
● a transition relation instead of a transition function:

dQGkQGk{L,R,Z}k
● there is no rejecting state (it is useless)

Nondeterministic Turing machines

We introduce the following changes to the definition of Turing machines:
● a transition relation instead of a transition function:

dQGkQGk{L,R,Z}k
● there is no rejecting state (it is useless)
● a transition relation on configurations
● a run of a machine: any sequence of configuration which respects

the transition relation
● a machine accepts a word w if there exists an accepting run over

this word

Nondeterministic Turing machines

We introduce the following changes to the definition of Turing machines:
● a transition relation instead of a transition function:

dQGkQGk{L,R,Z}k
● there is no rejecting state (it is useless)
● a transition relation on configurations
● a run of a machine: any sequence of configuration which respects

the transition relation
● a machine accepts a word w if there exists an accepting run over

this word
● A machine works in time T(n) if every run (not only the accepting

one) halts after at most T(n) steps
● A machine works in space S(n) if every run (not only the accepting

one) uses at most S(n) tape cells and halts

Nondeterministic Turing machines

A machine works in space S(n) if every run (not only the accepting
one) uses at most S(n) tape cells and halts
● for a deterministic machine there was Sipser's theorem, saying

that the halting property can be introduced without increasing
memory usage (we could remove the condition “and halts”
from the above definition)

● for a nondeterministic machine the Sipser's construction
(simulating the computation backwards) does not work

Nondeterministic Turing machines

A machine works in space S(n) if every run (not only the accepting
one) uses at most S(n) tape cells and halts
● for a deterministic machine there was Sipser's theorem, saying

that the halting property can be introduced without increasing
memory usage (we could remove the condition “and halts”
from the above definition)

● for a nondeterministic machine the Sipser's construction
(simulating the computation backwards) does not work

● but the construction with a counter of steps does work
(if the number of steps has exceeded the maximal number of
configurations for the current memory usage, then the machine
entered a loop)

● this construction does not increase memory usage as soon as
S(n)≥log(n)

● thus the condition “and halts” is not so important

Nondeterministic Turing machines

● A machine works in time T(n) if every run (not only the accepting
one) halts after at most T(n) steps

● A machine works in space S(n) if every run (not only the accepting
one) uses at most S(n) tape cells and halts

● NTIME(T(n)) – languages recognizable in time O(T(n)) on a
nondeterministic machine

● NSPACE(S(n)) – languages recognizable in space O(S(n)) on a
nondeterministic machine

Nondeterministic Turing machines

● A machine works in time T(n) if every run (not only the accepting
one) halts after at most T(n) steps

● A machine works in space S(n) if every run (not only the accepting
one) uses at most S(n) tape cells and halts

● NTIME(T(n)) – languages recognizable in time O(T(n)) on a
nondeterministic machine

● NSPACE(S(n)) – languages recognizable in space O(S(n)) on a
nondeterministic machine

● NL=NSPACE(log n)
● NP=k∈ℕNTIME(nk)

● NPSPACE=k∈ℕNSPACE(nk)
● itp.

Nondeterministic Turing machines

An example of a language in NP – the language of (codes of) these
graphs in which there exists a Hamiltonian cycle

How do we recognize it?
● walk in the graph, arbitrarily choosing the next node to visit –

remember visited nodes, and ensure that every node is visited
at most once;

● if every node was visited (exactly once), and there is an edge to
the starting node, then accept

Nondeterministic Turing machines

An alternative definition of NP – using witnesses:
● A relation R is defined as the language of words of the form v$w

(where v,w∈S* and $∉S)
● A relation R is called polynomial if:

➔ R∈P and
➔ there exists a polynomial p such that v$w∈R implies |w|≤p(|v|)

● The projection of a relation R is defined as ∃R={v : ∃w. v$w∈R}

A model with witnesses

An alternative definition of NP – using witnesses:
● A relation R is defined as the language of words of the form v$w

(where v,w∈S* and $∉S)
● A relation R is called polynomial if:

➔ R∈P and
➔ there exists a polynomial p such that v$w∈R implies |w|≤p(|v|)

● The projection of a relation R is defined as ∃R={v : ∃w. v$w∈R}

An example of a language in NP – the language of (codes of) these
graphs in which there exists a Hamiltonian cycle
● it is of the form ∃R for

R={graph $ consecutive nodes on a Hamiltonian cycle in this graph}
● it is easy to recognize R in polynomial time
● the second part (a cycle) is no longer than the first one (a graph)

A model with witnesses

Theorem
L∈NP there exists a polynomial relation R such that L=∃R

A model with witnesses

Theorem
L∈NP there exists a polynomial relation R such that L=∃R
Proof
 By definition, the length of witnesses is bounded by some
polynomial p. We create a machine M, which after the input word
(nondeterministically) writes an arbitrary word of length ≤p(n)
(in particular M counts the length of the word that it writes, and
finishes writing it, if it gets longer than p(n)); then M executes the
(deterministic) machine recognizing R.

A model with witnesses

Theorem
L∈NP there exists a polynomial relation R such that L=∃R
Proof
 By definition, the length of witnesses is bounded by some
polynomial p. We create a machine M, which after the input word
(nondeterministically) writes an arbitrary word of length ≤p(n)
(in particular M counts the length of the word that it writes, and
finishes writing it, if it gets longer than p(n)); then M executes the
(deterministic) machine recognizing R.
 L is recognized by a nondeterministic machine M in time p(n).
Then on every accepted word v there exists a sequence of
transitions of M performed in consecutive steps of an accepting run;
this sequence has length ≤p(|v|). To R we take input words together
with codes of accepting runs. This relation is polynomial; in
particular, it can be recognized by a deterministic machine in
polynomial time (remark: notice that a “transition” comes from a set of
constant size)

A model with witnesses

Theorem
L∈NP there exists a polynomial relation R such that L=∃R
Similarly we can define another time-complexity classes, e.g.,
languages from NEXPTIME are projections of relations such that:

➔ can be recognized in P
➔ there exists an exponential function f such that

v$w∈R implies |w|≤f(|v|)

A model with witnesses

Theorem
L∈NP there exists a polynomial relation R such that L=∃R
Similarly we can define another time-complexity classes, e.g.,
languages from NEXPTIME are projections of relations such that:

➔ can be recognized in P
➔ there exists an exponential function f such that

v$w∈R implies |w|≤f(|v|)

What about space-complexity classes, e.g., NL?

A model with witnesses

Theorem
L∈NP there exists a polynomial relation R such that L=∃R
Similarly we can define another time-complexity classes, e.g.,
languages from NEXPTIME are projections of relations such that:

➔ can be recognized in P
➔ there exists an exponential function f such that

v$w∈R implies |w|≤f(|v|)

What about space-complexity classes, e.g., NL?
● a witness of logarithmic length?

A model with witnesses

Theorem
L∈NP there exists a polynomial relation R such that L=∃R
Similarly we can define another time-complexity classes, e.g.,
languages from NEXPTIME are projections of relations such that:

➔ can be recognized in P
➔ there exists an exponential function f such that

v$w∈R implies |w|≤f(|v|)

What about space-complexity classes, e.g., NL?
● a witness of logarithmic length? – too short
● a witness of polynomial length, recognizing in L?

A model with witnesses

Theorem
L∈NP there exists a polynomial relation R such that L=∃R
Similarly we can define another time-complexity classes, e.g.,
languages from NEXPTIME are projections of relations such that:

➔ can be recognized in P
➔ there exists an exponential function f such that

v$w∈R implies |w|≤f(|v|)

What about space-complexity classes, e.g., NL?
● a witness of logarithmic length? – too short
● a witness of polynomial length, recognizing in L?

 – too much: gives the whole NP
● a witness of polynomial length, which can be read only once

(the head does not move left), recognizing in L – OK

A model with witnesses

For every class C, the class coC consists of complements of
languages from C.
● for trivial reasons, deterministic classes are equal to its co-classes,

e.g., P=coP
● for nondeterministic classes this is not clear
● e.g., the language of graph, in which there DOES NOT exist an

Hamiltonian cycle
➔ belongs to coNP
➔ but is it in NP? – what can be taken as a witness?

Classes of complements

For every class C, the class coC consists of complements of
languages from C.
● for trivial reasons, deterministic classes are equal to its co-classes,

e.g., P=coP
● for nondeterministic classes this is not clear
● e.g., the language of graph, in which there DOES NOT exist an

Hamiltonian cycle
➔ belongs to coNP
➔ but is it in NP? – what can be taken as a witness?

● An open problem: does NP≠coNP?
(if NP≠coNP then also NP≠P)

● Another open problem: does NP∩coNP=P?
We don't have too many problems, for which we know that they
are in NP∩coNP, but we do not know whether they are in P.

Classes of complements

We don't have too many problems, for which we know that they
are in NP∩coNP, but we do not know whether they are in P:
➔ For a long time checking that a number is prime was a problem

with this property, but now we know that it is in P
➔ Example: factoring ∈ NP∩coNP (decision variant of factoring:

does n have a prime factor <k?) – prime factorization is a witness
in both directions.
This suggests that NP∩coNP≠P, as we believe that factoring
cannot be done in polynomial time.

➔ Another example: some game problems, e.g.
parity_games ∈ NP∩coNP (next slide)

NP∩coNP

● We are given a directed graph, with nodes labeled by numbers
● Players alternatingly move (one, common) pawn along edges

of the graph – ad infinitum
● We look for the greatest number appearing infinitely often – if it is

odd, then player 1 wins; if it is even, player 2 wins

Parity games

1 2 3 43 5

● We are given a directed graph, with nodes labeled by numbers
● Players alternatingly move (one, common) pawn along edges

of the graph – ad infinitum
● We look for the greatest number appearing infinitely often – if it is

odd, then player 1 wins; if it is even, player 2 wins
● Alternatively: we play only to the first repetition of a pair (node, player_number)

and we look for the greatest number on the created cycle
● Question: does player 1 wins (has a wining strategy)?
● It is in NP: a strategy of player 1 is a polynomial size witness,

which can be verified in polynomial time
● It is in coNP as well – a strategy of player 2 is ...
● not known to be in P
● can be solved in O(nc+log n)

1 2 3 43 5

Parity games

Theorem
DTIME(f(n))⊆NTIME(f(n)), DSPACE(f(n))⊆NSPACE(f(n))

Proof
Trivial, since a deterministic machine is a special case of a
nondeterministic machine.

Determinization

Theorem
NTIME(f(n))⊆DSPACE(f(n))

Proof
● We have a nondetermin. machine M working in time g(n)=O(f(n)).

We want to check whether it has an accepting run on a given input.

Determinization

Theorem
NTIME(f(n))⊆DSPACE(f(n))

Proof
● We have a nondetermin. machine M working in time g(n)=O(f(n)).

We want to check whether it has an accepting run on a given input.
● Allocate space g(n) and generate there all possible words w of this

length, one after another (assume for a moment that g(n) is
space constructible)

● For every generated word w simulate M on the input word,
treating w is a sequence of consecutive choices of M
(the input word should not be destroyed)

Determinization

Theorem
NTIME(f(n))⊆DSPACE(f(n))

Proof
● We have a nondetermin. machine M working in time g(n)=O(f(n)).

We want to check whether it has an accepting run on a given input.
● Allocate space g(n) and generate there all possible words w of this

length, one after another (assume for a moment that g(n) is
space constructible)

● For every generated word w simulate M on the input word,
treating w is a sequence of consecutive choices of M
(the input word should not be destroyed)

● We need space g(n) for the sequences of choices, and at most g(n)
for the memory of M

● We can succeed also without assuming that g(n) is space
constructible: we start from short sequences of choices;
if during the simulation of M we see that the sequence is too short,
we make it longer.

Determinization

Theorem
NTIME(f(n))⊆DSPACE(f(n))

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Determinization

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
● We have a nondeterm. machine M working in space g(n)=O(f(n)).

W.l.o.g. we assume that M has only one working tape.

Determinization

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
● We have a nondeterm. machine M working in space g(n)=O(f(n)).

W.l.o.g. we assume that M has only one working tape.
● A configuration of M on a fixed input of length n can be

represented as:
➔ contents of the working tape, with a marker over the position

of the head – (2|G|)g(n) possibilities
➔ a position of the head on the input tape – n+2 possibilities
➔ a state (a constant number of possibilities)

● Altogether, there are dg(n)+log(n) configurations (for some constant d)

Determinization

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
● We have a nondeterm. machine M working in space g(n)=O(f(n)).

W.l.o.g. we assume that M has only one working tape.
● A configuration of M on a fixed input of length n can be

represented as:
➔ contents of the working tape, with a marker over the position

of the head – (2|G|)g(n) possibilities
➔ a position of the head on the input tape – n+2 possibilities
➔ a state (a constant number of possibilities)

● Altogether, there are dg(n)+log(n) configurations (for some constant d)
● Checking that there is an accepting run amount to checking

reachability in the (directed) configuration graph.
● Reachability can be solved in time polynomial in the size of the

graph (i.e., in the number of configurations).

Determinization

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
Remark 1 – If we want to generate all configurations using space
g(n), we have to assume that g(n) is space constructible (or at least
constructible in time O(cf(n)+log(n))). But we do not need to do this –
we can construct the configuration graph “on the fly”: we only need
to be able to generate configurations reachable from a given
configuration in a single step (to this end, space-constructibility
of f(n) is not needed).

Determinization

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
Remark 1 – If we want to generate all configurations using space
g(n), we have to assume that g(n) is space constructible (or at least
constructible in time O(cf(n)+log(n))). But we do not need to do this –
we can construct the configuration graph “on the fly”: we only need
to be able to generate configurations reachable from a given
configuration in a single step (to this end, space-constructibility
of f(n) is not needed).
Remark 2 – the input is not treated as a part of a configuration;
thus in order to generate configurations reachable from a given
configuration in a single step we have to inspect the input word.

Determinization

Corollaries
L⊆NL⊆P⊆NP⊆PSPACE

Supposedly, all the inclusions are strict, but we only know that
some of them has to be strict (space hierarchy theorem).

Determinization

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Fact: the reachability problem is in NL.

Proof: the machine remembers the current node, and guesses the
next node (alternatively: a path in the graph can be taken as a witness)

Reachability in a directed graph

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Theorem: the reachability problem is in DSPACE((log n)2).

Reachability in a directed graph

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Theorem: the reachability problem is in DSPACE((log n)2).

Proof:
● consider a more general problem PATH(x,y,k): is there a path from

x to y of length at most 2k?

Reachability in a directed graph

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Theorem: the reachability problem is in DSPACE((log n)2).

Proof:
● consider a more general problem PATH(x,y,k): is there a path from

x to y of length at most 2k?
● can be easily solved for k=0
● in order to solve this for some k>0, we browse all nodes z, and for

each of them we ask whether PATH(x,z,k-1) and PATH(z,y,k-1)

Reachability in a directed graph

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Theorem: the reachability problem is in DSPACE((log n)2).

Proof:
● consider a more general problem PATH(x,y,k): is there a path from

x to y of length at most 2k?
● can be easily solved for k=0
● in order to solve this for some k>0, we browse all nodes z, and for

each of them we ask whether PATH(x,z,k-1) and PATH(z,y,k-1)
● recursion – we need a stack, on which we store triples (x,y,k)
● every triple has size log(n), and there are log(n) of them (it is

enough to consider k≤log(n)) – thus memory usage is O((log n)2)

Reachability in a directed graph

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

(earlier, we have shown that NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Determinization

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Proof
● We have a nondet. machine M working in space g(n)=O(f(n)).
● Consider the graph of configurations fitting in space ≤g(n) – there

is dg(n) of them, for some d, because g(n)=W(log n)
● Every such configuration can be stored in space O(f(n))
● We are interested in reachability in this graph (to every accepting

configuration) – using the previous theorem, we obtain a solution
working in space O((log dg(n))2)=O(f(n)2)

Determinization

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Proof
● We have a nondet. machine M working in space g(n)=O(f(n)).
● Consider the graph of configurations fitting in space ≤g(n) – there

is dg(n) of them, for some d, because g(n)=W(log n)
● Every such configuration can be stored in space O(f(n))
● We are interested in reachability in this graph (to every accepting

configuration) – using the previous theorem, we obtain a solution
working in space O((log dg(n))2)=O(f(n)2)

● Remark 1: we do not compute and remember the whole graph;
we only check single edges at the very bottom of the recursion
(can y be reached from x in a single step)

Determinization

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Proof – Remark 2:
● It would be useful to assume that g(n) is space constructible:

we need to browse all accepting configurations / configurations z,
fitting in space ≤g(n); we need to start with appropriate k=log(dg(n))

Determinization

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Proof – Remark 2:
● It would be useful to assume that g(n) is space constructible:

we need to browse all accepting configurations / configurations z,
fitting in space ≤g(n); we need to start with appropriate k=log(dg(n))

● However, we can succeed without this assumption:
for consecutive values of S we check whether M accepts in space
S, and whether M reaches a configuration in which it wants to
increase the memory usage over S (if so, we increase S by 1,
and we repeat)

Determinization

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Corollaries:

NPSPACE=PSPACE=coNPSPACE

Next time, we will also prove that NL=coNL.

It seems that nondeterminism has smaller impact on space
complexity than on time complexity (since probably P≠NP≠coNP)
(but we do not know whether L=NL; it's quite possible that they differ)

Determinization

Idea:
● problem A reduces to problem B if while knowing how to solve B

it is easy to solve A as well
● if B is easy, then A is easy as well
● if A is difficult, then B is difficult as well

There are multiple kinds of reductions...

Reductions

An oracle machine, with an oracle for a language K:
● a deterministic Turing machine
● a separate “query tape” used for writing queries to the oracle

(write only, i.e., the head mover only right; its length is not included
in the space complexity)

● special states q?, qyes, qno for calling the oracle
● after entering state q?, the state changes to qyes if the word on the

query tape is in K / to qno if it is not in K; the query tape becomes
empty and the head returns to its first cell (all this happens
in a single step)

➔ A language L is Turing-reducible to K if there exist a machine with
an oracle for K, which recognizes L

Turing reductions / Cook reductions

An oracle machine, with an oracle for a language K:
● a deterministic Turing machine
● a separate “query tape” used for writing queries to the oracle

(write only, i.e., the head mover only right; its length is not included
in the space complexity)

● special states q?, qyes, qno for calling the oracle
● after entering state q?, the state changes to qyes if the word on the

query tape is in K / to qno if it is not in K; the query tape becomes
empty and the head returns to its first cell (all this happens
in a single step)

➔ A language L is Turing-reducible to K if there exist a machine with
an oracle for K, which recognizes L

➔ By limiting the resources of M, one can talk about polynomial-time
Turing reductions (often called Cook reductions),
logarithmic-space Turing reductions, etc.

Turing reductions / Cook reductions

➔ A language L is Turing-reducible to K if there exist a machine with
an oracle for K, which recognizes L

➔ By limiting the resources of M, one can talk about polynomial-time
Turing reductions (often called Cook reductions),
logarithmic-space Turing reductions, etc.

Observe that every language L∈NP can be reduced to L∈coNP:
it is enough to call the oracle for L, and negate the answer.
But we don't know whether NP is contained in coNP.
This is rather inconvenient: we prefer not to have reductions
between independent classes.
Thus Cook reductions are not so popular.
We prefer Karp reductions (next slide), having better properties.

Turing reductions / Cook reductions

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52

