

Computational complexity

lecture 5

X1 X1

∧

∨

X3X2 X3X2

∨∨∨

∨

∧

1

0

11

111 0 0

0

01

1

Boolean circuits

Circuits of small depth
● class ACk – languages recognizable by a sequence of circuits of

depth O((log(n))k), and of polynomial size
● most interesting cases: AC0 (constant depth),

AC1 (logarithmic depth)

● AC=∪kℕACk

● class ACk – languages recognizable by a sequence of circuits of
depth O((log(n))k), and of polynomial size

● most interesting cases: AC0 (constant depth),
AC1 (logarithmic depth)

● AC=∪kℕACk

● class NCk – languages recognizable by a sequence of circuits of
depth O((log(n))k), of polynomial size, and of fan-in 2
(i.e., every gate has at most 2 predecessors)

● class NC0 is not interesting (only a constant number of bits is checked)

● NC=∪kℕNCk

Circuits of small depth

Circuits of small depth
Uniform variant:
● class u-ACk – languages recognizable by a uniform

(i.e., computable in logarithmic space) sequence of circuits
of depth O((log(n))k)

● u-AC=∪kℕu-ACk

● class u-NCk – languages recognizable by a uniform
sequence of circuits of depth O((log(n))k) and of fan-in 2

● u-NC=∪kℕu-NCk

Remark: Different names are used for these classes: uniform-ACk
or u-ACk or UL-ACk or ACk (i.e., some authors already in the defi-

nition of ACk assume that the sequence of circuits is uniform)

implies polynomial size

Example:
Binary matrix multiplication is in u-AC0

[more precisely: the language of tuples (M,N,i,j) such that (M .N)i,j =1]

(M
.N)i,j = k Mi,k∧Nk,j

● level 1: compute Mi,k∧Nk,j for every (i,j,k)

● level 2: for every (i,j) compute a big disjunction
● additional two levels: select the cell (i,j) specified on input
● it is easy to generate this circuit in logarithmic space

∨

Circuits of small depth

Example:
Binary matrix multiplication is in u-AC0

[more precisely: the language of tuples (M,N,i,j) such that (M .N)i,j =1]

(M
.N)i,j = k Mi,k∧Nk,j

● level 1: compute Mi,k∧Nk,j for every (i,j,k)

● level 2: for every (i,j) compute a big disjunction
● additional two levels: select the cell (i,j) specified on input
● it is easy to generate this circuit in logarithmic space

Binary matrix multiplication is in u-NC1 as well
● a disjunction of n values (on level 2) can be realized as a tree of

depth log(n) consisting of n-1 disjunctions of fan-in 2

∨

∨
∨ ∨

∨

Circuits of small depth

The same can be done in general:
every disjunction (conjunction) of m values can be replaced by
a tree of depth log(m)≤c .log(n) consisting of m-1 disjunctions
(conjunctions) of fan-in 2

Thus we obtain that:

ACk⊆NCk+1 & u-ACk⊆u-NCk+1

By definition we also have that:

NCk⊆ACk & u-NCk⊆u-ACk

Thus in particular:

AC=NC & u-AC=u-NC

∨
∨ ∨

∨

Circuits of small depth

Intuition: u-NC contains problems, which can be quickly
solved by parallel algorithm

An open problem: does u-NC≠P?

Circuits of small depth

Intuition: u-NC contains problems, which can be quickly
solved by parallel algorithm

An open problem: does u-NC≠P?

We have a sequence of inclusions:
u-AC0⊆u-NC1⊆u-AC1⊆u-NC2⊆...⊆u-AC=u-NC⊆P⊆NP⊆PSPACE

It is conjectured that all of them are strict, but it is only known that:
● u-AC0≠u-NC1

● u-NC≠PSPACE

Circuits of small depth

Intuition: u-NC contains problems, which can be quickly
solved by parallel algorithm

An open problem: does u-NC≠P?

We have a sequence of inclusions:
u-AC0⊆u-NC1⊆u-AC1⊆u-NC2⊆...⊆u-AC=u-NC⊆P⊆NP⊆PSPACE

It is conjectured that all of them are strict, but it is only known that:
● u-AC0≠u-NC1

● u-NC≠PSPACE

Why u-NC≠PSPACE?
Follows from the hierarchy theorem, because u-NC⊆polyL
(on tutorials you will prove that u-NC1⊆L)

Why u-AC0≠u-NC1?
Following slides

Circuits of small depth

The parity language
PARITY – the language of those words {0,1} in which the number
of ones is even

Fact: PARITYu-NC1

We count ones modulo 2 – circuit of tree-like shape.

Theorem (1986): PARITYAC0

Proof – the following part of the lecture

● It is one of quite rare nontrivial proofs saying that some problem
cannot be solved in some complexity class.

● (Mostly hardness theorems are relative – if a problem A is hard,
then a problem B is hard, e.g. NP-completeness)

PARITYAC0

● We are going to consider multi-variable polynomials over the field
ℤ3={0,1,2} (we will use them to approximate the behavior of a circuit)

● A polynomial p (of n variables) is called proper if for arguments in
{0,1}n it gives results in {0,1} (we are interested only in such polynomials -
they define a boolean function of n variables, like circuits)

PARITYAC0

● We are going to consider multi-variable polynomials over the field
ℤ3={0,1,2} (we will use them to approximate the behavior of a circuit)

● A polynomial p (of n variables) is called proper if for arguments in
{0,1}n it gives results in {0,1} (we are interested only in such polynomials -
they define a boolean function of n variables, like circuits)

● The total degree of a polynomial p is defined as the sum of
exponents in a monomial in p, e.g., x4y1+x1y2z3 has degree 6

PARITYAC0

● We are going to consider multi-variable polynomials over the field
ℤ3={0,1,2} (we will use them to approximate the behavior of a circuit)

● A polynomial p (of n variables) is called proper if for arguments in
{0,1}n it gives results in {0,1} (we are interested only in such polynomials -
they define a boolean function of n variables, like circuits)

● The total degree of a polynomial p is defined as the sum of
exponents in a monomial in p, e.g., x4y1+x1y2z3 has degree 6

Fix a depth d. We will prove that PARITY cannot be recognized by
a sequence (even not necessarily uniform) of circuits of depth d
and polynomial size.

PARITYAC0

● We are going to consider multi-variable polynomials over the field
ℤ3={0,1,2} (we will use them to approximate the behavior of a circuit)

● A polynomial p (of n variables) is called proper if for arguments in
{0,1}n it gives results in {0,1} (we are interested only in such polynomials -
they define a boolean function of n variables, like circuits)

● The total degree of a polynomial p is defined as the sum of
exponents in a monomial in p, e.g., x4y1+x1y2z3 has degree 6

Fix a depth d. We will prove that PARITY cannot be recognized by
a sequence (even not necessarily uniform) of circuits of depth d
and polynomial size.
General idea:
● Every circuit of small depth can be approximated by a proper

polynomial of low degree (Lemma 1)
● The parity function cannot be approximated by a polynomial of

low degree (Lemma 2)

PARITYAC0

Lemma 1. For every t>0 and n, for every circuit C with n input gates

and depth d there exists a proper polynomial of n variables and

total degree ≤(2t)d, which differs from C on at most inputs
(where |C| denotes the number of gates in C)

––2n
2t

|C|

PARITYAC0

Lemma 1. For every t>0 and n, for every circuit C with n input gates

and depth d there exists a proper polynomial of n variables and

total degree ≤(2t)d, which differs from C on at most inputs
(where |C| denotes the number of gates in C)

We will use this lemma with 2t=n1/(2d)

Then we obtain polynomials of degree ≤√n, while the fraction
|C|/2t tends to 0 when |C| is polynomial in n, and d is constant.

––2n
2t

|C|

PARITYAC0

Lemma 1. For every t>0 and n, for every circuit C with n input gates

and depth d there exists a proper polynomial of n variables and

total degree ≤(2t)d, which differs from C on at most inputs
(where |C| denotes the number of gates in C)

We will use this lemma with 2t=n1/(2d)

Then we obtain polynomials of degree ≤√n, while the fraction
|C|/2t tends to 0 when |C| is polynomial in n, and d is constant.

Lemma 2. For large enough n every polynomial of n variables and

total degree ≤√n differs from the parity function on at least
inputs.

Lemma 1 + Lemma 2 → polynomial circuits of constant depth
cannot recognize PARITY

100––2n1

––2n
2t

|C|

Proof of Lemma 1 (*)

Lemma 1. For every t>0 and n, for every circuit C with n input gates

and depth d there exists a proper polynomial of n variables and

total degree ≤(2t)d, which differs from C on at most inputs
(where |C| denotes the number of gates in C)

Proof.
● Fix n, t and a circuit C of depth d.
● Assume w.l.o.g. that C uses only OR and NOT gates.
● To every gate of C we will assign a proper polynomial of n varia-

bles x1,...,xn, by induction on the depth of the gate, so that it will
compute the value of this gate C for relatively many inputs

––2n
2t

|C|

To every gate of C we will assign a proper polynomial of n varia-
bles x1,...,xn, by induction on the depth of the gate, so that it will
compute the value of this gate C for relatively many inputs:
● i-th input gate – take the polynomial xi, which always computes

a correct value
● NOT gate. If we have assigned a polynomial p to its predecessor,

we take polynomial 1-p, which computes a correct value precisely
when p computed a correct value

● it remains to handle OR gates – the only nontrivial case

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we could take the polynomial: 1-(1-p1)(1-pk)
● it works well whenever p1,...,pk worked well
● but its degree is too large: if p1,...,pk have degrees at most s,

then its degree is ks – we rather need to obtain ≤2ts,
as then on the output gate we will have degree (2t)d

● we thus have to proceed in a more clever way

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we could take the polynomial: 1-(1-p1)(1-pk)
● it works well whenever p1,...,pk worked well
● but its degree is too large: if p1,...,pk have degrees at most s,

then its degree is ks – we rather need to obtain ≤2ts,
as then on the output gate we will have degree (2t)d

● we thus have to proceed in a more clever way
● in a moment, we will appropriately choose sets S1,...,St⊆{1,...,k}
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● in a moment, we will appropriately choose sets S1,...,St⊆{1,...,k}
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

● p is proper, since {02,12,22}={0,1}

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● in a moment, we will appropriately choose sets S1,...,St⊆{1,...,k}
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

● p is proper, since {02,12,22}={0,1}
● if degrees of p1,...,pk are ≤s, then the degree of p is ≤2ts;

then for the output gate of C we obtain degree ≤(2t)d – as required
in the lemma

● it remains to see that p approximates well the value of the gate
(for an appropriate choice of the sets S1,...,St)

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

Fix some input (of the whole circuit C) on which all p1,...,pk give
correct values. Let us randomly choose sets S1,...,St⊆{1,...,k}
(every list of sets has the same probability)

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

Fix some input (of the whole circuit C) on which all p1,...,pk give
correct values. Let us randomly choose sets S1,...,St⊆{1,...,k}
(every list of sets has the same probability)
● If all pj give value 0, then p also gives value 0 – correctly

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

Fix some input (of the whole circuit C) on which all p1,...,pk give
correct values. Let us randomly choose sets S1,...,St⊆{1,...,k}
(every list of sets has the same probability)
● If all pj give value 0, then p also gives value 0 – correctly
● If some pj gives value 1, then for a chosen set Si the polynomial

qi gives value 1 if in this set Si the number of polynomials with
value 1 is not divisible by 3. This is the case for at least half of
choices of Si. Thus the probability that for a random Si the polyno-
mial qi gives value 1 is ≥0.5 (then the whole p also gives value 1).

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

Fix some input (of the whole circuit C) on which all p1,...,pk give
correct values. Let us randomly choose sets S1,...,St⊆{1,...,k}
(every list of sets has the same probability)
● If all pj give value 0, then p also gives value 0 – correctly
● If some pj gives value 1, then for a chosen set Si the polynomial

qi gives value 1 if in this set Si the number of polynomials with
value 1 is not divisible by 3. This is the case for at least half of
choices of Si. Thus the probability that for a random Si the polyno-
mial qi gives value 1 is ≥0.5 (then the whole p also gives value 1).

● Thus, if the sets S1,...,St⊆{1,...,k} are chosen randomly, the proba-
bility that p will give an incorrect value is at most 1/2t

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

● For a fixed input, for which all p1,...,pk give correct values, and for
sets S1,...,St⊆{1,...,k} chosen randomly, the probability that p gives
an incorrect value is at most 1/2t

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

● For a fixed input, for which all p1,...,pk give correct values, and for
sets S1,...,St⊆{1,...,k} chosen randomly, the probability that p gives
an incorrect value is at most 1/2t

● Thus: for an input chosen randomly among those inputs for which
all p1,...,pk give correct values, and for sets S1,...,St⊆{1,...,k} chosen
randomly, the probability that p gives an incorrect value is
at most 1/2t

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

● For a fixed input, for which all p1,...,pk give correct values, and for
sets S1,...,St⊆{1,...,k} chosen randomly, the probability that p gives
an incorrect value is at most 1/2t

● Thus: for an input chosen randomly among those inputs for which
all p1,...,pk give correct values, and for sets S1,...,St⊆{1,...,k} chosen
randomly, the probability that p gives an incorrect value is
at most 1/2t

● Thus: there exist sets S1,...,St⊆{1,...,k} such that for an input
chosen randomly among those inputs for which all p1,...,pk give
correct values, the probability that p gives an incorrect value is
at most 1/2t

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

● Thus: there exist sets S1,...,St⊆{1,...,k} such that for an input
chosen randomly among those inputs for which all p1,...,pk give
correct values, the probability that p gives an incorrect value is
at most 1/2t

● We take an arbitrary list of sets having this property
● The considered gate introduces a mistake on at most 2n/2t

inputs
● Altogether, the value will be incorrect (for some gate) for at most

|C| .2n/2t inputs
[THE END OF THE PROOF OF LEMMA 1]

Proof of Lemma 1 (*)

PARITYAC0

General idea:
● Every circuit of small depth can be approximated by a proper

polynomial of low degree (Lemma 1 – already showed)
● The parity function cannot be approximated by a polynomial of

low degree (Lemma 2 – now)

Lemma 2. For large enough n every polynomial of n variables and
total degree ≤√n differs from the parity function on at least
inputs.

A general idea:
● We assume that there exists a polynomial of low degree which

agrees with the parity function on a large set S of inputs.
● Using this polynomial, for every function we will construct a

polynomial of low degree which agrees with this function on the
same set S.

● There are many functions, but significantly less polynomials.
● Thus the set S cannot be too large.

100––2n1

Proof of Lemma 2 (*)

Lemma 2. For large enough n every polynomial of n variables and
total degree ≤√n differs from the parity function on at least
inputs.

● Let PAR(x1,...,xn) denote the parity function
● Consider the „shifted” parity function PAR':{-1,1}n→{-1,1}

PAR'(x1,...,xn)=PAR(x1-1,...,xn-1)+1=x1
.x2

.....xn

100––2n1

Proof of Lemma 2 (*)

Lemma 2. For large enough n every polynomial of n variables and
total degree ≤√n differs from the parity function on at least
inputs.

● Let PAR(x1,...,xn) denote the parity function
● Consider the „shifted” parity function PAR':{-1,1}n→{-1,1}

PAR'(x1,...,xn)=PAR(x1-1,...,xn-1)+1=x1
.x2

.....xn
● If there exists a polynomial which agrees with PAR on some set

of inputs, then there exists a polynomial of the same degree,
which agrees with PAR' on the same set

● Thus take a polynomial p of degree ≤√n approximating PAR'
Let S⊆{-1,1}n be the set of those inputs in which p agrees
with PAR'.

100––2n1

Proof of Lemma 2 (*)

● A polynomial p of degree ≤√n agrees with PAR' on a set S⊆{-1,1}n.
● Take any function f:S→ℤ3
● We can always represent f as a polynomial:

pf(x1,...,xn)=∑(y1,...,yn)S
f(y1,...,yn)

.(2-x1y1)
.
(2-xnyn)

● This polynomial has degree n, too large for us
● We will correct it so that the degree will be ≤n/2+√n

Proof of Lemma 2 (*)

● A polynomial p of degree ≤√n agrees with PAR' on a set S⊆{-1,1}n.
● Take any function f:S→ℤ3
● We can always represent f as a polynomial:

pf(x1,...,xn)=∑(y1,...,yn)S
f(y1,...,yn)

.(2-x1y1)
.
(2-xnyn)

● This polynomial has degree n, too large for us
● We will correct it so that the degree will be ≤n/2+√n
● To this end, in pf we replace every monomial ∏iT xi of degree

|T|>n/2 by p(x1,...,xn)
.∏i∉T xi

Proof of Lemma 2 (*)

● A polynomial p of degree ≤√n agrees with PAR' on a set S⊆{-1,1}n.
● Take any function f:S→ℤ3
● We can always represent f as a polynomial:

pf(x1,...,xn)=∑(y1,...,yn)S
f(y1,...,yn)

.(2-x1y1)
.
(2-xnyn)

● This polynomial has degree n, too large for us
● We will correct it so that the degree will be ≤n/2+√n
● To this end, in pf we replace every monomial ∏iT xi of degree

|T|>n/2 by p(x1,...,xn)
.∏i∉T xi

● This modification does not change the result, as for (x1,...,xn)S
we have p(x1,...,xn)=x1

.....xn and (x1)2=1
● Now the degree is indeed ≤n/2+√n

Proof of Lemma 2 (*)

● A polynomial p of degree ≤√n agrees with PAR' on a set S⊆{-1,1}n.
● Take any function f:S→ℤ3
● We can always represent f as a polynomial:

pf(x1,...,xn)=∑(y1,...,yn)S
f(y1,...,yn)

.(2-x1y1)
.
(2-xnyn)

● This polynomial has degree n, too large for us
● We will correct it so that the degree will be ≤n/2+√n
● To this end, in pf we replace every monomial ∏iT xi of degree

|T|>n/2 by p(x1,...,xn)
.∏i∉T xi

● This modification does not change the result, as for (x1,...,xn)S
we have p(x1,...,xn)=x1

.....xn and (x1)2=1
● Now the degree is indeed ≤n/2+√n
● Thus (using the hypothetical polynomial p) for every function

f:S→ℤ3 we have constructed a polynomial of degree ≤n/2+√n,

which on S gives the same values as f

Proof of Lemma 2 (*)

● A polynomial p of degree ≤√n agrees with PAR' on a set S⊆{-1,1}n.
● For every function f:S→ℤ3 we have constructed a polynomial

of degree ≤n/2+√n, which on S gives the same values as f
● For inputs in {-1,1}n we have that x2=1, so we can assume that

in the polynomial there are no exponents greater than 1.

Proof of Lemma 2 (*)

● A polynomial p of degree ≤√n agrees with PAR' on a set S⊆{-1,1}n.
● For every function f:S→ℤ3 we have constructed a polynomial

of degree ≤n/2+√n, which on S gives the same values as f
● For inputs in {-1,1}n we have that x2=1, so we can assume that

in the polynomial there are no exponents greater than 1.

Let us compute the number of such polynomials:
● For large enough n, there are ≤0.99

.2n monomials of n variables
and degree ≤n/2+√n, using every variable at most once (next slide)

● Thus the number of polynomials is ≤30.99
.2n

● The number of functions f:S→ℤ3 is 3|S|, to each of them we have

assigned a different polynomial
● Thus |S|≤0.99

.2n

Proof of Lemma 2 (*)

Why the number of monomials (using variables x1,...,xn, each of
them either with exponent 0 or 1) of degree ≤n/2+√n is ≤0.99

.2n,
for large enough n?
● Choose a monomial in random
● Let Xi=(does xi appear in the monomial)
● Random variables Xi are independent and P(Xi=0)=P(Xi=1)=0.5

● Central limit theorem: for every z∈ℝ, P(Zn≤z) → F(z)
where

and m=EXi=0.5, s =sd(Xi)=0.5, and F is the cumulative distribution
function of the normal distribution N(0,1)

● Notice that X1+...+Xn≤n/2+√n ⇔ Zn≤2, and F(2)≈0,97725
● Thus for large enough n, the probability that the degree is ≤n/2+√n

i.e., P(Zn≤2) is at most 0,99

[THE END OF THE PROOF OF LEMMA 2]

n→∞

Zn =
∑i=1

(Xi-m)n

√ns

Proof of Lemma 2 (*)

Consider circuits like in AC0, where additionally we can use the
XOR gate. Then we can recognize PARITY.
Is it enough to recognize, e.g., all regular languages?

Extensions of AC0

Consider circuits like in AC0, where additionally we can use the
XOR gate. Then we can recognize PARITY.
Is it enough to recognize, e.g., all regular languages?
● Class AC0[m] – like AC0, but where we can additionally use gates

counting the number of ones modulo m
● It is known that: if p,q are different prime numbers, then AC0[p]

cannot count modulo q
● An open problem: we cannot show any language, even from NP,

which cannot be recognized in AC0[6]
(gates „mod 6”  gates „mod 2” i gates „mod 3”)

Extensions of AC0

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46

