Computational complexity

lecture 5

Boolean circuits

$$
\begin{array}{lll}
1 \\
1 \sim
\end{array}
$$

Circuits of small depth

- class $\mathbf{A C}^{k}$ - languages recognizable by a sequence of circuits of depth $O\left((\log (n))^{k}\right)$, and of polynomial size
- most interesting cases: AC ${ }^{0}$ (constant depth), $\mathbf{A C}^{1}$ (logarithmic depth)
- $\mathrm{AC}=\cup_{k \in \mathbb{N}} \mathrm{AC}^{k}$

Circuits of small depth

- class $\mathbf{A C}^{k}$ - languages recognizable by a sequence of circuits of depth $O\left((\log (n))^{k}\right)$, and of polynomial size
- most interesting cases: AC ${ }^{0}$ (constant depth), $\mathbf{A C}^{1}$ (logarithmic depth)
- $\mathrm{AC}=\cup_{k \in \mathbb{N}} \mathbf{A C} \mathbf{C}^{k}$
- class $\mathbf{N C}^{k}$ - languages recognizable by a sequence of circuits of depth $O\left((\log (n))^{k}\right)$, of polynomial size, and of fan-in 2 (i.e., every gate has at most 2 predecessors)
- class $\mathbf{N C}^{0}$ is not interesting (only a constant number of bits is checked)
- $\mathbf{N C}=\cup_{k \in \mathbb{N}} \mathbf{N C}^{k}$

Circuits of small depth

Uniform variant:

- class $\mathbf{u}-\mathbf{A C}^{k}$ - languages recognizable by a uniform (i.e., computable in logarithmic space) sequence'of circuits of depth $O\left((\log (n))^{k}\right)$
- $\mathbf{u}-\mathbf{A C}=\cup_{k \in \mathbb{N}} \mathbf{u}-\mathbf{A C}^{k}$
- class u-NC ${ }^{k}$ - languages recognizable by a uniform sequence of circuits of depth $O\left((\log (n))^{k}\right)$ and of fan-in 2
- $\mathbf{u}-\mathbf{N C}=\cup_{k \in \mathbb{N}} \mathbf{u}-\mathbf{N C}^{k}$

Remark: Different names are used for these classes: uniform-AC ${ }^{k}$ or $\mathbf{u}-\mathbf{A C} \mathbf{C}^{k}$ or $\mathbf{U}_{\mathbf{L}}-\mathbf{A C} \mathbf{C}^{k}$ or $\mathbf{A C} \mathbf{C}^{k}$ (i.e., some authors already in the definition of $\mathbf{A C}^{k}$ assume that the sequence of circuits is uniform)

Circuits of small depth

Example:
Binary matrix multiplication is in u-AC ${ }^{0}$
[more precisely: the language of tuples (M, N, i, j) such that $\left.(M \cdot N)_{i, j}=1\right]$
$(M \cdot N)_{i, j}=\bigvee_{k} M_{i, k} \wedge N_{k, j}$

- level 1: compute $M_{i, k} \wedge N_{k, j}$ for every (i,j,k)
- level 2: for every (i, j) compute a big disjunction
- additional two levels: select the cell (i, j) specified on input
- it is easy to generate this circuit in logarithmic space

Circuits of small depth

Example:
Binary matrix multiplication is in $\mathbf{u}-\mathrm{AC}^{0}$
[more precisely: the language of tuples ($\mathrm{M}, \mathrm{N}, \mathrm{i}, \mathrm{j}$) such that $\left.(M \cdot N)_{i, j}=1\right]$
$(M \cdot N)_{i, j}=\bigvee_{k} M_{i, k} \wedge N_{k, j}$

- level 1: compute $M_{i, k} \wedge N_{k, j}$ for every (i,j,k)
- level 2: for every (i, j) compute a big disjunction
- additional two levels: select the cell (i,j) specified on input
- it is easy to generate this circuit in logarithmic space

Binary matrix multiplication is in $\mathbf{u}-\mathrm{NC}^{1}$ as well

- a disjunction of n values (on level 2) can be realized as a tree of depth $\log (n)$ consisting of $n-1$ disjunctions of fan-in 2

Circuits of small depth

The same can be done in general:
every disjunction (conjunction) of m values can be replaced by a tree of depth $\log (m) \leq c \cdot \log (n)$ consisting of $m-1$ disjunctions (conjunctions) of fan-in 2

Thus we obtain that:
$\mathbf{A C}^{k} \subseteq \mathbf{N C}^{k+1} \& \mathbf{u}-\mathbf{A C}^{k} \subseteq \mathbf{u}-\mathbf{N} \mathbf{C}^{k+1}$
By definition we also have that:
$\mathbf{N C}^{k} \subseteq \mathrm{AC}^{k} \& \mathbf{u}-\mathbf{N C}^{k} \subseteq \mathbf{u}-\mathrm{AC}^{k}$
Thus in particular:
AC=NC \& u-AC=u-NC

Circuits of small depth

Intuition: u-NC contains problems, which can be quickly solved by parallel algorithm

An open problem: does $\mathbf{u}-\mathbf{N C} \neq \mathbf{P}$?

Circuits of small depth

Intuition: u-NC contains problems, which can be quickly solved by parallel algorithm

An open problem: does $\mathbf{u}-\mathbf{N C} \neq \mathbf{P}$?
We have a sequence of inclusions:
$\mathbf{u}-\mathbf{A C}^{0} \subseteq \mathbf{u}-\mathbf{N C}^{1} \subseteq \mathbf{u}-\mathbf{A C}{ }^{1} \subseteq \mathbf{u}-\mathbf{N C} \mathbf{C}^{2} \subseteq \ldots \subseteq \mathbf{u}-\mathbf{A C}=\mathbf{u}-\mathbf{N C} \subseteq \mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S P A C E}$
It is conjectured that all of them are strict, but it is only known that:

- u-AC ${ }^{0} \neq \mathbf{u}-\mathrm{NC}^{1}$
- u-NC \neq PSPACE

Circuits of small depth

Intuition: u-NC contains problems, which can be quickly solved by parallel algorithm

An open problem: does u-NC $\neq \mathbf{P}$?
We have a sequence of inclusions:
$\mathbf{u}-\mathbf{A C} \mathbf{C}^{0} \subseteq \mathbf{u}-\mathbf{N C}^{1} \subseteq \mathbf{u}-\mathbf{A C} \mathbf{C}^{1} \subseteq \mathbf{u}-\mathbf{N C}^{2} \subseteq \ldots \subseteq \mathbf{u}-\mathbf{A C}=\mathbf{u}-\mathbf{N C} \subseteq \mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S P A C E}$
It is conjectured that all of them are strict, but it is only known that:

- u-AC ${ }^{0} \neq \mathbf{u}-\mathrm{NC}^{1}$
- u-NC $=$ PSPACE

Why u-NC $=$ PSPACE?
Follows from the hierarchy theorem, because u-NC \subseteq polyL (on tutorials you will prove that $\mathbf{u}-\mathrm{NC}^{1} \subseteq \mathbf{L}$)

Why u-AC ${ }^{0} \neq \mathbf{u}-\mathbf{N C}^{1}$?
Following slides

The parity language
PARITY - the language of those words $\{0,1\}$ in which the number of ones is even

Fact: PARITY $\in \mathbf{u}-\mathbf{N C}^{1}$

We count ones modulo 2 - circuit of tree-like shape.
Theorem (1986): PARITY \notin AC 0
Proof - the following part of the lecture

- It is one of quite rare nontrivial proofs saying that some problem cannot be solved in some complexity class.
- (Mostly hardness theorems are relative - if a problem A is hard, then a problem B is hard, e.g. NP-completeness)

PARITY $\notin \mathbf{A C}^{0}$

- We are going to consider multi-variable polynomials over the field $\mathbb{Z}_{3}=\{0,1,2\}$ (we will use them to approximate the behavior of a circuit)
- A polynomial p (of n variables) is called proper if for arguments in $\{0,1\}^{n}$ it gives results in $\{0,1\}$ (we are interested only in such polynomials they define a boolean function of n variables, like circuits)

PARITY \notin AC 0

- We are going to consider multi-variable polynomials over the field $\mathbb{Z}_{3}=\{0,1,2\}$ (we will use them to approximate the behavior of a circuit)
- A polynomial p (of n variables) is called proper if for arguments in $\{0,1\}^{n}$ it gives results in $\{0,1\}$ (we are interested only in such polynomials they define a boolean function of n variables, like circuits)
- The total degree of a polynomial p is defined as the sum of exponents in a monomial in p, e.g., $x^{4} y^{1}+x^{1} y^{2} z^{3}$ has degree 6

PARITY \notin AC 0

- We are going to consider multi-variable polynomials over the field $\mathbb{Z}_{3}=\{0,1,2\}$ (we will use them to approximate the behavior of a circuit)
- A polynomial p (of n variables) is called proper if for arguments in $\{0,1\}^{n}$ it gives results in $\{0,1\}$ (we are interested only in such polynomials they define a boolean function of n variables, like circuits)
- The total degree of a polynomial p is defined as the sum of exponents in a monomial in p, e.g., $x^{4} y^{1}+x^{1} y^{2} z^{3}$ has degree 6
Fix a depth d. We will prove that PARITY cannot be recognized by a sequence (even not necessarily uniform) of circuits of depth d and polynomial size.

PARITY \notin AC 0

- We are going to consider multi-variable polynomials over the field $\mathbb{Z}_{3}=\{0,1,2\}$ (we will use them to approximate the behavior of a circuit)
- A polynomial p (of n variables) is called proper if for arguments in $\{0,1\}^{n}$ it gives results in $\{0,1\}$ (we are interested only in such polynomials they define a boolean function of n variables, like circuits)
- The total degree of a polynomial p is defined as the sum of exponents in a monomial in p, e.g., $x^{4} y^{1}+x^{1} y^{2} z^{3}$ has degree 6
Fix a depth d. We will prove that PARITY cannot be recognized by a sequence (even not necessarily uniform) of circuits of depth d and polynomial size.
General idea:
- Every circuit of small depth can be approximated by a proper polynomial of low degree (Lemma 1)
- The parity function cannot be approximated by a polynomial of low degree (Lemma 2)

PARITY $\notin \mathbf{A C}^{0}$

Lemma 1. For every $t>0$ and n, for every circuit C with n input gates and depth d there exists a proper polynomial of n variables and total degree $\leq(2 t)^{d}$, which differs from C on at most $\frac{|C|}{2^{2}} t^{n}$ inputs (where $|C|$ denotes the number of gates in C)

PARITY $\notin \mathbf{A C}^{0}$

Lemma 1. For every $t>0$ and n, for every circuit C with n input gates and depth d there exists a proper polynomial of n variables and total degree $\leq(2 t)^{d}$, which differs from C on at most $\frac{|C|}{2^{2}}{ }^{2}$ inputs (where $|C|$ denotes the number of gates in C)

We will use this lemma with $2 t=n^{1 /(2 d)}$
Then we obtain polynomials of degree $\leq \sqrt{n}$, while the fraction $|C| / 2^{t}$ tends to 0 when $|C|$ is polynomial in n, and d is constant.

PARITY $\notin \mathbf{A C}^{0}$

Lemma 1. For every $t>0$ and n, for every circuit C with n input gates and depth d there exists a proper polynomial of n variables and total degree $\leq(2 t)^{d}$, which differs from C on at most $\frac{|C|}{2^{2}} t^{n}$ inputs (where $|C|$ denotes the number of gates in C)

We will use this lemma with $2 t=n^{1 /(2 d)}$
Then we obtain polynomials of degree $\leq \sqrt{n}$, while the fraction $|C| 2^{2}$ tends to 0 when $|C|$ is polynomial in n, and d is constant.

Lemma 2. For large enough n every polynomial of n variables and total degree $\leq \sqrt{n}$ differs from the parity function on at least $\frac{1}{100^{2}} 2^{n}$ inputs.

Lemma 1 + Lemma $2 \rightarrow$ polynomial circuits of constant depth cannot recognize PARITY

Proof of Lemma 1 (*)

Lemma 1. For every $t>0$ and n, for every circuit C with n input gates and depth d there exists a proper polynomial of n variables and total degree $\leq(2 t)^{d}$, which differs from C on at most $\frac{|C|}{2^{2}} t^{n}$ inputs (where $|C|$ denotes the number of gates in C)

Proof.

- Fix n, t and a circuit C of depth d.
- Assume w.l.o.g. that C uses only OR and NOT gates.
- To every gate of C we will assign a proper polynomial of n variables x_{1}, \ldots, x_{n}, by induction on the depth of the gate, so that it will compute the value of this gate C for relatively many inputs

Proof of Lemma 1 (*)

To every gate of C we will assign a proper polynomial of n variables x_{1}, \ldots, x_{n}, by induction on the depth of the gate, so that it will compute the value of this gate C for relatively many inputs:

- i-th input gate - take the polynomial x_{i}, which always computes a correct value
- NOT gate. If we have assigned a polynomial p to its predecessor, we take polynomial 1-p, which computes a correct value precisely when p computed a correct value
- it remains to handle OR gates - the only nontrivial case

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have assigned some polynomials p_{1}, \ldots, p_{k}.

- we could take the polynomial: $1-\left(1-p_{1}\right) \cdots\left(1-p_{k}\right)$
- it works well whenever p_{1}, \ldots, p_{k} worked well
- but its degree is too large: if p_{1}, \ldots, p_{k} have degrees at most s, then its degree is $k s$ - we rather need to obtain $\leq 2 t s$, as then on the output gate we will have degree (2t) ${ }^{d}$
- we thus have to proceed in a more clever way

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have assigned some polynomials p_{1}, \ldots, p_{k}.

- we could take the polynomial: $1-\left(1-p_{1}\right) \cdots \cdot\left(1-p_{k}\right)$
- it works well whenever p_{1}, \ldots, p_{k} worked well
- but its degree is too large: if p_{1}, \ldots, p_{k} have degrees at most s, then its degree is $k s$ - we rather need to obtain $\leq 2 t s$, as then on the output gate we will have degree $(2 t)^{d}$
- we thus have to proceed in a more clever way
- in a moment, we will appropriately choose sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\}$
- we will take the polynomial:

$$
p=1-\left(1-q_{1}\right) \cdots \cdot\left(1-q_{t}\right) \quad \text { where } \quad q_{i}=\left(\sum_{j \in S_{i}} p_{j}\right)^{2}
$$

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have assigned some polynomials p_{1}, \ldots, p_{k}.

- in a moment, we will appropriately choose sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\}$
- we will take the polynomial:

$$
p=1-\left(1-q_{1}\right) \cdots \cdot\left(1-q_{t}\right) \quad \text { where } \quad q_{i}=\left(\sum_{j \in S_{i}} p_{j}\right)^{2}
$$

- p is proper, since $\left\{0^{2}, 1^{2}, 2^{2}\right\}=\{0,1\}$

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have assigned some polynomials p_{1}, \ldots, p_{k}.

- in a moment, we will appropriately choose sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\}$
- we will take the polynomial:

$$
p=1-\left(1-q_{1}\right) \cdots \cdot\left(1-q_{t}\right) \quad \text { where } \quad q_{i}=\left(\sum_{j \in S_{i}} p_{j}\right)^{2}
$$

- p is proper, since $\left\{0^{2}, 1^{2}, 2^{2}\right\}=\{0,1\}$
- if degrees of p_{1}, \ldots, p_{k} are $\leq s$, then the degree of p is $\leq 2 t s$; then for the output gate of C we obtain degree $\leq(2 t)^{d}$ - as required in the lemma
- it remains to see that p approximates well the value of the gate (for an appropriate choice of the sets S_{1}, \ldots, S_{t})

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have assigned some polynomials p_{1}, \ldots, p_{k}.

- we will take the polynomial:

$$
p=1-\left(1-q_{1}\right) \cdots:\left(1-q_{t}\right) \quad \text { where } \quad q_{i}=\left(\sum_{j \in S_{i}} p_{j}\right)^{2}
$$

Fix some input (of the whole circuit C) on which all p_{1}, \ldots, p_{k} give correct values. Let us randomly choose sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\}$ (every list of sets has the same probability)

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have assigned some polynomials p_{1}, \ldots, p_{k}.

- we will take the polynomial:

$$
p=1-\left(1-q_{1}\right) \cdots\left(1-q_{i}\right) \quad \text { where } \quad q_{i}=\left(\sum_{j \in S_{i}} p_{j}\right)^{2}
$$

Fix some input (of the whole circuit C) on which all p_{1}, \ldots, p_{k} give correct values. Let us randomly choose sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\}$ (every list of sets has the same probability)

- If all p_{j} give value 0 , then p also gives value 0 - correctly

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have assigned some polynomials p_{1}, \ldots, p_{k}.

- we will take the polynomial:

$$
p=1-\left(1-q_{1}\right) \cdots\left(1-q_{i}\right) \quad \text { where } \quad q_{i}=\left(\sum_{j \in S_{i}} p_{j}\right)^{2}
$$

Fix some input (of the whole circuit C) on which all p_{1}, \ldots, p_{k} give correct values. Let us randomly choose sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\}$ (every list of sets has the same probability)

- If all p_{j} give value 0 , then p also gives value 0 - correctly
- If some p_{j} gives value 1 , then for a chosen set S_{i} the polynomial q_{i} gives value 1 if in this set S_{i} the number of polynomials with value 1 is not divisible by 3 . This is the case for at least half of choices of S_{i}. Thus the probability that for a random S_{i} the polynomial q_{i} gives value 1 is ≥ 0.5 (then the whole p also gives value 1).

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have assigned some polynomials p_{1}, \ldots, p_{k}.

- we will take the polynomial:

$$
p=1-\left(1-q_{1}\right) \cdots\left(1-q_{i}\right) \quad \text { where } \quad q_{i}=\left(\sum_{j \in S_{i}} p_{j}\right)^{2}
$$

Fix some input (of the whole circuit C) on which all p_{1}, \ldots, p_{k} give correct values. Let us randomly choose sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\}$ (every list of sets has the same probability)

- If all p_{j} give value 0 , then p also gives value 0 - correctly
- If some p_{j} gives value 1 , then for a chosen set S_{i} the polynomial q_{i} gives value 1 if in this set S_{i} the number of polynomials with value 1 is not divisible by 3 . This is the case for at least half of choices of S_{i}. Thus the probability that for a random S_{i} the polynomial q_{i} gives value 1 is ≥ 0.5 (then the whole p also gives value 1).
- Thus, if the sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\}$ are chosen randomly, the probability that p will give an incorrect value is at most $1 / 2^{t}$

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have assigned some polynomials p_{1}, \ldots, p_{k}.

- we will take the polynomial:

$$
p=1-\left(1-q_{1}\right) \cdots \cdot\left(1-q_{t}\right) \quad \text { where } \quad q_{i}=\left(\sum_{j \in S_{i}} p_{j}\right)^{2}
$$

- For a fixed input, for which all p_{1}, \ldots, p_{k} give correct values, and for sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\}$ chosen randomly, the probability that p gives an incorrect value is at most $1 / 2^{t}$

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have assigned some polynomials p_{1}, \ldots, p_{k}.

- we will take the polynomial:

$$
p=1-\left(1-q_{1}\right) \cdots \cdot\left(1-q_{t}\right) \quad \text { where } \quad q_{i}=\left(\sum_{j \in S_{i}} p_{j}\right)^{2}
$$

- For a fixed input, for which all p_{1}, \ldots, p_{k} give correct values, and for sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\}$ chosen randomly, the probability that p gives an incorrect value is at most $1 / 2^{t}$
- Thus: for an input chosen randomly among those inputs for which all p_{1}, \ldots, p_{k} give correct values, and for sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\}$ chosen randomly, the probability that p gives an incorrect value is at most $1 / 2^{t}$

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have assigned some polynomials p_{1}, \ldots, p_{k}.

- we will take the polynomial:

$$
p=1-\left(1-q_{1}\right) \cdots \cdot\left(1-q_{t}\right) \quad \text { where } \quad q_{i}=\left(\sum_{j \in S_{i}} p_{j}\right)^{2}
$$

- For a fixed input, for which all p_{1}, \ldots, p_{k} give correct values, and for sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\}$ chosen randomly, the probability that p gives an incorrect value is at most $1 / 2^{t}$
- Thus: for an input chosen randomly among those inputs for which all p_{1}, \ldots, p_{k} give correct values, and for sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\} \underline{\text { chosen }}$ randomly, the probability that p gives an incorrect value is at most $1 / 2^{t}$
- Thus: there exist sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\}$ such that for an input chosen randomly among those inputs for which all p_{1}, \ldots, p_{k} give correct values, the probability that p gives an incorrect value is at most $1 / 2^{t}$

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have assigned some polynomials p_{1}, \ldots, p_{k}.

- we will take the polynomial:

$$
p=1-\left(1-q_{1}\right) \cdots\left(1-q_{t}\right) \quad \text { where } \quad q_{i}=\left(\sum_{j \in S_{i}} p_{j}\right)^{2}
$$

- Thus: there exist sets $S_{1}, \ldots, S_{t} \subseteq\{1, \ldots, k\}$ such that for an input chosen randomly among those inputs for which all p_{1}, \ldots, p_{k} give correct values, the probability that p gives an incorrect value is at most $1 / 2^{t}$
- We take an arbitrary list of sets having this property
- The considered gate introduces a mistake on at most $2^{n} / 2^{t}$ inputs
- Altogether, the value will be incorrect (for some gate) for at most
$|C| \cdot 2^{n} / 2^{t}$ inputs
[THE END OF THE PROOF OF LEMMA 1]

PARITY $\notin \mathbf{A C}^{0}$

General idea:

- Every circuit of small depth can be approximated by a proper polynomial of low degree (Lemma 1 - already showed)
- The parity function cannot be approximated by a polynomial of low degree (Lemma 2 - now)

Proof of Lemma 2 (*)

Lemma 2. For large enough n every polynomial of n variables and total degree $\leq \sqrt{n}$ differs from the parity function on at least $\frac{1}{100} 2^{n}$ inputs.

A general idea:

- We assume that there exists a polynomial of low degree which agrees with the parity function on a large set S of inputs.
- Using this polynomial, for every function we will construct a polynomial of low degree which agrees with this function on the same set S.
- There are many functions, but significantly less polynomials.
- Thus the set S cannot be too large.

Proof of Lemma 2 (*)

Lemma 2. For large enough n every polynomial of n variables and total degree $\leq \sqrt{n}$ differs from the parity function on at least $\frac{1}{100} 2^{n}$ inputs.

- Let $\operatorname{PAR}\left(x_{1}, \ldots, x_{n}\right)$ denote the parity function
- Consider the „shifted" parity function PAR':\{-1,1\}n $\rightarrow\{-1,1\}$ $\operatorname{PAR}^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{PAR}\left(x_{1}-1, \ldots, x_{n}-1\right)+1=x_{1} \cdot x_{2} \cdot \ldots x_{n}$

Proof of Lemma 2 (*)

Lemma 2. For large enough n every polynomial of n variables and total degree $\leq \sqrt{n}$ differs from the parity function on at least $\frac{1}{100} 2^{n}$ inputs.

- Let $\operatorname{PAR}\left(x_{1}, \ldots, x_{n}\right)$ denote the parity function
- Consider the „shifted" parity function PAR':\{-1,1\}n $\rightarrow\{-1,1\}$ $\operatorname{PAR}^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{PAR}\left(x_{1}-1, \ldots, x_{n}-1\right)+1=x_{1} \cdot x_{2} \ldots \cdot x_{n}$
- If there exists a polynomial which agrees with PAR on some set of inputs, then there exists a polynomial of the same degree, which agrees with $P A R^{\prime}$ on the same set
- Thus take a polynomial p of degree $\leq \sqrt{n}$ approximating $P A R^{\prime}$ Let $S \subseteq\{-1,1\}^{n}$ be the set of those inputs in which p agrees with $P A R^{\prime}$.

Proof of Lemma 2 (*)

- A polynomial p of degree $\leq \sqrt{n}$ agrees with $P A R^{\prime}$ on a set $S \subseteq\{-1,1\}^{n}$.
- Take any function $f: S \rightarrow \mathbb{Z}_{3}$
- We can always represent f as a polynomial:

$$
p_{f}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(y_{1}, \ldots, y_{n}\right) \in S} f\left(y_{1}, \ldots, y_{n}\right) \cdot\left(2-x_{1} y_{1}\right) \cdot \ldots \cdot\left(2-x_{n} y_{n}\right)
$$

- This polynomial has degree n, too large for us
- We will correct it so that the degree will be $\leq n / 2+\sqrt{n}$

Proof of Lemma 2 (*)

- A polynomial p of degree $\leq \sqrt{n}$ agrees with $P A R^{\prime}$ on a set $S \subseteq\{-1,1\}^{n}$.
- Take any function $f: S \rightarrow \mathbb{Z}_{3}$
- We can always represent f as a polynomial:

$$
p_{f}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(y_{1}, \ldots, y_{n}\right) \in S} f\left(y_{1}, \ldots, y_{n}\right) \cdot\left(2-x_{1} y_{1}\right) \cdot \ldots \cdot\left(2-x_{n} y_{n}\right)
$$

- This polynomial has degree n, too large for us
- We will correct it so that the degree will be $\leq n / 2+\sqrt{n}$
- To this end, in p_{f} we replace every monomial $\prod_{i \in T} x_{i}$ of degree $|T|>n / 2$ by $p\left(x_{1}, \ldots, x_{n}\right) \cdot \prod_{i \notin T} x_{i}$

Proof of Lemma 2 (*)

- A polynomial p of degree $\leq \sqrt{n}$ agrees with $P A R^{\prime}$ on a set $S \subseteq\{-1,1\}^{n}$.
- Take any function $f: S \rightarrow \mathbb{Z}_{3}$
- We can always represent f as a polynomial:

$$
p_{f}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(y_{1}, \ldots, y_{n}\right) \in S} f\left(y_{1}, \ldots, y_{n}\right) \cdot\left(2-x_{1} y_{1}\right) \cdot \ldots \cdot\left(2-x_{n} y_{n}\right)
$$

- This polynomial has degree n, too large for us
- We will correct it so that the degree will be $\leq n / 2+\sqrt{n}$
- To this end, in p_{f} we replace every monomial $\prod_{i \in T} x_{i}$ of degree $|T|>n / 2$ by $p\left(x_{1}, \ldots, x_{n}\right) \cdot \prod_{i \notin T} x_{i}$
- This modification does not change the result, as for $\left(x_{1}, \ldots, x_{n}\right) \in S$ we have $p\left(x_{1}, \ldots, x_{n}\right)=x_{1} \ldots x_{n}$ and $\left(x_{1}\right)^{2}=1$
- Now the degree is indeed $\leq n / 2+\sqrt{n}$

Proof of Lemma 2 (*)

- A polynomial p of degree $\leq \sqrt{n}$ agrees with $P A R^{\prime}$ on a set $S \subseteq\{-1,1\}^{n}$.
- Take any function $f: S \rightarrow \mathbb{Z}_{3}$
- We can always represent f as a polynomial:

$$
p_{f}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(y_{1}, \ldots, y_{n}\right) \in S} f\left(y_{1}, \ldots, y_{n}\right) \cdot\left(2-x_{1} y_{1}\right) \cdot \ldots \cdot\left(2-x_{n} y_{n}\right)
$$

- This polynomial has degree n, too large for us
- We will correct it so that the degree will be $\leq n / 2+\sqrt{n}$
- To this end, in p_{f} we replace every monomial $\prod_{i \in T^{x_{i}}}$ of degree $|T|>n / 2$ by $p\left(x_{1}, \ldots, x_{n}\right) \cdot \prod_{i \notin T} x_{i}$
- This modification does not change the result, as for $\left(x_{1}, \ldots, x_{n}\right) \in S$ we have $p\left(x_{1}, \ldots, x_{n}\right)=x_{1} \ldots x_{n}$ and $\left(x_{1}\right)^{2}=1$
- Now the degree is indeed $\leq n / 2+\sqrt{n}$
- Thus (using the hypothetical polynomial p) for every function $f: S \rightarrow \mathbb{Z}_{3}$ we have constructed a polynomial of degree $\leq n / 2+\sqrt{n}$, which on S gives the same values as f

Proof of Lemma 2 (*)

- A polynomial p of degree $\leq \sqrt{n}$ agrees with $P A R^{\prime}$ on a set $S \subseteq\{-1,1\}^{n}$.
- For every function $f: S \rightarrow \mathbb{Z}_{3}$ we have constructed a polynomial of degree $\leq n / 2+\sqrt{n}$, which on S gives the same values as f
- For inputs in $\{-1,1\}^{n}$ we have that $x^{2}=1$, so we can assume that in the polynomial there are no exponents greater than 1.

Proof of Lemma 2 (*)

- A polynomial p of degree $\leq \sqrt{n}$ agrees with $P A R^{\prime}$ on a set $S \subseteq\{-1,1\}^{n}$.
- For every function $f: S \rightarrow \mathbb{Z}_{3}$ we have constructed a polynomial of degree $\leq n / 2+\sqrt{n}$, which on S gives the same values as f
- For inputs in $\{-1,1\}^{n}$ we have that $x^{2}=1$, so we can assume that in the polynomial there are no exponents greater than 1.
Let us compute the number of such polynomials:
- For large enough n, there are $\leq 0.99 \cdot 2^{n}$ monomials of n variables and degree $\leq n / 2+\sqrt{n}$, using every variable at most once (next slide)
- Thus the number of polynomials is $\leq 30.99 \cdot 2^{n}$
- The number of functions $f: S \rightarrow \mathbb{Z}_{3}$ is $3^{|S|}$, to each of them we have assigned a different polynomial
- Thus $|S| \leq 0.99 \cdot 2^{n}$

Proof of Lemma 2 (*)

Why the number of monomials (using variables x_{1}, \ldots, x_{n}, each of them either with exponent 0 or 1) of degree $\leq n / 2+\sqrt{n}$ is $\leq 0.99 \cdot 2^{n}$, for large enough n ?

- Choose a monomial in random
- Let $X_{i}=$ (does x_{i} appear in the monomial)
- Random variables X_{i} are independent and $P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=0.5$
- Central limit theorem: for every $z \in \mathbb{R}, P\left(Z_{n} \leq z\right){ }_{n} \rightarrow_{\infty} \Phi(z)$
where $Z_{n}=\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)}{\sqrt{n} \sigma}$
and $\mu=E X_{i}=0.5, \sigma=s d\left(X_{i}\right)=0.5$, and Φ is the cumulative distribution function of the normal distribution $N(0,1)$
- Notice that $X_{1}+\ldots+X_{n} \leq n / 2+\sqrt{n} \Leftrightarrow Z_{n} \leq 2$, and $\Phi(2) \approx 0,97725$
- Thus for large enough n, the probability that the degree is $\leq n / 2+\sqrt{n}$ i.e., $P\left(Z_{n} \leq 2\right)$ is at most 0,99
[THE END OF THE PROOF OF LEMMA 2]

Extensions of AC^{0}

Consider circuits like in $\mathbf{A C}^{0}$, where additionally we can use the XOR gate. Then we can recognize PARITY. Is it enough to recognize, e.g., all regular languages?

Extensions of AC^{0}

Consider circuits like in $\mathbf{A C}^{0}$, where additionally we can use the XOR gate. Then we can recognize PARITY.
Is it enough to recognize, e.g., all regular languages?

- Class $\mathbf{A C}^{0}[m]$ - like $\mathbf{A C}^{0}$, but where we can additionally use gates counting the number of ones modulo m
- It is known that: if p, q are different prime numbers, then $\mathbf{A C}^{0}[p]$ cannot count modulo q
- An open problem: we cannot show any language, even from NP, which cannot be recognized in $\mathrm{AC}^{0}[6]$ (gates „mod 6" \Leftrightarrow gates „mod 2" i gates „mod 3")

