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Hierarchy theorems (previous lecture)
Space hierarchy theorem:

If:
● function g(n) is space-constructible, and
● f(n)=o(g(n))
then DSPACE(f(n))≠DSPACE(g(n))

Time hierarchy theorem:

If:
● function g(n) is time-constructible, 
● f(n)=o(g(n))
then DTIME(f(n))≠DTIME(g(n)log(g(n)))



  

Gap theorems

● Functions being complexities of problems are distributed “quite densely”
● Simultaneously, we have the following gap theorems:

There is a computable function f(n)≥n such that DTIME(f(n))=DTIME(2f(n)).

There is a computable function f(n) such that DSPACE(f(n))
=DSPACE(2f(n)).

A contradiction with hierarchy theorems?

No – the function f will not be constructible (it can be computed, but in 
a larger time / space)

At the same time: we see that in the hierarchy theorems the assumption 
about constructability is really needed



  

Gap theorem – time

There is a computable function f(n)≥n such that DTIME(f(n))=DTIME(2f(n)).

Proof

Fix an input alphabet S={0,1} (another alphabet → time multiplied by a constant) 

We construct a function f(n) such that no machine stops between f(n) 
and 2f(n) steps:
● Assign numbers to Turing machines (in a computable way)

Gap theorems (*)



  

Gap theorem – time

There is a computable function f(n)≥n such that DTIME(f(n))=DTIME(2f(n)).

Proof

Fix an input alphabet S={0,1} (another alphabet → time multiplied by a constant) 

We construct a function f(n) such that no machine stops between f(n) 
and 2f(n) steps:
● Assign numbers to Turing machines (in a computable way)
● We say that P(n,k) is satisfied iff none among the first n machines

on none among inputs of length n stops between k and n 
.2k 

steps (they stop earlier than k or later than n 
.2k or loop forever)

Gap theorems (*)
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Proof

Fix an input alphabet S={0,1} (another alphabet → time multiplied by a constant) 

We construct a function f(n) such that no machine stops between f(n) 
and 2f(n) steps:
● Assign numbers to Turing machines (in a computable way)
● We say that P(n,k) is satisfied iff none among the first n machines

on none among inputs of length n stops between k and n 
.2k 

steps (they stop earlier than k or later than n 
.2k or loop forever)

● Let k1(n)=n and km+1(n)=n 
.2km(n)

● For a fixed n, every pair (input_of_length_n, machine_with_number_≤n) 
can falsify P(n,km(n)) for at most one m,

Thus there exists some m≤n 
.2n such that P(n,km(n)) is true.

Gap theorems (*)



  

Gap theorem – time

There is a computable function f(n)≥n such that DTIME(f(n))=DTIME(2f(n)).

Proof

Fix an input alphabet S={0,1} (another alphabet → time multiplied by a constant) 

We construct a function f(n) such that no machine stops between f(n) 
and 2f(n) steps:
● Assign numbers to Turing machines (in a computable way)
● We say that P(n,k) is satisfied iff none among the first n machines

on none among inputs of length n stops between k and n 
.2k 

steps (they stop earlier than k or later than n 
.2k or loop forever)

● Let k1(n)=n and km+1(n)=n 
.2km(n)

● For a fixed n, every pair (input_of_length_n, machine_with_number_≤n) 
can falsify P(n,km(n)) for at most one m,

Thus there exists some m≤n 
.2n such that P(n,km(n)) is true.

● We put f(n)=km(n) for this value of m. This function is computable.

Gap theorems (*)



  

Gap theorem – time

There is a computable function f(n)≥n such that DTIME(f(n))=DTIME(2f(n)).

Proof
● For every n, none among the first n machines on none among inputs

of length n stops between f(n) and n 
.2f(n) steps.

● Take any machine M with number m running in time c 
.2f(n)

● For every input of length n≥max(m,c) the machine stops in ≤c 
.2f(n) steps,

but not between f(n) and n 
.2f(n) steps, hence in ≤f(n) steps

Gap theorems (*)



  

Gap theorem – time

There is a computable function f(n)≥n such that DTIME(f(n))=DTIME(2f(n)).

Proof
● For every n, none among the first n machines on none among inputs

of length n stops between f(n) and n 
.2f(n) steps.

● Take any machine M with number m running in time c 
.2f(n)

● For every input of length n≥max(m,c) the machine stops in ≤c 
.2f(n) steps,

but not between f(n) and n 
.2f(n) steps, hence in ≤f(n) steps

● There are only constantly many inputs of length <max(m,c)
● Thus the language can be recognized in time O(f(n)) 

Gap theorems (*)



  

Remarks
● In the same way we can construct a function f such that 

DSPACE(f(n))=DSPACE(2f(n)) (Sipser's theorem needed here).
● Actually, for every computable function g such that g(n)≥n (instead of 

g(n)=2n) we can find f a such that DTIME(f(n))=DTIME(g(f(n))) or 
DSPACE(f(n))=DSPACE(g(f(n))).

● The functions f grow very quickly.
● They are not time/space-constructible.
● But they are computable.

Gap theorems



  

Just finished:

Deterministic Turing machines – basic facts

Next topic:

Boolean circuits

Later:
● Nondeterministic Turing machines, reductions
● Probabilistic computations
● Fixed parameter tractability (FPT)
● Interactive proofs
● Alternating Turing machines
● Probabilistically checkable proofs (PCP)
● ...



  

Nonuniform computation models
● Suppose that P≠NP. Then there is no algorithm which quickly 

solves all instances of the SAT problem. 
● But maybe for every n there is a separate algorithm, which quickly

solves all instances of size n?
● Even if these algorithms are difficult to find, this would mean that

SAT can be solved in practice.
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SAT can be solved in practice.
● A similar example: breaking the cryptographic algorithm RSA.

If there is an algorithm, which quickly breaks the RSA encoding
for a fixed (being currently used) key length, in practice we can
treat the RSA code as insecure (even if the algorithm works only
for one fixed n, not for all n).



  

Nonuniform computation models
● Suppose that P≠NP. Then there is no algorithm which quickly 

solves all instances of the SAT problem. 
● But maybe for every n there is a separate algorithm, which quickly

solves all instances of size n?
● Even if these algorithms are difficult to find, this would mean that

SAT can be solved in practice.
● A similar example: breaking the cryptographic algorithm RSA.

If there is an algorithm, which quickly breaks the RSA encoding
for a fixed (being currently used) key length, in practice we can
treat the RSA code as insecure (even if the algorithm works only
for one fixed n, not for all n).

Hence, it makes sense to consider computation models in which
for every n we apply a different algorithm.

One has to be careful, though: for every n, the language of 
instances of size n is regular.



  

Models of parallel computations
What if we have plenty of processors?
Example: matrix multiplication
● 1 processor: time O(n3) (the standard algorithm)

● n2 processors: time O(n)
● n3 processors: time O(log(n)) – an exponential speed up!

Question: Which algorithms do parallelize well, and which do not?



  

Boolean circuits
Another computational model: boolean circuits
idea: computing boolean functions using logical gates

intuition: every gate represents a very simple processor

X1 X1

∧

∨

X3X2 X3X2

∨∨∨

∨

∧



  

Definition: a boolean circuit having input of size n is given by an
acyclic directed graph, in which:
● there are 2n gates (nodes) of in-degree 0, denoted X1,X1,...,Xn,Xn 

(input gates)
● all other gates (having in-degree ≥0) are marked by one of the 

symbols ∧ or ∨
● one of the gates (having out-degree 0) is marked as the output

gate [another version: multiple outputs – when we compute a function]

X1 X1
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∨

X3X2 X3X2

∨∨∨

∨

∧

Boolean circuits



  

For a fixed valuation v:{X1,...,Xn}→{0,1} we define:
● the gate labeled by Xi gets value v(Xi)

● the gate labeled by Xi gets value ¬v(Xi)
● the value of an OR (AND) gate is computed as the disjunction

(conjunction) of values of predecessors of the gate
● the value of the circuit = the value of the output gate
● the definition makes sense, because the graph is acyclic
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0
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1

Boolean circuits



  

An equivalent definition – a circuit as a game:
● two players (AND and OR) move a pawn over the graph,

going back from the output gate
● AND (OR) decides in ∧ nodes (∨ nodes, respectively)

● OR wins, if the game finishes in Xi and v(Xi)=1,

or in Xi and v(Xi)=0

● the value of the circuit is 1 if OR has a winning strategy 
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● two players (AND and OR) move a pawn over the graph,

going back from the output gate
● AND (OR) decides in ∧ nodes (∨ nodes, respectively)

● OR wins, if the game finishes in Xi and v(Xi)=1,

or in Xi and v(Xi)=0

● the value of the circuit is 1 if OR has a winning strategy 



  

Boolean circuits
Equivalence of the two definitions:
● if the output has value 1, we have a strategy for OR: 

descend always to a node labeled by 1
● if the output has value 0, we have a strategy for AND: 

descend always to a node labeled by 0



  

● For a fixed valuation v:{X1,...,Xn}→{0,1} we have defined the value 

of a circuit
● The input amounts to a word v∈{0,1}n

● A circuit C computes a function {0,1}n→{0,1}, i.e., it recognizes
a subset of {0,1}n

Boolean circuits



  

Size? 
We have several parameters:
● the length of an input n
● the depth of a circuit (the length of the longest path)
● the number of gates B, the number of edges K
● the length of a representation of a circuit: (B+K) 

.log(B)
(because numbers of gates have log(B) bits)

● in-degree of gates (fan-in) – we consider circuits 
➔ with arbitrary fan-in
➔ with fan-in ≤2

Boolean circuits



  

Negations?
● in our definition there are no NOT gates, but we have negated

input gates
● this does not change anything: negations can be easily moved

to leaves (De Morgan laws)

∧

¬ ∨

¬ ¬ ¬

Boolean circuits



  

Recognizing languages by sequences of circuits:
● A circuit Cn having input of size n recognizes L(Cn) – a subset 

of {0,1}n           [in particular C0 has no inputs, returns always 1 or always 0]

● Having a sequence of circuits C0,C1,C2,... we can recognize

a language containing words of any length:
      L((Cn)n∈ℕ)=L(C0)∪L(C1)∪L(C2)∪...

● What languages can be recognized using boolean circuits?

Boolean circuits



  

Recognizing languages by sequences of circuits:
● A circuit Cn having input of size n recognizes L(Cn) – a subset 

of {0,1}n           [in particular C0 has no inputs, returns always 1 or always 0]

● Having a sequence of circuits C0,C1,C2,... we can recognize

a language containing words of any length:
      L((Cn)n∈ℕ)=L(C0)∪L(C1)∪L(C2)∪...

● What languages can be recognized using boolean circuits?

Fact. 
Every language can be recognized by some sequence of boolean
circuits (having depth 2 and exponential size)

i.e., the size of Cn is exponential in n

Boolean circuits



  

Recognizing languages by sequences of circuits:
● A circuit Cn having input of size n recognizes L(Cn) – a subset 

of {0,1}n           [in particular C0 has no inputs, returns always 1 or always 0]

● Having a sequence of circuits C0,C1,C2,... we can recognize

a language containing words of any length:
      L((Cn)n∈ℕ)=L(C0)∪L(C1)∪L(C2)∪...

● What languages can be recognized using boolean circuits?

Fact. 
Every language can be recognized by some sequence of boolean
circuits (having depth 2 and exponential size)

A more interesting question: Which languages can be recognized 
by a sequence of circuits of polynomial size?

Boolean circuits



  

Simulating machines by circuits
Theorem

Every language recognizable in time T(n) on a single-tape machine
can be recognized by a sequence of circuits (Cn)n∈ℕ of depth 

O(T(n)) and number of gates O((T(n))2).   
(actually, a stronger variant can be proven: depth O(T(n)) and
O(T(n) .log(T(n))) gates, even for a multi-tape machine)

Additionally, the circuit Cn can be generated in logarithmic space

(thus: in polynomial time) in n. (i.e., there exists a TM 
working in logarithmic space, which on input 1n outputs a representation 
of the circuit Cn)



  

Theorem
Every language recognizable in time T(n) on a single-tape machine
can be recognized by a sequence of circuits (Cn)n∈ℕ of depth 

O(T(n)) and number of gates O((T(n))2).  

Proof
● Fix some M recognizing our language in time T(n); fix also some n.
● We can assume that runs of M on words of length n have length

precisely T(n) (if M stops earlier, we repeat the last configuration).
● M uses at most T(n) tape cells.
● A computation of M can be written in a square T(n)T(n)

Simulating machines by circuits



  

A computation of M can be written in a square T(n)T(n):
● Every row consists of a tape contents in some step
● In the cell over which the head is located, we additionally write

the state.

▹1  a   b   a   b   c   a      

▹    a5 b   a   b   c   a      

▹    b3 b   a   b   c   a      

▹4  b   b   a   b   c   a      

▹    b2 b   a   b   c   a      

▹    b   b5 a   b   c   a      

▹    b   c   a1 b   c   a      

▹    b   c   a   b4 c   a      

▹    b   c   a   b6 c   a      

Simulating machines by circuits



  

A computation of M can be written in a square T(n)T(n):
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A computation of M can be written in a square T(n)T(n):
● Every row consists of a tape contents in some step
● In the cell over which the head is located, we additionally write

the state.
● The content of a cell depends only on the three cells located

directly over it.
● Gate (i,j,z) – in the cell having coordinates i,j there is z
● The value of a gate (i,j,z) is a function of gates (i-1,j-1,z'), (i-1,j,z'),

(i-1,j+1,z') for all z' – it can be realized by a circuit of a constant 
size (the number of possible z,z' is fixed – independent on n)

● Output gate: in the last row there is an accepting state
● Details in notes of D.Niwiński

Simulating machines by circuits



  

Is it the case that every language recognizable by a sequence of
circuits can be recognized by a Turing machine?

Simulating machines by circuits



  

Is it the case that every language recognizable by a sequence of
circuits can be recognized by a Turing machine?

NO! – circuits need not to be uniform
(a sequence of circuits can recognize an arbitrary language,
a Turing machine cannot)

Simulating machines by circuits



  

Is it the case that every language recognizable by a sequence of
circuits can be recognized by a Turing machine?

NO! – circuits need not to be uniform
(a sequence of circuits can recognize an arbitrary language,
a Turing machine cannot)

A theorem which is true:
There is a Turing machine (working in quadratic time), which

inputs a representation of a circuit Cn and a word of w of length n, 

and computes the value of Cn on word w.

Simulating machines by circuits



  

Turing machines with advice
A Turing machine with advice – a model that is non-uniform,
but sequential.

Definition: A machine M together with a sequence of words 
k0,k1,k2,... recognizes a language L iff

w∈L  k|w|$w∈L(M)



  

A Turing machine with advice – a model that is non-uniform,
but sequential.

Definition: A machine M together with a sequence of words 
k0,k1,k2,... recognizes a language L iff

w∈L  k|w|$w∈L(M)

We consider the running time with respect to |w|, not with respect 
to the whole word.

E.g. an exponential advice enforces exponential running time 
(it is necessary to read it).

Turing machines with advice



  

A Turing machine with advice – a model that is non-uniform,
but sequential.

Definition: A machine M together with a sequence of words 
k0,k1,k2,... recognizes a language L iff

w∈L  k|w|$w∈L(M)

We consider the running time with respect to |w|, not with respect 
to the whole word.

E.g. an exponential advice enforces exponential running time 
(it is necessary to read it).

class P/poly – languages recognizable in polynomial time by
a machine with advice (of polynomial size)

Turing machines with advice



  

class P/poly – languages recognizable in polynomial time by
a machine with advice (of polynomial size)

Theorem
A language belongs to P/poly iff it is recognizable by a sequence  
of circuits of polynomial size.
Proof

Turing machines with advice



  

class P/poly – languages recognizable in polynomial time by
a machine with advice (of polynomial size)

Theorem
A language belongs to P/poly iff it is recognizable by a sequence  
of circuits of polynomial size.
Proof

⇒ We convert the machine to a circuit.
    The advice can be hard-coded in the circuit.

Turing machines with advice



  

class P/poly – languages recognizable in polynomial time by
a machine with advice (of polynomial size)

Theorem
A language belongs to P/poly iff it is recognizable by a sequence  
of circuits of polynomial size.
Proof

⇒ We convert the machine to a circuit.
    The advice can be hard-coded in the circuit.

⇐ kn consists of a representation of Cn; 

    we evaluate Cn using a Turing machine

Turing machines with advice



  

The P/poly class is non-uniform – it contains undecidable 
languages.

For example:

   L={1n : the n-th Turing machine halts on every input}

Turing machines with advice



  

The P/poly class is non-uniform – it contains undecidable 
languages.

For example:

   L={1n : the n-th Turing machine halts on every input}

The P/poly class is useful for modeling languages (problems), 
which can be solved quickly after a (probably very costly) 
preprocessing.
E.g., in cryptography one sometimes assumes that an intruder 
has computing power in P/poly.

Turing machines with advice



  

The P/poly class is non-uniform – it contains undecidable 
languages.

For example:

   L={1n : the n-th Turing machine halts on every input}

The P/poly class is useful for modeling languages (problems), 
which can be solved quickly after a (probably very costly) 
preprocessing.
E.g., in cryptography one sometimes assumes that an intruder 
has computing power in P/poly.

Open problem: does NP⊈P/poly?
(this is a stronger statement than P≠NP, because obviously P⊆P/poly)

Turing machines with advice



  

Uniform sequences of circuits
A sequence of circuits C0,C1,C2,... is uniform if it is computable in

logarithmic space, i.e., there exists a TM working in logarithmic
space, which on input 1n outputs the representation of circuit Cn



  

A sequence of circuits C0,C1,C2,... is uniform if it is computable in

logarithmic space, i.e., there exists a TM working in logarithmic
space, which on input 1n outputs the representation of circuit Cn

Let us recall the definition – functions computable in logarithmic space:
● a read-only input tape
● working tapes of logarithmic length
● an output tape, over which the head may only move right

Notice that in logarithmic space one can compute an output which is 
much longer than logarithmic (but necessarily is polynomial)

Corollary: such a procedure can only generate circuits Cn that

are of size polynomial in n.

Uniform sequences of circuits



  

A sequence of circuits C0,C1,C2,... is uniform if it is computable in

logarithmic space, i.e., there exists a TM working in logarithmic
space, which on input 1n outputs the representation of circuit Cn

Let us recall the definition – functions computable in logarithmic space:
● a read-only input tape
● working tapes of logarithmic length
● an output tape, over which the head may only move right

Notice that in logarithmic space one can compute an output which is 
much longer than logarithmic (but necessarily is polynomial)

Theorem
Functions computable in logarithmic space are closed under composition.

Proof
When the second TM wants to read the k-th bit of the output of the first
machine, then we run the first TM, and we only check the value of the
k-th bit of its output, ignoring the rest of the output.

Uniform sequences of circuits



  

Theorem
A language is recognizable by a uniform sequence of circuits iff
it is in P.

Proof
⇒ obvious: having an input word of length n generate the n-th
    circuit, and compute its value

⇐ the algorithm given previously, which constructs a circuit basing
    on a Turing machine and on the input length n, works in 
    logarithmic space (it only has to remember for which cell of the
    square it currently outputs gates; this fits in a logarithmic space)

Uniform sequences of circuits
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