

Computational complexity

lecture 3

Announcement
Mid-term exam:

11.12.2018, during the lecture (Tuesday, 12:15)

Universal machines

The definition of complexity was:

A language L⊆S* is decidable in time T(n) / space S(n) if
there exists a Turing machine that recognizes this language
and works in time T(n) / space S(n)

But in real life we do not build a new computer if we want to solve a new
problem. We rather use always the same computer, and we only write
a new program.

Universal machines

The definition of complexity was:

A language L⊆S* is decidable in time T(n) / space S(n) if
there exists a Turing machine that recognizes this language
and works in time T(n) / space S(n)

But in real life we do not build a new computer if we want to solve a new
problem. We rather use always the same computer, and we only write
a new program.
● A Turing machine can be represented as a string (this is a simple

observation, but has far reaching consequences)

Mw – the machine encoded by a word w (we assume that every words

encodes some machine, e.g., if something is wrong in w, we mean a machine which
immediately halts)

Universal machines

Some notation:
● 〈M〉 – a word encoding a machine M
➔ M(w) – the “effect” of running machine M on input w:

➔ ”M rejects”
➔ “M loops”
➔ “M accepts and outputs word v”

● M(u,w) – the “effect” of running machine M on the pair (u,w)
(we fix some encoding of pairs of words in words)

Universal machines
Theorem:
Fix an input/output alphabet S (e.g., S={0,1}). There exists a universal Turing
machine U (an “interpreter”), such that U(〈M〉,w)=M(w) for every machine M
with input alphabet S and every word w∈S*

This looks obvious, but is not completely obvious.

Notice that U is a fixed machine, while M may be arbitrarily large
(many tapes, many states, large working alphabet)

Universal machines
Theorem:
Fix an input/output alphabet S (e.g., S={0,1}). There exists a universal Turing
machine U (an “interpreter”), such that U(〈M〉,w)=M(w) for every machine M
with input alphabet S and every word w∈S*

Proof

Step 1: U translates M into an equivalent machine M2 which uses only
two working tapes, and such that the working alphabet is {0,1,▹,}
(now only the number of states of M2 is larger than in U)

Universal machines
Theorem:
Fix an input/output alphabet S (e.g., S={0,1}). There exists a universal Turing
machine U (an “interpreter”), such that U(〈M〉,w)=M(w) for every machine M
with input alphabet S and every word w∈S*

Proof

Step 1: U translates M into an equivalent machine M2 which uses only
two working tapes, and such that the working alphabet is {0,1,▹,}
(now only the number of states of M2 is larger than in U)

Step 2: simulate M2 on w
input word w (head as in M2)

first working tape of M2

second working tape of M2

state of M2

description of M2

output tape (as in M2)

Universal machines
Theorem:
Fix an input/output alphabet S (e.g., S={0,1}). There exists a universal Turing
machine U (an “interpreter”), such that U(〈M〉,w)=M(w) for every machine M
with input alphabet S and every word w∈S*

Proof

Step 2: simulate M2 on w

How fast is U? (when M/M2 is fixed)
If M2 works in time T(|w|) and space S(|w|),
then also U works in time O(T(|w|)) and space O(S(|w|)).
(the length of the state of M2 and of the description M2 of is constant;
 step 1 works in constant time/space)

input word w (head as in M2)

first working tape of M2

second working tape of M2

state of M2

description of M2

output tape (as in M2)

Universal machines
Theorem:
Fix an input/output alphabet S (e.g., S={0,1}). There exists a universal Turing
machine U (an “interpreter”), such that U(〈M〉,w)=M(w) for every machine M
with input alphabet S and every word w∈S*

Proof

Step 1: U translates M into an equivalent machine M2 which uses only
two working tapes, and such that the working alphabet is {0,1,▹,}
How fast is M2? (comparing to M)
● If M works in space S(|w|), then also M2 works in space O(S(|w|)).
● If M works in time T(|w|), then it is easy to create M2 that works in

time O((T(|w|))2) (we can even require that M2 has only one tape)
● One can do better: if M works in time T(|w|), then we can create M2

that works in time O(T(|w|) .log(T(|w|)))

Universal machines (*)
Lemma

One can simulate a multitape machine M working in time T(n)
by a two-tape machine M2 working in time T(n) .log(T(n)).

Proof
● For simplicity: w.l.o.g. assume that tapes of M & M2 are infinite in both

directions.
● Idea: keep all k tapes in parallel, using alphabet Gk, with all heads in the

same place
c o n t e n t s o f t h e t a p e

 s e c c o n d t a p e

a n o t h e r t a p e

c o n t e n t s o f t h e t a p e

 s e c c o n d t a p e

a n o t h e r t a p e

Universal machines (*)
Idea: keep all k tapes in parallel, using alphabet Gk, with all heads in the
same place c o n t e n t s o f t h e t a p e

 s e c c o n d t a p e

a n o t h e r t a p e

c o n t e n t s o f t h e t a p e

 s e c c o n d t a p e

a n o t h e r t a p e

This does not yet work in T .log T – when one head moves, we have
to shift contents of one tape, which can be of length T (total time is T2).

Universal machines (*)
Idea 2: add some “buffers”

 t e . . n . t s . o f . . t h e t a p e

 e c c o n d t a p e

 a n o t h e r . . t a p e

● Split everything into zones ...,L3,L2,L1,M,R1,R2,R3,... (O(log T) zones)
Zones Li/Ri have length 2i.

● Some cells are empty (contain “.”). Every zone is either empty, or full,
or half-full. Zones Li and Ri have together 2i empty cells and 2i full cells
(where is treated as full).

R1 R2 R3L1L2L3 M

Universal machines (*)
Idea 2: add some “buffers”

 t e . . n . t s . o f . . t h e t a p e

 e c c o n d t a p e

 a n o t h e r . . t a p e

R1 R2 R3L1L2L3

How do we move the head (right):
● Find the smallest Ri that is nonempty
● Move first 2i-1 symbols from Ri to M,R1,...,Ri-1 (so that they become

half-full). Symmetrically proceed with Li,Li-1,...,L1,M.

M

Universal machines (*)
Idea 2: add some “buffers”

 t e . . n . t s . o f . . t h e t a p e

 e c c o n d t a p e

 a n o t h e r . . t a p e

R1 R2 R3L1L2L3

How do we move the head (right):
● Find the smallest Ri that is nonempty
● Move first 2i-1 symbols from Ri to M,R1,...,Ri-1 (so that they become

half-full). Symmetrically proceed with Li,Li-1,...,L1,M.
● The cost is O(2i) (we use the second tape while copying symbols)
● After this operation, zones Li-1,...,L1,M,R1,...,Ri-1 are half-full.
● Thus zone Li will not be touched during the next 2i-1 steps.
● For every i the running time accumulates to constant / step.
● This gives O(T .log T) in total.

M

Universal machines
Theorem:

There exists a universal Turing machine U (an “interpreter”),
such that U(〈M〉,w)=M(w). If M works in time T(|w|) and space S(|w|),
then U works in time O(T(|w|) .log(T(|w|))) and space O(S(|w|)).

Universal machines
Theorem:

There exists a universal Turing machine U (an “interpreter”),
such that U(〈M〉,w)=M(w). If M works in time T(|w|) and space S(|w|),
then U works in time O(T(|w|) .log(T(|w|))) and space O(S(|w|)).

Two possible definitions of time / space complexity:
● T1/S1 using machines (“there exists a machine...”)

● T2/S2 using programs for the universal machine (“there exists a program...”)

Relation between them:
● T1≤T2≤T1 .log T1

● S1=S2
only small difference!
we use the definition with machines

Hierarchy theorems

Are there problems that require very large time / space to be solved?
(Maybe every problem can be solved e.g. in polynomial time?)

Hierarchy theorems

Are there problems that require very large time / space to be solved?
(Maybe every problem can be solved e.g. in polynomial time?)

Space hierarchy theorem:

If:
● function g(n) is space-constructible, and
● f(n)=o(g(n))
then DSPACE(f(n))≠DSPACE(g(n))

Time hierarchy theorem – similar

definition:
f(n)
g(n)lim

n→∞
=0

Hierarchy theorems
Space hierarchy theorem:

If:
● function g(n) is space-constructible, and
● f(n)=o(g(n))
then DSPACE(f(n))≠DSPACE(g(n))

Proof:
● Consider the language

L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤g(|(〈M〉,w)|), and

 M rejects (〈M〉,w) in space g(|(〈M〉,w)|)}

Hierarchy theorems
L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤g(|(〈M〉,w)|), and

 M rejects (〈M〉,w) in space g(|(〈M〉,w)|)}

Part 1 – L∉DSPACE(f(n))

Suppose that L∈DSPACE(f(n)). Then there is M with tape alphabet
{0,1,▹,}, which recognizes L in space O(f(n)).

Because f(n)=o(g(n)), for some long word w machine M works on (〈M〉,w)
in space g(|(〈M〉,w)|), and |〈M〉|≤g(|(〈M〉,w)|)

We have a contradiction:
(M accepts (〈M〉,w)) ⇔ (〈M〉,w)∈L ⇔ (M rejects (〈M〉,w))

Remark – for the language
L' = {((〈M〉,w) | M rejects (〈M〉,w)}

the same argument gives undecidability.

Hierarchy theorems
L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤g(|(〈M〉,w)|), and

 M rejects (〈M〉,w) in space g(|(〈M〉,w)|)}

Part 2: L∈DSPACE(g(n)) – i.e., L can be recognized in space O(g(n)).
● Generally: simulate the run of M on (〈M〉,w)

Hierarchy theorems
L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤g(|(〈M〉,w)|), and

 M rejects (〈M〉,w) in space g(|(〈M〉,w)|)}

Part 2: L∈DSPACE(g(n)) – i.e., L can be recognized in space O(g(n)).
● Generally: simulate the run of M on (〈M〉,w)
● Reserve working space g(n) (where n = length of input)

➢ space O(g(n)) is enough (by assumption g is space-constructible)

Hierarchy theorems
L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤g(|(〈M〉,w)|), and

 M rejects (〈M〉,w) in space g(|(〈M〉,w)|)}

Part 2: L∈DSPACE(g(n)) – i.e., L can be recognized in space O(g(n)).
● Generally: simulate the run of M on (〈M〉,w)
● Reserve working space g(n) (where n = length of input)

➢ space O(g(n)) is enough (by assumption g is space-constructible)
● Check that the input is of the form (〈M〉,w), that the alphabet is {0,1,▹,},

and that |〈M〉|≤g(n)
➢ space O(g(n)) is enough

Hierarchy theorems
L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤g(|(〈M〉,w)|), and

 M rejects (〈M〉,w) in space g(|(〈M〉,w)|)}

Part 2: L∈DSPACE(g(n)) – i.e., L can be recognized in space O(g(n)).
● Generally: simulate the run of M on (〈M〉,w)
● Reserve working space g(n) (where n = length of input)

➢ space O(g(n)) is enough (by assumption g is space-constructible)
● Check that the input is of the form (〈M〉,w), that the alphabet is {0,1,▹,},

and that |〈M〉|≤g(n)
➢ space O(g(n)) is enough

● Use the Sipser's theorem (or assume that g(n)=W(log(n)), and use the
approach with a counter), and check whether M rejects (〈M〉,w)
in reserved space g(n).
➢ when M rejects → we accept
➢ when M accepts or loops or exceeds space → we reject
➢ space O(g(n)) is enough

Hierarchy theorems
Space hierarchy theorem:

If:
● function g(n) is space-constructible, and
● f(n)=o(g(n))
then DSPACE(f(n))≠DSPACE(g(n))

Time hierarchy theorem:

If:
● function g(n) is time-constructible,
● f(n)=o(g(n))
then DTIME(f(n))≠DTIME(g(n)log(g(n)))

Time hierarchy theorem:

If:
● function g(n) is time-constructible,
● f(n)=o(g(n))
then DTIME(f(n))≠DTIME(g(n)log(g(n)))

Proof
● Consider the language

 L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤log(|(〈M〉,w)|), and

 M rejects (〈M〉,w) in time g(|(〈M〉,w)|)}
● Part 1 – L∉DTIME(f(n)) → exactly as previously

Hierarchy theorems

L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤log(|(〈M〉,w)|), and

 M rejects (〈M〉,w) in time g(|(〈M〉,w)|)}

Part 2 – L∈DTIME(g(n)log(g(n))) – i.e., L can be recognized in time O(g(n)log(g(n)))
● Generally: simulate the run of M on (〈M〉,w)
● Check that the input is of the form (〈M〉,w), that the alphabet is {0,1,▹,},

and that |〈M〉|≤log(n) (where n = length of input)
➢ running time: O(n)

● Reserve a unary counter of length g(n), on a separate tape
➢ g is time constructible
➢ running time: O(g(n))

● Simulate M on word (〈M〉,w), like the universal machine;
increase the counter after every step.
➢ running time: O(g(n)

.(log g(n)+|〈M〉|)) = O(g(n)log(g(n)))

simulating tapes reading the description of M,
modifying state

Hierarchy theorems

L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤log(|(〈M〉,w)|), and

 M rejects (〈M〉,w) in time g(|(〈M〉,w)|)}

Part 2 – L∈DTIME(g(n)log(g(n))) – i.e., L can be recognized in time O(g(n)log(g(n)))
● Generally: simulate the run of M on (〈M〉,w)
● Check that the input is of the form (〈M〉,w), that the alphabet is {0,1,▹,},

and that |〈M〉|≤log(n) (where n = length of input)
➢ running time: O(n)

● Reserve a unary counter of length g(n), on a separate tape
➢ g is time constructible
➢ running time: O(g(n))

● Simulate M on word (〈M〉,w), like the universal machine;
increase the counter after every step.
➢ running time: O(g(n)

.(log g(n)+|〈M〉|)) = O(g(n)log(g(n)))
➢ when M rejects → we accept
➢ when M accepts or exceeds time → we reject

Hierarchy theorems

Are there problems that require very large time / space to be solved?
(Maybe every problem can be solved e.g. in polynomial time?)

Corollary from hierarchy theorems
● DTIME(nk)≠DTIME(nk+1), DSPACE(nk)≠DSPACE(nk+1)
● L≠PSPACE, P≠EXPTIME

 because P⊆DTIME(2n)≠DTIME(4n)⊆EXPTIME

Hierarchy theorems

Are there problems that require very large time / space to be solved?
(Maybe every problem can be solved e.g. in polynomial time?)

Corollary from hierarchy theorems
● DTIME(nk)≠DTIME(nk+1), DSPACE(nk)≠DSPACE(nk+1)
● L≠PSPACE, P≠EXPTIME

 because P⊆DTIME(2n)≠DTIME(4n)⊆EXPTIME

If a machine M works in time / space precisely f(n), then there exists
a problem requiring more time / space to be solved
● e.g. 2f(n) or f(n)2 – for time & space
● e.g. f(n)

.log(log(n)) – for space
● Moreover, functions being complexities of problems are distributed

“quite densely”, especially for space

Hierarchy theorems

Gap theorems

● Functions being complexities of problems are distributed “quite densely”
● Simultaneously, we have the following gap theorems:

There is a computable function f(n)≥n such that DTIME(f(n))=DTIME(2f(n)).

There is a computable function f(n) such that DSPACE(f(n))
=DSPACE(2f(n)).

A contradiction with hierarchy theorems?

No – the function f will not be constructible (it can be computed, but in
a larger time / space)

At the same time: we see that in the hierarchy theorems the assumption
about constructability is really needed

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32

