Computational complexity

lecture 3

Announcement

<u>Mid-term exam:</u>

11.12.2018, during the lecture (Tuesday, 12:15)

The definition of complexity was:

A language $L \subseteq \Sigma^*$ is decidable in time T(n) / space S(n) if <u>there exists a Turing machine</u> that recognizes this language and works in time T(n) / space S(n)

But in real life we do not build a new computer if we want to solve a new problem. We rather use always the same computer, and we only write a new program.

- The definition of complexity was:
- A language $L \subseteq \Sigma^*$ is decidable in time T(n) / space S(n) if <u>there exists a Turing machine</u> that recognizes this language and works in time T(n) / space S(n)
- But in real life we do not build a new computer if we want to solve a new problem. We rather use always the same computer, and we only write a new program.
- A Turing machine can be represented as a string (this is a simple observation, but has far reaching consequences)

Some notation:

- $\langle M \rangle$ a word encoding a machine *M*
- → M(w) the "effect" of running machine M on input w:
 - → "M rejects"
 - → "M loops"
 - → "M accepts and outputs word v"
- *M*(*u*,*w*) the "effect" of running machine *M* on the pair (*u*,*w*) (we fix some encoding of pairs of words in words)

<u>Theorem:</u>

Fix an input/output alphabet Σ (e.g., $\Sigma = \{0,1\}$). There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M \rangle, w) = M(w)$ for every machine M with input alphabet Σ and every word $w \in \Sigma^*$

This looks obvious, but is not completely obvious.

Notice that *U* is a fixed machine, while *M* may be arbitrarily large (many tapes, many states, large working alphabet)

<u>Theorem:</u>

Fix an input/output alphabet Σ (e.g., $\Sigma = \{0,1\}$). There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M \rangle, w) = M(w)$ for every machine M with input alphabet Σ and every word $w \in \Sigma^*$

<u>Proof</u>

Step 1: *U* translates *M* into an equivalent machine M_2 which uses only two working tapes, and such that the working alphabet is $\{0,1,\triangleright,\bot\}$ (now only the number of states of M_2 is larger than in *U*)

<u>Theorem:</u>

Fix an input/output alphabet Σ (e.g., $\Sigma = \{0,1\}$). There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M \rangle, w) = M(w)$ for every machine M with input alphabet Σ and every word $w \in \Sigma^*$

<u>Proof</u>

Step 1: *U* translates *M* into an equivalent machine M_2 which uses only two working tapes, and such that the working alphabet is $\{0,1,\triangleright,\bot\}$ (now only the number of states of M_2 is larger than in *U*)

Step 2: simulate M_2 on w

input word w (head as in M_2)

first working tape of M_2

second working tape of M_2

state of M_2

description of M_2

output tape (as in M_2)

<u>Theorem:</u>

Fix an input/output alphabet Σ (e.g., $\Sigma = \{0,1\}$). There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M \rangle, w) = M(w)$ for every machine M with input alphabet Σ and every word $w \in \Sigma^*$

<u>Proof</u>

Step 2: simulate M_2 on w

input word w (head as in M_2)

first working tape of M_2

second working tape of M_2

state of M_2

description of M_2

output tape (as in M_2)

How fast is U? (when M/M_2 is fixed)

- If M_2 works in time T(|w|) and space S(|w|),
- then also U works in time O(T(|w|)) and space O(S(|w|)).
- (the length of the state of M_2 and of the description M_2 of is constant;
- step 1 works in constant time/space)

<u>Theorem:</u>

Fix an input/output alphabet Σ (e.g., $\Sigma = \{0,1\}$). There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M \rangle, w) = M(w)$ for every machine M with input alphabet Σ and every word $w \in \Sigma^*$

<u>Proof</u>

Step 1: *U* translates *M* into an equivalent machine M_2 which uses only two working tapes, and such that the working alphabet is $\{0,1,\triangleright,\bot\}$ How fast is M_2 ? (comparing to *M*)

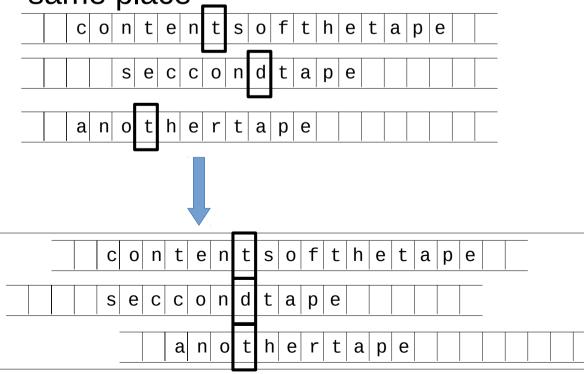
- If *M* works in space S(|w|), then also M_2 works in space O(S(|w|)).
- If *M* works in time T(|w|), then it is easy to create M_2 that works in time $O((T(|w|))^2)$ (we can even require that M_2 has only one tape)
- One can do better: if *M* works in time T(|w|), then we can create M_2 that works in time $O(T(|w|) \cdot log(T(|w|)))$

<u>Lemma</u>

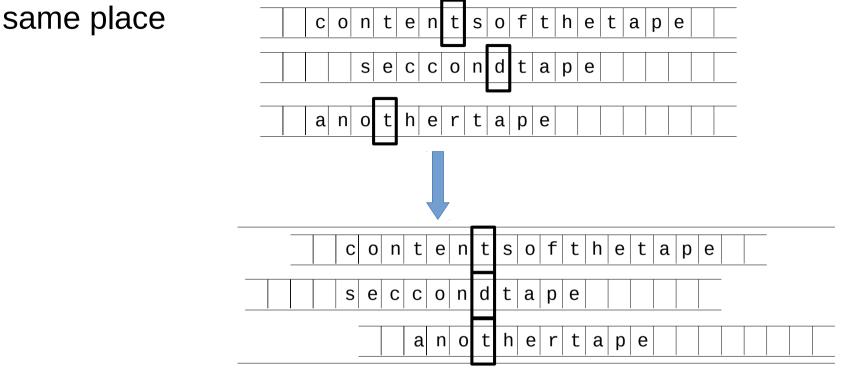
One can simulate a multitape machine *M* working in time T(n) by a two-tape machine M_2 working in time $T(n) \cdot log(T(n))$.

<u>Proof</u>

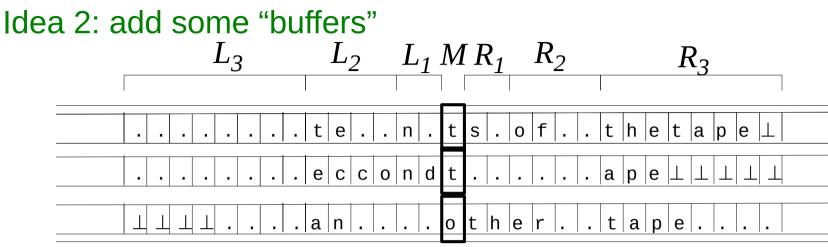
- For simplicity: w.l.o.g. assume that tapes of *M* & *M*₂ are infinite in both directions.
- Idea: keep all k tapes in parallel, using alphabet Γ^k , with all heads in the same place



Idea: keep all k tapes in parallel, using alphabet Γ^k , with all heads in the



This does not yet work in $T \cdot log T$ – when one head moves, we have to shift contents of one tape, which can be of length T (total time is T^2).



- Split everything into zones ..., L_3 , L_2 , L_1 ,M, R_1 , R_2 , R_3 ,... (O(log T) zones) Zones L_i/R_i have length 2^i .
- Some cells are empty (contain "."). Every zone is either empty, or full, or half-full. Zones L_i and R_i have together 2^i empty cells and 2^i full cells (where \perp is treated as full).

How do we move the head (right):

- Find the smallest R_i that is nonempty
- Move first 2^{i-1} symbols from R_i to M, R_1, \dots, R_{i-1} (so that they become half-full). Symmetrically proceed with $L_i, L_{i-1}, \dots, L_1, M$.

How do we move the head (right):

- Find the smallest R_i that is nonempty
- Move first 2^{i-1} symbols from R_i to $M, R_1, ..., R_{i-1}$ (so that they become half-full). Symmetrically proceed with $L_i, L_{i-1}, ..., L_1, M$.
- The cost is $O(2^i)$ (we use the second tape while copying symbols)
- After this operation, zones $L_{i-1},...,L_1,M,R_1,...,R_{i-1}$ are half-full.
- Thus zone L_i will not be touched during the next 2^{i-1} steps.
- For every *i* the running time accumulates to constant / step.
- This gives $O(T \cdot \log T)$ in total.

Theorem:

There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M \rangle, w) = M(w)$. If M works in time T(|w|) and space S(|w|), then U works in time $O(T(|w|) \cdot log(T(|w|)))$ and space O(S(|w|)).

Theorem:

There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M \rangle, w) = M(w)$. If M works in time T(|w|) and space S(|w|), then U works in time $O(T(|w|) \cdot log(T(|w|)))$ and space O(S(|w|)).

Two possible definitions of time / space complexity:

- T_1/S_1 using machines ("there exists a machine...")
- T_2/S_2 using programs for the universal machine ("there exists a program...")

Relation between them:

• $T_1 \leq T_2 \leq T_1 \cdot \log T_1$

• $S_1 = S_2$

only small difference! we use the definition with machines

Are there problems that require very large time / space to be solved? (Maybe every problem can be solved e.g. in polynomial time?)

Are there problems that require very large time / space to be solved? (Maybe every problem can be solved e.g. in polynomial time?)

Space hierarchy theorem:

lf:

- function g(n) is space-constructible, and
- f(n) = o(g(n))then DSPACE(f(n)) \neq DSPACE(g(n))

<u>Time hierarchy theorem</u> – similar

definition: $\lim_{n \to \infty} \frac{f(n)}{q(n)} = 0$

Space hierarchy theorem:

lf:

- function g(n) is space-constructible, and
- <u>f(n)=o(g(n))</u>

then $DSPACE(f(n)) \neq DSPACE(g(n))$

Proof:

Consider the language

 $L = \{(\langle M \rangle, w) \mid \text{tape alphabet of } M \text{ is } \{0,1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \leq g(|(\langle M \rangle, w)|), \text{ and } M \text{ rejects } (\langle M \rangle, w) \text{ in space } g(|(\langle M \rangle, w)|)\}$

 $L = \{(\langle M \rangle, w) \mid \text{tape alphabet of } M \text{ is } \{0,1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \leq g(|(\langle M \rangle, w)|), \text{ and } M \text{ rejects } (\langle M \rangle, w) \text{ in space } g(|(\langle M \rangle, w)|)\}$

<u>Part 1</u> – $L \notin DSPACE(f(n))$

Suppose that $L \in DSPACE(f(n))$. Then there is M with tape alphabet $\{0,1, \triangleright, \bot\}$, which recognizes L in space O(f(n)).

Because f(n)=o(g(n)), for some long word w machine M works on $(\langle M \rangle, w)$ in space $g(|(\langle M \rangle, w)|)$, and $|\langle M \rangle| \le g(|(\langle M \rangle, w)|)$

We have a contradiction:

(*M* accepts ($\langle M \rangle$,*w*)) \Leftrightarrow ($\langle M \rangle$,*w*) \in *L* \Leftrightarrow (*M* rejects ($\langle M \rangle$,*w*))

Remark – for the language

 $L' = \{((\langle M \rangle, w) \mid M \text{ rejects } (\langle M \rangle, w)\}$

the same argument gives undecidability.

 $L = \{(\langle M \rangle, w) \mid \text{tape alphabet of } M \text{ is } \{0,1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \leq g(|\langle M \rangle, w)|), \text{ and } M \text{ rejects } (\langle M \rangle, w) \text{ in space } g(|\langle M \rangle, w)|)\}$

<u>Part 2:</u> $L \in DSPACE(g(n)) - i.e., L$ can be recognized in space O(g(n)).

• Generally: simulate the run of M on ($\langle M \rangle$,w)

 $L = \{(\langle M \rangle, w) \mid \text{tape alphabet of } M \text{ is } \{0, 1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \leq g(|\langle M \rangle, w)|), \text{ and } M \text{ rejects } (\langle M \rangle, w) \text{ in space } g(|\langle M \rangle, w)|)\}$

<u>Part 2:</u> $L \in DSPACE(g(n)) - i.e., L$ can be recognized in space O(g(n)).

- Generally: simulate the run of M on ($\langle M \rangle$,w)
- Reserve working space g(n) (where n = length of input)
 - > space O(g(n)) is enough (by assumption g is space-constructible)

 $L = \{(\langle M \rangle, w) \mid \text{tape alphabet of } M \text{ is } \{0, 1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \leq g(|\langle M \rangle, w)|), \text{ and } M \text{ rejects } (\langle M \rangle, w) \text{ in space } g(|\langle M \rangle, w)|)\}$

<u>Part 2:</u> $L \in DSPACE(g(n)) - i.e., L$ can be recognized in space O(g(n)).

- Generally: simulate the run of M on ($\langle M \rangle$,w)
- Reserve working space g(n) (where n = length of input)
 space O(g(n)) is enough (by assumption g is space-constructible)
- Check that the input is of the form ($\langle M \rangle$,w), that the alphabet is {0,1,>, \perp }, and that $|\langle M \rangle| \leq g(n)$
 - > space O(g(n)) is enough

 $L = \{(\langle M \rangle, w) \mid \text{tape alphabet of } M \text{ is } \{0,1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \leq g(|\langle M \rangle, w)|), \text{ and } M \text{ rejects } (\langle M \rangle, w) \text{ in space } g(|\langle M \rangle, w)|)\}$

<u>Part 2:</u> $L \in DSPACE(g(n)) - i.e., L$ can be recognized in space O(g(n)).

- Generally: simulate the run of M on ($\langle M \rangle$,w)
- Reserve working space g(n) (where n = length of input)
 space O(g(n)) is enough (by assumption g is space-constructible)
- Check that the input is of the form $(\langle M \rangle, w)$, that the alphabet is $\{0, 1, \triangleright, \bot\}$, and that $|\langle M \rangle| \leq g(n)$
 - > space O(g(n)) is enough
- Use the Sipser's theorem (or assume that $g(n)=\Omega(log(n))$, and use the approach with a counter), and check whether *M* rejects ($\langle M \rangle$,*w*) in reserved space g(n).
 - > when M rejects \rightarrow we accept
 - > when *M* accepts or loops or exceeds space \rightarrow we reject
 - > space O(g(n)) is enough

Space hierarchy theorem:

lf:

- function g(n) is space-constructible, and
- <u>f(n)=o(g(n))</u>

then $DSPACE(f(n)) \neq DSPACE(g(n))$

Time hierarchy theorem:

lf:

- function *g*(*n*) is time-constructible,
- <u>f(n)=o(g(n))</u>

then $DTIME(f(n)) \neq DTIME(g(n)log(g(n)))$

Time hierarchy theorem:

lf:

- function *g*(*n*) is time-constructible,
- <u>f(n)=o(g(n))</u>

then $DTIME(f(n)) \neq DTIME(g(n)log(g(n)))$

<u>Proof</u>

Consider the language

 $L = \{(\langle M \rangle, w) \mid \text{tape alphabet of } M \text{ is } \{0, 1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \leq log(|(\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|(\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|(\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle| \leq log(|\langle M \rangle, w)|), \text{ and } |\langle M \rangle|$

M rejects ($\langle M \rangle$,*w*) in time g(|($\langle M \rangle$,*w*)|)}

• <u>Part 1</u> – $L \notin DTIME(f(n)) \rightarrow exactly as previously$

 $L = \{(\langle M \rangle, w) \mid \text{ tape alphabet of } M \text{ is } \{0,1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \leq log(|(\langle M \rangle, w)|), \text{ and} M \text{ rejects } (\langle M \rangle, w) \text{ in time } g(|(\langle M \rangle, w)|)\}$

<u>Part 2</u> – $L \in \text{DTIME}(g(n)\log(g(n)))$ – i.e., L can be recognized in time $O(g(n)\log(g(n)))$

- Generally: simulate the run of M on ($\langle M \rangle$,w)
- Check that the input is of the form (⟨M⟩,w), that the alphabet is {0,1,▷,⊥}, and that |⟨M⟩|≤log(n) (where n = length of input)
 running time: O(n)
- Reserve a unary counter of length g(n), on a separate tape
 g is time constructible
 - > running time: O(g(n))
- Simulate *M* on word ($\langle M \rangle$,*w*), like the universal machine; increase the counter after every step.

→ running time: $O(g(n) \cdot (\log g(n) + |\langle M \rangle|)) = O(g(n) \log(g(n)))$

simulating tapes

reading the description of M, modifying state

 $L = \{(\langle M \rangle, w) \mid \text{ tape alphabet of } M \text{ is } \{0,1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \le \log(|\langle M \rangle, w)|), \text{ and} M \text{ rejects } (\langle M \rangle, w) \text{ in time } g(|\langle M \rangle, w)|)\}$

<u>Part 2</u> – $L \in \text{DTIME}(g(n)\log(g(n)))$ – i.e., L can be recognized in time $O(g(n)\log(g(n)))$

- Generally: simulate the run of M on ($\langle M \rangle$,w)
- Check that the input is of the form (⟨M⟩,w), that the alphabet is {0,1,▷,⊥}, and that |⟨M⟩|≤log(n) (where n = length of input)
 running time: O(n)
- Reserve a unary counter of length g(n), on a separate tape
 g is time constructible
 - > running time: O(g(n))
- Simulate *M* on word ($\langle M \rangle$,*w*), like the universal machine; increase the counter after every step.
 - ≻ running time: $O(g(n) \cdot (\log g(n) + |\langle M \rangle|)) = O(g(n) \log(g(n)))$
 - > when *M* rejects \rightarrow we accept
 - > when *M* accepts or exceeds time \rightarrow we reject

Are there problems that require very large time / space to be solved? (Maybe every problem can be solved e.g. in polynomial time?)

<u>Corollary</u> from hierarchy theorems

- DTIME(n^{k}) \neq DTIME(n^{k+1}), DSPACE(n^{k}) \neq DSPACE(n^{k+1})
- L≠PSPACE, P≠EXPTIME

because $P \subseteq DTIME(2^n) \neq DTIME(4^n) \subseteq EXPTIME$

Are there problems that require very large time / space to be solved? (Maybe every problem can be solved e.g. in polynomial time?)

<u>Corollary</u> from hierarchy theorems

- DTIME(n^k) \neq DTIME(n^{k+1}), DSPACE(n^k) \neq DSPACE(n^{k+1})
- L≠PSPACE, P≠EXPTIME

because $P \subseteq DTIME(2^n) \neq DTIME(4^n) \subseteq EXPTIME$

- If a machine M works in time / space precisely f(n), then there exists a problem requiring more time / space to be solved
- e.g. $2^{f(n)}$ or $f(n)^2$ for time & space
- e.g. *f*(*n*)·*log*(*log*(*n*)) for space
- Moreover, functions being complexities of problems are distributed "quite densely", especially for space

Gap theorems

- Functions being complexities of problems are distributed "quite densely"
- Simultaneously, we have the following gap theorems:
- There is a computable function $f(n) \ge n$ such that DTIME(f(n))=DTIME($2^{f(n)}$). There is a computable function f(n) such that DSPACE(f(n))

=DSPACE($2^{f(n)}$).

- A contradiction with hierarchy theorems?
- No the function f will not be constructible (it can be computed, but in a larger time / space)
- At the same time: we see that in the hierarchy theorems the assumption about constructability is really needed