Computational complexity

lecture 3

Announcement

Mid-term exam:

11.12.2018, during the lecture (Tuesday, 12:15)

Universal machines

The definition of complexity was:
A language $L \subseteq \Sigma^{\star}$ is decidable in time $T(n)$ / space $S(n)$ if there exists a Turing machine that recognizes this language and works in time $T(n) /$ space $S(n)$
But in real life we do not build a new computer if we want to solve a new problem. We rather use always the same computer, and we only write a new program.

Universal machines

The definition of complexity was:
A language $L \subseteq \Sigma^{\star}$ is decidable in time $T(n)$ / space $S(n)$ if there exists a Turing machine that recognizes this language and works in time $T(n) /$ space $S(n)$
But in real life we do not build a new computer if we want to solve a new problem. We rather use always the same computer, and we only write a new program.

- A Turing machine can be represented as a string (this is a simple observation, but has far reaching consequences)

Universal machines

Some notation:

- $\langle M\rangle$ - a word encoding a machine M
$\rightarrow M(w)$ - the "effect" of running machine M on input w :
\rightarrow "M rejects"
\rightarrow "M loops"
\rightarrow " M accepts and outputs word v "
- $M(u, w)$ - the "effect" of running machine M on the pair (u, w) (we fix some encoding of pairs of words in words)

Universal machines

Theorem:

Fix an input/output alphabet Σ (e.g., $\Sigma=\{0,1\}$). There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M\rangle, w)=M(w)$ for every machine M with input alphabet Σ and every word $w \in \Sigma^{\star}$

This looks obvious, but is not completely obvious.
Notice that U is a fixed machine, while M may be arbitrarily large (many tapes, many states, large working alphabet)

Universal machines

Theorem:

Fix an input/output alphabet Σ (e.g., $\Sigma=\{0,1\}$). There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M\rangle, w)=M(w)$ for every machine M with input alphabet Σ and every word $w \in \Sigma^{\star}$

Proof

Step 1: U translates M into an equivalent machine M_{2} which uses only two working tapes, and such that the working alphabet is $\{0,1, \triangleright, \perp\}$ (now only the number of states of M_{2} is larger than in U)

Universal machines

Theorem:

Fix an input/output alphabet $\Sigma(e . g$., $\Sigma=\{0,1\})$. There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M\rangle, w)=M(w)$ for every machine M with input alphabet Σ and every word $w \in \Sigma^{\star}$

Proof

Step 1: U translates M into an equivalent machine M_{2} which uses only two working tapes, and such that the working alphabet is $\{0,1, \triangleright, \perp\}$ (now only the number of states of M_{2} is larger than in U)
Step 2: simulate M_{2} on w input word w (head as in M_{2})
first working tape of M_{2}
second working tape of M_{2}
state of M_{2}
description of M_{2}
output tape (as in M_{2})

Universal machines

Theorem:

Fix an input/output alphabet Σ (e.g., $\Sigma=\{0,1\})$. There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M\rangle, w)=M(w)$ for every machine M with input alphabet Σ and every word $w \in \Sigma^{\star}$

Proof

Step 2: simulate M_{2} on w input word w (head as in M_{2}) first working tape of M_{2} second working tape of M_{2} state of M_{2} description of M_{2}
output tape (as in M_{2})
How fast is U ? (when M / M_{2} is fixed)
If M_{2} works in time $T(|w|)$ and space $S(|w|)$,
then also U works in time $O(T(|w|))$ and space $O(S(|w|))$.
(the length of the state of M_{2} and of the description M_{2} of is constant; step 1 works in constant time/space)

Universal machines

Theorem:

Fix an input/output alphabet Σ (e.g., $\Sigma=\{0,1\})$. There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M\rangle, w)=M(w)$ for every machine M with input alphabet Σ and every word $w \in \Sigma^{\star}$

Proof

Step 1: U translates M into an equivalent machine M_{2} which uses only two working tapes, and such that the working alphabet is $\{0,1, \triangleright, \perp\}$ How fast is M_{2} ? (comparing to M)

- If M works in space $S(|w|)$, then also M_{2} works in space $O(S(|w|))$.
- If M works in time $T(|w|)$, then it is easy to create M_{2} that works in time $O\left((T(|w|))^{2}\right)$ (we can even require that M_{2} has only one tape)
- One can do better: if M works in time $T(|w|)$, then we can create M_{2} that works in time $O(T(|w|) \cdot \log (T(|w|)))$

Universal machines (*)

Lemma

One can simulate a multitape machine M working in time $T(n)$ by a two-tape machine M_{2} working in time $T(n) \cdot \log (T(n))$.
Proof

- For simplicity: w.l.o.g. assume that tapes of $M \& M_{2}$ are infinite in both directions.
- Idea: keep all k tapes in parallel, using alphabet Γ^{k}, with all heads in the same place

				c	c	o	n	t	e	n	t	s	o	f	t	h	e	t	a	p	e

Universal machines (*)
Idea: keep all k tapes in parallel, using alphabet Γ^{k}, with all heads in the same place

This does not yet work in $T \cdot \log T$ - when one head moves, we have to shift contents of one tape, which can be of length T (total time is T^{2}).

Universal machines (*)

Idea 2: add some "buffers"

- Split everything into zones $\ldots, L_{3}, L_{2}, L_{1}, M, R_{1}, R_{2}, R_{3}, \ldots$ ($O(\log T)$ zones) Zones L_{i} / R_{i} have length 2^{i}.
- Some cells are empty (contain "."). Every zone is either empty, or full, or half-full. Zones L_{i} and R_{i} have together 2^{i} empty cells and 2^{i} full cells (where \perp is treated as full).

Universal machines (*)

Idea 2: add some "buffers"

How do we move the head (right):

- Find the smallest R_{i} that is nonempty
- Move first 2^{i-1} symbols from R_{i} to $M, R_{1}, \ldots, R_{i-1}$ (so that they become half-full). Symmetrically proceed with $L_{i}, L_{i-1}, \ldots, L_{1}, M$.

Universal machines (*)

Idea 2: add some "buffers"
$L_{3} \quad L_{2} \quad L_{1} M R_{1} \quad R_{2} \quad R_{3}$

How do we move the head (right):

- Find the smallest R_{i} that is nonempty
- Move first 2^{i-1} symbols from R_{i} to $M, R_{1}, \ldots, R_{i-1}$ (so that they become half-full). Symmetrically proceed with $L_{i}, L_{i-1}, \ldots, L_{1}, M$.
- The cost is $O\left(2^{i}\right)$ (we use the second tape while copying symbols)
- After this operation, zones $L_{i-1}, \ldots, L_{1}, M, R_{1}, \ldots, R_{i-1}$ are half-full.
- Thus zone L_{i} will not be touched during the next 2^{i-1} steps.
- For every i the running time accumulates to constant / step.
- This gives $O(T \cdot \log T)$ in total.

Universal machines

Theorem:

There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M\rangle, w)=M(w)$. If M works in time $T(|w|)$ and space $S(|w|)$, then U works in time $O(T(|w|) \cdot \log (T(|w|)))$ and space $O(S(|w|))$.

Universal machines

Theorem:

There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M\rangle, w)=M(w)$. If M works in time $T(|w|)$ and space $S(|w|)$, then U works in time $O(T(|w|) \cdot \log (T(|w|)))$ and space $O(S(|w|))$.

Two possible definitions of time / space complexity:

- T_{1} / S_{1} using machines ("there exists a machine...")
- T_{2} / S_{2} using programs for the universal machine ("there exists a program...")

Relation between them:

- $T_{1} \leq T_{2} \leq T_{1} \cdot \log T_{1}$
- $S_{1}=S_{2}$

Hierarchy theorems

Are there problems that require very large time / space to be solved? (Maybe every problem can be solved e.g. in polynomial time?)

Hierarchy theorems

Are there problems that require very large time / space to be solved? (Maybe every problem can be solved e.g. in polynomial time?)

Space hierarchy theorem:
If:

- function $g(n)$ is space-constructible, and
- $f(n)=o(g(n))$ then $\underline{\operatorname{DSPACE}(f(n)) \neq \operatorname{DSACE}(g(n))}$

Time hierarchy theorem - similar

$$
\text { definition: } \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

Hierarchy theorems

Space hierarchy theorem:

If:

- function $g(n)$ is space-constructible, and
- $f(n)=o(g(n))$
then $\underline{\operatorname{DSPACE}(f(n))} \neq \operatorname{DSPACE}(g(n))$
Proof:
- Consider the language
$L=\{(\langle M\rangle, w) \mid$ tape alphabet of M is $\{0,1, \triangleright, \perp\}$, and $|\langle M\rangle| \leq g(|(\langle M\rangle, w)|)$, and M rejects $(\langle M\rangle, w)$ in space $g(|(\langle M\rangle, w)|)\}$

Hierarchy theorems

$L=\{(\langle M\rangle, w) \mid$ tape alphabet of M is $\{0,1, \triangleright, \perp\}$, and $|\langle M\rangle| \leq g(|\langle(M\rangle, w)|)$, and M rejects $(\langle M\rangle, w)$ in space $g(|(\langle M\rangle, w)|)\}$
Part $1-L \notin \operatorname{DSPACE}(f(n))$
Suppose that $L \in \operatorname{DSPACE}(f(n))$. Then there is M with tape alphabet $\{0,1, \triangleright, \perp\}$, which recognizes L in space $O(f(n))$.
Because $f(n)=o(g(n))$, for some long word w machine M works on $(\langle M\rangle, w)$ in space $g(|(\langle M\rangle, w)|)$, and $|\langle M\rangle| \leq g(|(\langle M\rangle, w)|)$
We have a contradiction:
$(M$ accepts $(\langle M\rangle, w)) \Leftrightarrow(\langle M\rangle, w) \in L \Leftrightarrow(M$ rejects $(\langle M\rangle, w))$

Remark - for the language

$$
L^{\prime}=\{((\langle M\rangle, w) \mid M \text { rejects }(\langle M\rangle, w)\}
$$

the same argument gives undecidability.

Hierarchy theorems

$L=\{(\langle M\rangle, w) \mid$ tape alphabet of M is $\{0,1, \triangleright, \perp\}$, and $|\langle M\rangle| \leq g(|(\langle M\rangle, w)|)$, and M rejects $(\langle M\rangle, w)$ in space $g(|(\langle M\rangle, w)|)\}$
Part 2: $L \in \operatorname{DSPACE}(g(n))$ - i.e., L can be recognized in space $O(g(n))$.

- Generally: simulate the run of M on $(\langle M\rangle, w)$

Hierarchy theorems

$L=\{(\langle M\rangle, w) \mid$ tape alphabet of M is $\{0,1, \triangleright, \perp\}$, and $|\langle M\rangle| \leq g(|\langle(M\rangle, w)|)$, and M rejects $(\langle M\rangle, w)$ in space $g(|(\langle M\rangle, w)|)\}$
Part 2: $L \in \operatorname{DSPACE}(g(n))$ - i.e., L can be recognized in space $O(g(n))$.

- Generally: simulate the run of M on $(\langle M\rangle, w)$
- Reserve working space $g(n)$
(where $n=$ length of input)
, space $O(g(n))$ is enough (by assumption g is space-constructible)

Hierarchy theorems

$L=\{(\langle M\rangle, w) \mid$ tape alphabet of M is $\{0,1, \triangleright, \perp\}$, and $|\langle M\rangle| \leq g(|\langle(M\rangle, w)|)$, and M rejects $(\langle M\rangle, w)$ in space $g(|(\langle M\rangle, w)|)\}$
Part 2: $L \in \operatorname{DSPACE}(g(n))$ - i.e., L can be recognized in space $O(g(n))$.

- Generally: simulate the run of M on $(\langle M\rangle, w)$
- Reserve working space $g(n)$
(where $n=$ length of input)
, space $O(g(n))$ is enough (by assumption g is space-constructible)
- Check that the input is of the form $(\langle M\rangle, w)$, that the alphabet is $\{0,1, \triangleright, \perp\}$, and that $|\langle M\rangle| \leq g(n)$
, space $O(g(n))$ is enough

Hierarchy theorems

$$
\begin{gathered}
L=\{(\langle M\rangle, w) \mid \text { tape alphabet of } M \text { is }\{0,1, \triangleright, \perp\} \text {, and }|\langle M\rangle| \leq g(|(\langle M\rangle, w)|) \text {, and } \\
M \text { rejects }(\langle M\rangle, w) \text { in space } g(|(\langle M\rangle, w)|)\}
\end{gathered}
$$

Part 2: $L \in \operatorname{DSPACE}(g(n))$ - i.e., L can be recognized in space $O(g(n))$.

- Generally: simulate the run of M on $(\langle M\rangle, w)$
- Reserve working space $g(n) \quad$ (where $n=$ length of input) > space $O(g(n))$ is enough (by assumption g is space-constructible)
- Check that the input is of the form $(\langle M\rangle, w)$, that the alphabet is $\{0,1, \triangleright, \perp\}$, and that $|\langle M\rangle| \leq g(n)$
, space $O(g(n))$ is enough
- Use the Sipser's theorem (or assume that $g(n)=\Omega(\log (n)$), and use the approach with a counter), and check whether M rejects ($\langle M\rangle, w$)
in reserved space $g(n)$.
> when M rejects \rightarrow we accept
> when M accepts or loops or exceeds space \rightarrow we reject
> space $O(g(n))$ is enough

Hierarchy theorems

Space hierarchy theorem:

If:

- function $g(n)$ is space-constructible, and
- $f(n)=o(g(n))$
then $\operatorname{DSPACE}(f(n)) \neq \operatorname{DSPACE}(g(n))$
Time hierarchy theorem:
If:
- function $g(n)$ is time-constructible,
- $f(n)=o(g(n))$
then $\underline{\operatorname{DTIME}(f(n)) \neq \operatorname{DTIME}(g(n) \log (g(n)))}$

Hierarchy theorems

Time hierarchy theorem:

If:

- function $g(n)$ is time-constructible,
- $f(n)=o(g(n))$
then $\operatorname{DTIME}(f(n)) \neq \operatorname{DTIME}(g(n) \log (g(n)))$

Proof

- Consider the language
$L=\{(\langle M\rangle, w) \mid$ tape alphabet of M is $\{0,1, \triangleright, \perp\}$, and $|\langle M\rangle| \leq \log (|(\langle M\rangle, w)|)$, and M rejects $(\langle M\rangle, w)$ in time $g(|(\langle M\rangle, w)|)\}$
- Part $1-L \notin \operatorname{DTIME}(f(n)) \rightarrow$ exactly as previously

Hierarchy theorems

$$
\begin{aligned}
L=\{(\langle M\rangle, w) \mid & \text { tape alphabet of } M \text { is }\{0,1, \triangleright, \perp\}, \text { and }|\langle M\rangle| \leq \log (| |\langle M\rangle, w) \mid), \text { and } \\
& M \text { rejects }(\langle M\rangle, w) \text { in time } g(|(\langle M\rangle, w)|)\}
\end{aligned}
$$

Part $2-L \in \operatorname{DTME}(g(n) \log (g(n)))$ - i.e., L can be recognized in time $O(g(n) \log (g(n)))$

- Generally: simulate the run of M on $(\langle M\rangle, w)$
- Check that the input is of the form $(\langle M\rangle, w)$, that the alphabet is $\{0,1, \triangleright, \perp\}$, and that $|\langle M\rangle| \leq \log (n)$
(where $n=$ length of input)
> running time: $O(n)$
- Reserve a unary counter of length $g(n)$, on a separate tape > g is time constructible
> running time: $O(g(n))$
- Simulate M on word ($\langle M\rangle, w$), like the universal machine; increase the counter after every step.
> running time: $O(g(n) \cdot(\log g(n)+|\langle M\rangle|))=O(g(n) \log (g(n)))$
reading the description of M, modifying state

Hierarchy theorems

$$
\begin{aligned}
L=\{(\langle M\rangle, w) \mid & \text { tape alphabet of } M \text { is }\{0,1, \triangleright, \perp\}, \text { and }|\langle M\rangle| \leq \log (| |\langle M\rangle, w) \mid), \text { and } \\
& M \text { rejects }(\langle M\rangle, w) \text { in time } g(|(\langle M\rangle, w)|)\}
\end{aligned}
$$

Part $2-L \in \operatorname{DTIME}(g(n) \log (g(n)))$ - i.e., L can be recognized in time $O(g(n) \log (g(n)))$

- Generally: simulate the run of M on $(\langle M\rangle, w)$
- Check that the input is of the form $(\langle M\rangle, w)$, that the alphabet is $\{0,1, \triangleright, \perp\}$, and that $|\langle M\rangle| \leq \log (n)$
(where $n=$ length of input)
> running time: $O(n)$
- Reserve a unary counter of length $g(n)$, on a separate tape ${ }^{2} g$ is time constructible
> running time: $O(g(n))$
- Simulate M on word $(\langle M\rangle, w)$, like the universal machine; increase the counter after every step.
> running time: $O(g(n) \cdot(\log g(n)+|\langle M\rangle|))=O(g(n) \log (g(n)))$
> when M rejects \rightarrow we accept
> when M accepts or exceeds time \rightarrow we reject

Hierarchy theorems

Are there problems that require very large time / space to be solved? (Maybe every problem can be solved e.g. in polynomial time?)

Corollary from hierarchy theorems

- $\operatorname{DTIME}\left(n^{k}\right) \neq \operatorname{DTIME}\left(n^{k+1}\right), \operatorname{DSPACE}\left(n^{k}\right) \neq \operatorname{DSPACE}\left(n^{k+1}\right)$
- L \neq PSPACE, $\mathrm{P} \neq \mathrm{EXPTIME}$
because $\mathrm{P} \subseteq \operatorname{DTIME}\left(2^{n}\right) \neq \operatorname{DTIME}\left(4^{n}\right) \subseteq E X P T I M E$

Hierarchy theorems

Are there problems that require very large time / space to be solved? (Maybe every problem can be solved e.g. in polynomial time?)

Corollary from hierarchy theorems

- $\operatorname{DTIME}\left(n^{k}\right) \neq \operatorname{DTIME}\left(n^{k+1}\right), \operatorname{DSPACE}\left(n^{k}\right) \neq \operatorname{DSPACE}\left(n^{k+1}\right)$
- L \neq PSPACE, $P \neq E X P T I M E$
because $\mathrm{P} \subseteq$ DTIME $\left(2^{n}\right) \neq \operatorname{DTIME}\left(4^{n}\right) \subseteq E X P T I M E ~$
If a machine M works in time / space precisely $f(n)$, then there exists a problem requiring more time / space to be solved
- e.g. $2^{f(n)}$ or $f(n)^{2}$ - for time \& space
- e.g. $f(n) \cdot \log (\log (n))$ - for space
- Moreover, functions being complexities of problems are distributed "quite densely", especially for space

Gap theorems

- Functions being complexities of problems are distributed "quite densely"
- Simultaneously, we have the following gap theorems:
 There is a computable function $f(n)$ such that $\operatorname{DSPACE}(f(n))$
$=\operatorname{DSPACE}\left(2^{f(n)}\right)$.

A contradiction with hierarchy theorems?
No - the function f will not be constructible (it can be computed, but in a larger time / space)
At the same time: we see that in the hierarchy theorems the assumption about constructability is really needed

