
  

Computational complexity

lecture 3



  

Announcement
Mid-term exam:

11.12.2018, during the lecture (Tuesday, 12:15)



  

Universal machines

The definition of complexity was:

A language L⊆S* is decidable in time T(n) / space S(n) if 
there exists a Turing machine that recognizes this language 
and works in time T(n) / space S(n) 

But in real life we do not build a new computer if we want to solve a new
problem. We rather use always the same computer, and we only write
a new program.



  

Universal machines

The definition of complexity was:

A language L⊆S* is decidable in time T(n) / space S(n) if 
there exists a Turing machine that recognizes this language 
and works in time T(n) / space S(n) 

But in real life we do not build a new computer if we want to solve a new
problem. We rather use always the same computer, and we only write
a new program.
● A Turing machine can be represented as a string (this is a simple 

observation, but has far reaching consequences)

Mw – the machine encoded by a word w (we assume that every words 

encodes some machine, e.g., if something is wrong in w, we mean a machine which 
immediately halts)



  

Universal machines

Some notation:
● 〈M〉 – a word encoding a machine M
➔ M(w) – the “effect” of running machine M on input w:

➔ ”M rejects” 
➔ “M loops”
➔ “M accepts and outputs word v”

● M(u,w) – the “effect” of running machine M on the pair (u,w)
(we fix some encoding of pairs of words in words)



  

Universal machines
Theorem: 
Fix an input/output alphabet S (e.g., S={0,1}). There exists a universal Turing 
machine U (an “interpreter”), such that U(〈M〉,w)=M(w) for every machine M 
with input alphabet S and every word w∈S*

This looks obvious, but is not completely obvious.

Notice that U is a fixed machine, while M may be arbitrarily large
(many tapes, many states, large working alphabet)



  

Universal machines
Theorem: 
Fix an input/output alphabet S (e.g., S={0,1}). There exists a universal Turing 
machine U (an “interpreter”), such that U(〈M〉,w)=M(w) for every machine M 
with input alphabet S and every word w∈S*

Proof

Step 1: U translates M into an equivalent machine M2 which uses only
two working tapes, and such that the working alphabet is {0,1,▹,}
(now only the number of states of M2 is larger than in U)



  

Universal machines
Theorem: 
Fix an input/output alphabet S (e.g., S={0,1}). There exists a universal Turing 
machine U (an “interpreter”), such that U(〈M〉,w)=M(w) for every machine M 
with input alphabet S and every word w∈S*

Proof

Step 1: U translates M into an equivalent machine M2 which uses only
two working tapes, and such that the working alphabet is {0,1,▹,}
(now only the number of states of M2 is larger than in U)

Step 2: simulate M2 on w
input word w (head as in M2)

first working tape of M2

second working tape of M2

state of M2

description of M2

output tape (as in M2)



  

Universal machines
Theorem: 
Fix an input/output alphabet S (e.g., S={0,1}). There exists a universal Turing 
machine U (an “interpreter”), such that U(〈M〉,w)=M(w) for every machine M 
with input alphabet S and every word w∈S*

Proof

Step 2: simulate M2 on w

How fast is U? (when M/M2 is fixed)
If M2 works in time T(|w|) and space S(|w|), 
then also U works in time O(T(|w|)) and space O(S(|w|)).
(the length of the state of M2 and of the description M2 of is constant;
 step 1 works in constant time/space) 

input word w (head as in M2)

first working tape of M2

second working tape of M2

state of M2

description of M2

output tape (as in M2)



  

Universal machines
Theorem: 
Fix an input/output alphabet S (e.g., S={0,1}). There exists a universal Turing 
machine U (an “interpreter”), such that U(〈M〉,w)=M(w) for every machine M 
with input alphabet S and every word w∈S*

Proof

Step 1: U translates M into an equivalent machine M2 which uses only
two working tapes, and such that the working alphabet is {0,1,▹,}
How fast is M2? (comparing to M)
● If M works in space S(|w|), then also M2 works in space O(S(|w|)).
● If M works in time T(|w|), then it is easy to create M2 that works in

time O((T(|w|))2) (we can even require that M2 has only one tape)
● One can do better: if M works in time T(|w|), then we can create M2 

that works in time O(T(|w|) .log(T(|w|)))



  

Universal machines (*)
Lemma

One can simulate a multitape machine M working in time T(n) 
by a two-tape machine M2 working in time T(n) .log(T(n)).

Proof
● For simplicity: w.l.o.g. assume that tapes of M & M2 are infinite in both 

directions.
● Idea: keep all k tapes in parallel, using alphabet Gk, with all heads in the

same place
c o n t e n t s o f t h e t a p e

    s e c c o n d t a p e            

a n o t h e r t a p e           

c o n t e n t s o f t h e t a p e

    s e c c o n d t a p e            

a n o t h e r t a p e           



  

Universal machines (*)
Idea: keep all k tapes in parallel, using alphabet Gk, with all heads in the
same place c o n t e n t s o f t h e t a p e

    s e c c o n d t a p e            

a n o t h e r t a p e           

c o n t e n t s o f t h e t a p e

    s e c c o n d t a p e            

a n o t h e r t a p e           

This does not yet work in T .log T – when one head moves, we have
to shift contents of one tape, which can be of length T (total time is T2).



  

Universal machines (*)
Idea 2: add some “buffers”

  . . . . . . . . t e . . n . t s . o f . . t h e t a p e  

  . . . . . . . . e c c o n d t . . . . . . a p e          
       

      . . . . a n . . . . o t h e r .  . t a p e . . . .       
     

● Split everything into zones ...,L3,L2,L1,M,R1,R2,R3,... (O(log T) zones)
Zones Li/Ri have length 2i.

● Some cells are empty (contain “.”). Every zone is either empty, or full,
or half-full. Zones Li and Ri have together 2i empty cells and 2i full cells
(where  is treated as full).

R1 R2 R3L1L2L3 M



  

Universal machines (*)
Idea 2: add some “buffers”

  . . . . . . . . t e . . n . t s . o f . . t h e t a p e  

  . . . . . . . . e c c o n d t . . . . . . a p e          
       

      . . . . a n . . . . o t h e r .  . t a p e . . . .       
     

R1 R2 R3L1L2L3

How do we move the head (right):
● Find the smallest Ri that is nonempty
● Move first 2i-1 symbols from Ri to M,R1,...,Ri-1 (so that they become 

half-full). Symmetrically proceed with Li,Li-1,...,L1,M.

M



  

Universal machines (*)
Idea 2: add some “buffers”

  . . . . . . . . t e . . n . t s . o f . . t h e t a p e  

  . . . . . . . . e c c o n d t . . . . . . a p e          
       

      . . . . a n . . . . o t h e r .  . t a p e . . . .       
     

R1 R2 R3L1L2L3

How do we move the head (right):
● Find the smallest Ri that is nonempty
● Move first 2i-1 symbols from Ri to M,R1,...,Ri-1 (so that they become 

half-full). Symmetrically proceed with Li,Li-1,...,L1,M.
● The cost is O(2i) (we use the second tape while copying symbols)
● After this operation, zones Li-1,...,L1,M,R1,...,Ri-1 are half-full.
● Thus zone Li will not be touched during the next 2i-1 steps.
● For every i the running time accumulates to constant / step.
● This gives O(T .log T) in total. 

M



  

Universal machines
Theorem:

There exists a universal Turing machine U (an “interpreter”), 
such that U(〈M〉,w)=M(w). If M works in time T(|w|) and space S(|w|), 
then U works in time O(T(|w|) .log(T(|w|))) and space O(S(|w|)).



  

Universal machines
Theorem:

There exists a universal Turing machine U (an “interpreter”), 
such that U(〈M〉,w)=M(w). If M works in time T(|w|) and space S(|w|), 
then U works in time O(T(|w|) .log(T(|w|))) and space O(S(|w|)).

Two possible definitions of time / space complexity:
● T1/S1 using machines (“there exists a machine...”)

● T2/S2 using programs for the universal machine (“there exists a program...”)

Relation between them:
● T1≤T2≤T1 .log T1

● S1=S2
only small difference!
we use the definition with machines



  

Hierarchy theorems

Are there problems that require very large time / space to be solved?
(Maybe every problem can be solved e.g. in polynomial time?)



  

Hierarchy theorems

Are there problems that require very large time / space to be solved?
(Maybe every problem can be solved e.g. in polynomial time?)

Space hierarchy theorem:

If:
● function g(n) is space-constructible, and 
● f(n)=o(g(n))
then DSPACE(f(n))≠DSPACE(g(n))

Time hierarchy theorem – similar

definition:
f(n)
g(n)lim

n→∞
=0



  

Hierarchy theorems
Space hierarchy theorem:

If:
● function g(n) is space-constructible, and 
● f(n)=o(g(n))
then DSPACE(f(n))≠DSPACE(g(n))

Proof:
● Consider the language

L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤g(|(〈M〉,w)|), and

                           M rejects (〈M〉,w) in space g(|(〈M〉,w)|)}



  

Hierarchy theorems
L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤g(|(〈M〉,w)|), and

                           M rejects (〈M〉,w) in space g(|(〈M〉,w)|)}

Part 1 – L∉DSPACE(f(n))

Suppose that L∈DSPACE(f(n)). Then there is M with tape alphabet 
{0,1,▹,}, which recognizes L in space O(f(n)).

Because f(n)=o(g(n)), for some long word w machine M works on (〈M〉,w) 
in space g(|(〈M〉,w)|), and |〈M〉|≤g(|(〈M〉,w)|)

We have a contradiction:
(M accepts (〈M〉,w)) ⇔ (〈M〉,w)∈L ⇔ (M rejects (〈M〉,w))

Remark – for the language
L' = {((〈M〉,w) | M rejects (〈M〉,w)}

the same argument gives undecidability.



  

Hierarchy theorems
L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤g(|(〈M〉,w)|), and

                           M rejects (〈M〉,w) in space g(|(〈M〉,w)|)}

Part 2: L∈DSPACE(g(n)) – i.e., L can be recognized in space O(g(n)).
● Generally: simulate the run of M on (〈M〉,w)



  

Hierarchy theorems
L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤g(|(〈M〉,w)|), and

                           M rejects (〈M〉,w) in space g(|(〈M〉,w)|)}

Part 2: L∈DSPACE(g(n)) – i.e., L can be recognized in space O(g(n)).
● Generally: simulate the run of M on (〈M〉,w)
● Reserve working space g(n)  (where n = length of input)

➢ space O(g(n)) is enough (by assumption g is space-constructible) 



  

Hierarchy theorems
L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤g(|(〈M〉,w)|), and

                           M rejects (〈M〉,w) in space g(|(〈M〉,w)|)}

Part 2: L∈DSPACE(g(n)) – i.e., L can be recognized in space O(g(n)).
● Generally: simulate the run of M on (〈M〉,w)
● Reserve working space g(n)  (where n = length of input)

➢ space O(g(n)) is enough (by assumption g is space-constructible) 
● Check that the input is of the form (〈M〉,w), that the alphabet is {0,1,▹,},

and that |〈M〉|≤g(n) 
➢ space O(g(n)) is enough



  

Hierarchy theorems
L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤g(|(〈M〉,w)|), and

                           M rejects (〈M〉,w) in space g(|(〈M〉,w)|)}

Part 2: L∈DSPACE(g(n)) – i.e., L can be recognized in space O(g(n)).
● Generally: simulate the run of M on (〈M〉,w)
● Reserve working space g(n)  (where n = length of input)

➢ space O(g(n)) is enough (by assumption g is space-constructible) 
● Check that the input is of the form (〈M〉,w), that the alphabet is {0,1,▹,},

and that |〈M〉|≤g(n) 
➢ space O(g(n)) is enough

● Use the Sipser's theorem (or assume that g(n)=W(log(n)), and use the
approach with a counter), and check whether M rejects (〈M〉,w) 
in reserved space g(n).
➢ when M rejects → we accept
➢ when M accepts or loops or exceeds space → we reject
➢ space O(g(n)) is enough



  

Hierarchy theorems
Space hierarchy theorem:

If:
● function g(n) is space-constructible, and
● f(n)=o(g(n))
then DSPACE(f(n))≠DSPACE(g(n))

Time hierarchy theorem:

If:
● function g(n) is time-constructible, 
● f(n)=o(g(n))
then DTIME(f(n))≠DTIME(g(n)log(g(n)))



  

Time hierarchy theorem:

If:
● function g(n) is time-constructible, 
● f(n)=o(g(n))
then DTIME(f(n))≠DTIME(g(n)log(g(n)))

Proof 
● Consider the language

    L = {(〈M〉,w) | tape alphabet of M is {0,1,▹,}, and |〈M〉|≤log(|(〈M〉,w)|), and

 M rejects (〈M〉,w) in time g(|(〈M〉,w)|)}
● Part 1 – L∉DTIME(f(n)) → exactly as previously

Hierarchy theorems



  

L = {(〈M〉,w) |  tape alphabet of M is {0,1,▹,}, and |〈M〉|≤log(|(〈M〉,w)|), and

 M rejects (〈M〉,w) in time g(|(〈M〉,w)|)}

Part 2 – L∈DTIME(g(n)log(g(n))) – i.e., L can be recognized in time O(g(n)log(g(n))) 
● Generally: simulate the run of M on (〈M〉,w)
● Check that the input is of the form (〈M〉,w), that the alphabet is {0,1,▹,},

and that |〈M〉|≤log(n)  (where n = length of input)
➢ running time: O(n)  

● Reserve a unary counter of length g(n), on a separate tape
➢ g is time constructible 
➢ running time: O(g(n))

● Simulate M on word (〈M〉,w), like the universal machine; 
increase the counter after every step.
➢ running time: O(g(n) 

.(log g(n)+|〈M〉|)) = O(g(n)log(g(n)))

simulating tapes reading the description of M,
modifying state

Hierarchy theorems



  

L = {(〈M〉,w) |  tape alphabet of M is {0,1,▹,}, and |〈M〉|≤log(|(〈M〉,w)|), and

 M rejects (〈M〉,w) in time g(|(〈M〉,w)|)}

Part 2 – L∈DTIME(g(n)log(g(n))) – i.e., L can be recognized in time O(g(n)log(g(n))) 
● Generally: simulate the run of M on (〈M〉,w)
● Check that the input is of the form (〈M〉,w), that the alphabet is {0,1,▹,},

and that |〈M〉|≤log(n)  (where n = length of input)
➢ running time: O(n)  

● Reserve a unary counter of length g(n), on a separate tape
➢ g is time constructible 
➢ running time: O(g(n))

● Simulate M on word (〈M〉,w), like the universal machine; 
increase the counter after every step.
➢ running time: O(g(n) 

.(log g(n)+|〈M〉|)) = O(g(n)log(g(n)))
➢ when M rejects → we accept
➢ when M accepts or exceeds time → we reject

Hierarchy theorems



  

Are there problems that require very large time / space to be solved?
(Maybe every problem can be solved e.g. in polynomial time?)

Corollary from hierarchy theorems
● DTIME(nk)≠DTIME(nk+1), DSPACE(nk)≠DSPACE(nk+1)
● L≠PSPACE, P≠EXPTIME

                    because P⊆DTIME(2n)≠DTIME(4n)⊆EXPTIME

Hierarchy theorems



  

Are there problems that require very large time / space to be solved?
(Maybe every problem can be solved e.g. in polynomial time?)

Corollary from hierarchy theorems
● DTIME(nk)≠DTIME(nk+1), DSPACE(nk)≠DSPACE(nk+1)
● L≠PSPACE, P≠EXPTIME

                    because P⊆DTIME(2n)≠DTIME(4n)⊆EXPTIME

If a machine M works in time / space precisely f(n), then there exists
a problem requiring more time / space to be solved
● e.g. 2f(n) or f(n)2 – for time & space
● e.g. f(n) 

.log(log(n)) – for space
● Moreover, functions being complexities of problems are distributed 

“quite densely”, especially for space

Hierarchy theorems



  

Gap theorems

● Functions being complexities of problems are distributed “quite densely”
● Simultaneously, we have the following gap theorems:

There is a computable function f(n)≥n such that DTIME(f(n))=DTIME(2f(n)).

There is a computable function f(n) such that DSPACE(f(n))
=DSPACE(2f(n)).

A contradiction with hierarchy theorems?

No – the function f will not be constructible (it can be computed, but in 
a larger time / space)

At the same time: we see that in the hierarchy theorems the assumption 
about constructability is really needed
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