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We are mainly interested in:
● complexity of a language – time and space needed to check that

a word belongs to the language
Now we will see other notions of complexity:
● complexity of a word / number – Kolmogorov complexity
● communication complexity

Other notions of complexity



  

Idea: Some numbers (words etc) are easier to remember than other.
They are less complex.
This depends not only on the length of the number.

Kolmogorov complexity
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Idea: Some numbers (words etc) are easier to remember than other.
They are less complex.
This depends not only on the length of the number.

Kolmogorov complexity



  

Idea: complexity of a number = length of its shortest description
Formally: complexity of a number = the size of the smallest Turing
machine that outputs this number (when started with empty input)
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Idea: complexity of a number = length of its shortest description
Formally: complexity of a number = the size of the smallest Turing
machine that outputs this number (when started with empty input)

Berry paradox: let n be the smallest number that cannot be defined
using ≤100 words (we have just defined it)
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Idea: complexity of a number = length of its shortest description
Formally: complexity of a number = the size of the smallest Turing
machine that outputs this number (when started with empty input)

Berry paradox: let n be the smallest number that cannot be defined
using ≤100 words (we have just defined it)

Theorem
A function that maps a number to its complexity is not computable.
Proof
If it is computable, we can also compute the function:

k → the smallest number nk having complexity ≥k
(we compute the complexity of consecutive numbers, until we reach
a number with complexity ≥k)
We see that the complexity of nk is ≤C+log(k), for some constant C:
we output k, and then we apply the function k → nk

Thus for every k we have that k≤C+log(k) – contradiction  

Kolmogorov complexity



  

Communication complexity: 
● There is a fixed function f:X×Y→Z (usually X=Y={0,1}n Z={0,1}).
● Alice knows x∈X, Bob knows y∈Y.
● How many bits of communication is needed if Alice want to 

compute f(x,y)?

Obviously n bits is always enough, but for some functions it is
enough to transfer less bits.

Communication complexity



  

Communication complexity: 
● There is a fixed function f:X×Y→Z (usually X=Y={0,1}n Z={0,1}).
● Alice knows x∈X, Bob knows y∈Y.
● How many bits of communication is needed if Alice want to 

compute f(x,y)?

Obviously n bits is always enough, but for some functions it is
enough to transfer less bits.

Example: function „is x=y?” requires sending n bits.
Proof: Suppose that it is enough to send n-1 bits. Then there exist
two pairs (x,x) and (x',x') for which the communication is identical.
Then for the pair (x,x') the communication looks in the same way, 
so the computed result will be incorrect.

Communication complexity



  

Communication complexity: 
● There is a fixed function f:X×Y→Z (usually X=Y={0,1}n Z={0,1}).
● Alice knows x∈X, Bob knows y∈Y.
● How many bits of communication is needed if Alice want to 

compute f(x,y)?

Obviously n bits is always enough, but for some functions it is
enough to transfer less bits.

Example: function „is x=y?” requires sending n bits.
Proof: Suppose that it is enough to send n-1 bits. Then there exist
two pairs (x,x) and (x',x') for which the communication is identical.
Then for the pair (x,x') the communication looks in the same way, 
so the computed result will be incorrect.

Lower bounds for the communication complexity for appropriate 
functions were used to prove some lower bounds for complexity of
some problems, e.g., for streaming algorithms.
See also: problem 1.5.3 – a single-tape machine recognizing the
language of palindromes requires time W(n2)

Communication complexity



  

[now we come back to complexity of languages]

Theorem. Consider a machine M working in space S(n), but not 
necessarily having the halting property. 
Then there exists a machine M' such that:
● L(M')=L(M)
● M' works in space S(n)
● M' halts on every input

Sipser's theorem



  

Sipser's theorem

Theorem. Consider a machine M working in space S(n), but not 
necessarily having the halting property. 
Then there exists a machine M' such that:
● L(M')=L(M)
● M' works in space S(n)
● M' halts on every input

Thus: in the following definition

A language L⊆S* is recognizable in space S(n) if there exists a multitape 
machine that halts on every input, accepts L, and works in space S(n).

this condition was redundant



  

Sipser's theorem

Theorem. Consider a machine M working in space S(n), but not 
necessarily having the halting property. 
Then there exists a machine M' such that:
● L(M')=L(M)
● M' works in space S(n)
● M' halts on every input

Proof
Approach 1: (in which the resulting M' uses a lot of space)
Key observation: in an accepting run no configuration repeats.
● after every move we copy the current configuration to an additional

working tape,
● additionally we check whether the current configuration equals to

some configuration saved earlier
● a configuration has repeated ⇒ a loop ⇒ we reject



  

Sipser's theorem

Theorem. Consider a machine M working in space S(n), but not 
necessarily having the halting property. 
Then there exists a machine M' such that:
● L(M')=L(M)
● M' works in space S(n)
● M' halts on every input

Proof
Approach 2: a counter of moves:
● an accepting run has at most cS(n) steps, whenever S(n)≥log(n)
● we can count up to cS(n) using a counter of size S(n)
● thus we count: we increment the counter by 1 after every step
● the counter overflows ⇒ we reject



  

Approach 2: a counter of moves:
● an accepting run has at most cS(n) steps, whenever S(n)≥log(n)
● we can count up to cS(n) using a counter of size S(n)
● thus we count: we increment the counter by 1 after every step
● the counter overflows ⇒ we reject

Problems:
● We get a machine M, but maybe we cannot compute the function S(n). 

[Actually, we can – this follows from approach 3]
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Approach 2: a counter of moves:
● an accepting run has at most cS(n) steps, whenever S(n)≥log(n)
● we can count up to cS(n) using a counter of size S(n)
● thus we count: we increment the counter by 1 after every step
● the counter overflows ⇒ we reject

Problems:
● We get a machine M, but maybe we cannot compute the function S(n). 

[Actually, we can – this follows from approach 3]

This is only an ostensible problem: we know that such a function S(n) 
exists, so there exists a machine which at the very beginning reserves
a counter of this size. Maybe we cannot compute this machine out of
M, but the theorem only says that „there exists M' ”

● But does such a machine really exist? The function S(n) has to be
space constructible (we will see more on this topic soon)

Sipser's theorem



  

Approach 2: a counter of moves:
● an accepting run has at most cS(n) steps, whenever S(n)≥log(n)
● we can count up to cS(n) using a counter of size S(n)
● thus we count: we increment the counter by 1 after every step
● the counter overflows ⇒ we reject

Problems:
● We get a machine M, but maybe we cannot compute the function S(n). 

[Actually, we can – this follows from approach 3]

This is only an ostensible problem: we know that such a function S(n) 
exists, so there exists a machine which at the very beginning reserves
a counter of this size. Maybe we cannot compute this machine out of
M, but the theorem only says that „there exists M' ”

● But does such a machine really exist? The function S(n) has to be
space constructible (we will see more on this topic soon)
The requirement that S(n) is space constructible can be avoided:
M' does not reverse the whole counter at the very beginning, but it 
increases it always when M visits a new memory cell – always it holds:
counter length ≥ log(the number of configurations under the current memory usage).
Such a counter is sufficient.

● This construction works only when S(n)≥log(n)

Sipser's theorem



  

Approach 2: summing up – construction of M':
● suppose that M has at most n 

.cS+1 configurations using S cells of memory
● M' works as M, but additionally there is a counter on a separate tape
● at the very beginning M' creates this counter – its value is 0, and its

length is ⌈log(nc)⌉
● this counter is increased after every “real” step of M
● when M enters a cell with , the counter length is increased 

by ⌈log(c)⌉ (constant)
● when counter overflows, M' rejects
● this construction uses space O(S(n)+log(n))

Sipser's theorem



  

Sipser's theorem (*)

Approach 3 [Sipser]: explore the configuration graph going back from
accepting configurations
● good: the problem of cycles disappear – there are no cycles at all
● bad: there are infinitely many accepting configurations,

a configuration may have multiple predecessors,
there are infinite paths while going back

(*) - Some slides will be marked with this sign. They contain more 
complicated proofs. If you get lost, this is not a very big problem.

configurations with 
no predecessors

configurations with 
multiple predecessors

accepting/rejecting configurations have no successors
every other configuration has exactly one successor

Configuration graph:



  

Sipser's theorem (*)

Approach 3 [Sipser]: explore the configuration graph going back from
accepting configurations
● good: the problem of cycles disappear – there are no cycles at all
● bad: there are infinitely many accepting configurations,

a configuration may have multiple predecessors,
there are infinite paths while going back

Example: transition q
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Sipser's theorem (*)

Approach 3 [Sipser]: explore the configuration graph going back from
accepting configurations
● good: the problem of cycles disappear – there are no cycles at all
● bad: there are infinitely many accepting configurations,

a configuration may have multiple predecessors,
there are infinite paths while going back

Example: transition q
1
,  q

1
,,L

q
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,...
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,...

q
1
,...

q
1
,...

q
1
,...

Antidote: Forbid this!
● Assume w.l.o.g. that M never writes 
● Consider only configurations with no  

to the left of the head



  

Sipser's theorem (*)

Approach 3 [Sipser]: explore the configuration graph going back from
accepting configurations
Assumptions:
● M never writes 
● We consider only configurations with no  to the left of the head

Then:
● good: the problem of cycles disappear – there are no cycles at all,

there is a function: configuration → memory usage,
memory usage never decreases (while going back: never increases),
no infinite paths while going back

● bad: there are infinitely many accepting configurations,
a configuration may have multiple predecessors,
there are infinite paths while going back

Recall that memory usage = number of visited cells.
If M could write , seeing only a current configuration we don't know
how many cells were already visited. 



  

Sipser's theorem (*)

Approach 3 [Sipser]: explore the configuration graph going back from
accepting configurations
● good: the problem of cycles disappear – there are no cycles at all,

there is a function: configuration → memory usage,
memory usage never decreases (while going back: never increases),
no infinite paths while going back

● bad: there are infinitely many accepting configurations,
a configuration may have multiple predecessors

Procedure Search(C): Starting from a configuration C perform the DFS 
on the configuration graph, looking for the initial configuration.

Search(C) works in space k.
If k memory cells are occupied in C, and either C is accepting, or the next 
step from C increases memory usage, then Search(C) halts.

How to perform this DFS in space k? We can only remember the current configuration
(OK, as we are in a tree). Additionally we remember whether we have came from the
parent in the tree, or from a child; in the latter case also from which child.



  

Sipser's theorem (*)
Procedure Search(C): Starting from a configuration C perform the DFS 
on the configuration graph, looking for the initial configuration.
Search(C) works in space k.
If k memory cells are occupied in C, and either C is accepting, or the next 
step from C increases memory usage, then Search(C) halts.

memory
usage 1

memory
usage 2

memory
usage 3

memory
usage 4

...

accepting configuration 
– not on a loop

memory usage will be 
increased – not on a loop



  

Sipser's theorem (*)
Procedure Search(C): Starting from a configuration C perform the DFS 
on the configuration graph, looking for the initial configuration.
Search(C) works in space k.
If k memory cells are occupied in C, and either C is accepting, or the next 
step from C increases memory usage, then Search(C) halts.
The algorithm simulating M back:
● We assume that M has only one working tape, and never writes .

(can be done without increasing memory usage)

● For consecutive k perform the following steps:
 Check all configurations using k memory cells
 If the next step from C increses memory usage, call Search(C) and
    check whether C can be reached from an initial configuration
    If yes, increase k, and repeat the same.

● After this loop we know that M uses exactly k memory cells on the input
word. It remains to check whether it accepts.

● To this end, we call Search(C) from every accepting configuration using
at most k memory cells.



  

Sipser's theorem (*)

memory
usage 1

memory
usage 2

memory
usage 3

memory
usage 4

...

initial con-
figuration

k=1
Search(this_configuration)
Initial configuration not found



  

Sipser's theorem (*)

memory
usage 1

memory
usage 2

memory
usage 3

memory
usage 4

...

initial con-
figuration

k=1
Search(this_configuration)
Initial configuration found;
Increase k



  

Sipser's theorem (*)

memory
usage 1

memory
usage 2

memory
usage 3

memory
usage 4

...

initial con-
figuration

k=2
Search(this_configuration)
Initial configuration not found



  

Sipser's theorem (*)

memory
usage 1

memory
usage 2

memory
usage 3

memory
usage 4

...

initial con-
figuration

k=2
Search(this_configuration)
Initial configuration found;
Increase k



  

Sipser's theorem (*)

memory
usage 1

memory
usage 2

memory
usage 3

memory
usage 4

...

initial con-
figuration

k=3
Search(this_configuration)
Initial configuration not found

Memory usage is 3!
Now we search from accepting configurations



  

Sipser's theorem (*)

memory
usage 1

memory
usage 2

memory
usage 3

memory
usage 4

...

initial con-
figuration

Search(this_configuration)
Initial configuration not found

Memory usage is 3!
Now we search from 
accepting configurations



  

Sipser's theorem (*)

memory
usage 1

memory
usage 2

memory
usage 3

memory
usage 4

...

initial con-
figuration

Search(this_configuration)
Initial configuration found!
There is an accepting run!

Memory usage is 3!
Now we search from 
accepting configurations



  

Corollary of the Sipser's theorem

If a language L is semidecidable, but not decidable, then every machine
M recognizing L on some word w uses infinite memory.

Proof. If M uses only a finite memory on every input,
then M would work in space S(n) for some function S. 
By Sipser's theorem, L would be decidable.



  

A function f(n) is time-constructible if there exists a machine M, 
which for input 1n 
● outputs a word of length precisely f(n),
● works in time O(f(n)).

Constructible functions



  

A function f(n) is time-constructible if there exists a machine M, 
which for input 1n 
● outputs a word of length precisely f(n),
● works in time O(f(n)).

Tutorials: 
● If f and g are time-constructible, then f+g, f 

.g, f 
g as well 

● Functions n, ⌊n 
.log(n)⌋, nk, kn are time-constructible

Function ⌊log(n)⌋, nor any function asymptotically smaller than n, 
is not time-constructible.

Constructible functions



  

A function f(n) is space-constructible if there exists a machine M, 
which for input 1n 
● outputs a word of length precisely f(n),
● works in space O(f(n)).

Constructible functions



  

A function f(n) is space-constructible if there exists a machine M, 
which for input 1n 
● outputs a word of length precisely f(n),
● works in space O(f(n)).

Tutorials: 
● Every time-constructible function is also space-constructible
● If f and g are space-constructible, then f+g, f 

.g, f 
g as well 

● Functions n, ⌊log(n)⌋, nk, kn are space-constructible

We will see soon that:
● The function ⌊log(log(n+2))⌋ is not space-constructible
● Neither are some very fast-growing functions

Constructible functions



  

A machine M works in space precisely S(n). 
Is then S(n) space-constructible?

Constructible functions



  

A machine M works in space precisely S(n). 
Is then S(n) space-constructible?
● At first glance – yes: for every n there is a word w of length n

for which M uses precisely space S(n).
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A machine M works in space precisely S(n). 
Is then S(n) space-constructible?
● At first glance – yes: for every n there is a word w of length n

for which M uses precisely space S(n).
● But: while constructing the function S(n) we get the word 1n;

not clear how to find the „worst” word w
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A machine M works in space precisely S(n). 
Is then S(n) space-constructible?
● At first glance – yes: for every n there is a word w of length n

for which M uses precisely space S(n).
● But: while constructing the function S(n) we get the word 1n;

not clear how to find the „worst” word w
● When S(n)=W(n), we can browse all words of length n

and run M on each of them

Constructible functions



  

A machine M works in space precisely S(n). 
Is then S(n) space-constructible?
● At first glance – yes: for every n there is a word w of length n

for which M uses precisely space S(n).
● But: while constructing the function S(n) we get the word 1n;

not clear how to find the „worst” word w
● When S(n)=W(n), we can browse all words of length n

and run M on each of them
● But if S(n) is smaller, we cannot do this (next slides – an example)

Constructible functions



  

● Tutorials: There is a language, which is not regular, and which can be 
recognized in space log(log(n)). The machine recognizing it works in
space (precisely) Q(log(log(n)))

● The function ⌊log(log(n+2))⌋ is not space-constructible

Constructible functions



  

The function ⌊log(log(n+2))⌋ is not space-constructible.

Proof. 
● To the contrary, suppose that M “constructs” ⌊log(log(n+2))⌋
● M works in space O(log(log(n+2))), so for large n it uses at most

c 
.log(log(n)) cells on inputs of length n, including cells on the output tape 

(for some constant c)

Constructible functions (*)



  

The function ⌊log(log(n+2))⌋ is not space-constructible.

Proof. 
● To the contrary, suppose that M “constructs” ⌊log(log(n+2))⌋
● M works in space O(log(log(n+2))), so for large n it uses at most

c 
.log(log(n)) cells on inputs of length n, including cells on the output tape 

(for some constant c)
● The number of all „internal” configurations (i.e., not counting the posi-

tion of head on the input tape, but including the contents of the output 
tape) on inputs of length n is (log(n))d (for some constant d)

● Take n>(log(n))d. We will prove that M produces the same output 
on 1n+kn! for every k – contrary to the assumption

Constructible functions (*)



  

The function ⌊log(log(n+2))⌋ is not space-constructible.

Proof. Let n>(number_of_internal_configurations_for_inputs_of_length_n). 
Consider the run of M on input 1n. 
We want to produce a run on input 1n+kn! , producing the same output.
● Cut the run on 1n into fragments – split on configurations when we are

over the first or over the last position of the input tape.

Constructible functions (*)

n+kn!

n



  

The function ⌊log(log(n+2))⌋ is not space-constructible.

Proof. Let n>(number_of_internal_configurations_for_inputs_of_length_n). 
Consider the run of M on input 1n. 
We want to produce a run on input 1n+kn! , producing the same output.
● Cut the run on 1n into fragments – split on configurations when we are

over the first or over the last position of the input tape.
● Fragments beginning and ending over the first position can be 

repeated when the input is 1n+kn!.
● Similarly fragments beginning and ending on the last position,

and the last fragment

Constructible functions (*)

n+kn!

n



  

● Consider a fragment going from the beginning to the end (or vice versa) 
● By the pigeonhole principle, there are two positions on the input tape

such that M visits these positions in the same internal configuration.
● The part of the run between these two positions can be “pumped”

(recall that the input word is uniform – contains only ones).
The distance between these positions m≤n is a divisor of (n+kn!)-n=kn!

● (If there are multiple fragments crossing the whole word, they can
be pumped in different places, no problem)

● Thus we have a run on input 1n+kn!, producing the same output as on 1n

   (contradiction)

Constructible functions (*)

n+kn!

n



  

● Tutorials: There is a language, which is not regular, and which can be 
recognized in space log(log(n)). The machine recognizing it works in
space (precisely) Q(log(log(n)))

● The function ⌊log(log(n+2))⌋ is not space-constructible

● The same proof works for every unbounded nondecreasing function
in o(log(n)) 
 

Constructible functions



  

● Tutorials: There is a language, which is not regular, and which can be 
recognized in space log(log(n)). The machine recognizing it works in
space (precisely) Q(log(log(n)))

● The function ⌊log(log(n+2))⌋ is not space-constructible

● The same proof works for every unbounded nondecreasing function
in o(log(n)) 

● But: there exists an unbouned function in O(log(log(n))) which is
space constructible (it is not nondecreasing)
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● Tutorials: There is a language, which is not regular, and which can be 
recognized in space log(log(n)). The machine recognizing it works in
space (precisely) Q(log(log(n)))

● The function ⌊log(log(n+2))⌋ is not space-constructible

● The same proof works for every unbounded nondecreasing function
in o(log(n)) 

● But: there exists an unbouned function in O(log(log(n))) which is
space constructible (it is not nondecreasing)
This is: 
               S(n) = ⌈log(min {i | i does not divide n})⌉

Constructible functions
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