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● approximation

● complexity & cryptography

● zero-knowledge proofs

● quantum computing

Today



  

We have already seen:

19.12 – Approximation of VERTEX-COVER with factor 1/2:

In a loop – add both ends of some edge to the cover, and remove
them from the graph, together with their neighbors

Every cover contains at least one of these ends, thus our cover
is at most twice larger (error 1/2)
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We have already seen:

19.12 – Approximation of VERTEX-COVER with factor 1/2

16.01 – PCP theorem:
● MAX-CLIQUE – approximation almost impossible
● MAX-3CNFSAT – approximation possible with factor 1/8,

better approximation impossible
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We have already seen:

19.12 – Approximation of VERTEX-COVER with factor 1/2
   PCP → approximation factor cannot be better than 0.265

16.01 – PCP theorem:
● MAX-CLIQUE – approximation almost impossible
● MAX-3CNFSAT – approximation possible with factor 1/8,

better approximation impossible
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We have already seen:

19.12 – Approximation of VERTEX-COVER with factor 1/2
   PCP → approximation factor cannot be better than 0.265

16.01 – PCP theorem:
● MAX-CLIQUE – approximation almost impossible
● MAX-3CNFSAT – approximation possible with factor 1/8,

better approximation impossible

Today:
● traveling salesman – approximation almost impossible (no PCP thm.)
● knapsack problem – strong PTAS (very good approximation)

Approximation



  

Difficult approximation
Traveling salesmen problem: the approximation factor is 1 (there is
no effective approximation at all), unless P=NP.

Proof:
Suppose that there is an algorithm with error e<1. Out of it, we will
create a precise algorithm finding Hamiltonian cycles. For an 
arbitrary graph we create an instance of the traveling salesman
problem: as the distance between nodes u, v we take:
➔ 1 if there is an edge between u and v in the original graph
➔ |V|/(1-e) if there is no such edge



  

Traveling salesmen problem: the approximation factor is 1 (there is
no effective approximation at all), unless P=NP.

Proof:
Suppose that there is an algorithm with error e<1. Out of it, we will
create a precise algorithm finding Hamiltonian cycles. For an 
arbitrary graph we create an instance of the traveling salesman
problem: as the distance between nodes u, v we take:
➔ 1 if there is an edge between u and v in the original graph
➔ |V|/(1-e) if there is no such edge

We run the approximate algorithm of the traveling salesmen 
problem on this instance. There are two possibilities:
➔ the algorithm gives a route having cost |V|; then we have a

Hamiltonian cycle
➔ the algorithm gives a route having cost C>|V|/(1-e) (when at least 

one edge of such a cost is used); the error is e, so C≤O/(1-e) 
(where O – optimal cost), so O>|V| – there is no Hamiltonian cycle
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Suppose that there is an algorithm with error e<1. Out of it, we will
create a precise algorithm finding Hamiltonian cycles. For an 
arbitrary graph we create an instance of the traveling salesman
problem: as the distance between nodes u, v we take:
➔ 1 if there is an edge between u and v in the original graph
➔ |V|/(1-e) if there is no such edge

We run the approximate algorithm of the traveling salesmen 
problem on this instance. There are two possibilities:
➔ the algorithm gives a route having cost |V|; then we have a

Hamiltonian cycle
➔ the algorithm gives a route having cost C>|V|/(1-e) (when at least 

one edge of such a cost is used); the error is e, so C≤O/(1-e) 
(where O – optimal cost), so O>|V| – there is no Hamiltonian cycle

Remark: This shows not only that there is no approximation with a
constant factor, but even such that 1-e goes exponentially to 0 
(i.e., where C/O≤exponential_function), since then the instance
of the traveling salesmen problem is still of polynomial size

Difficult approximation



  

Easy approximation (strong PTAS)
Knapsack problem: 
Input: n pairs (vi,wi) – there are n objects, i-th of them has value vi 

and weight wi 
threshold Wmax. 

Output: a subset of these objects, such that the sum of vi is as large 
   as possible, but the sum of wi does not exceed Wmax.

For this problem: approximation factor is 0, there is a strong PTAS – 
for every e>0 there is an algorithm that approximates the solution
with error e, and works in time O(n3)    [proof: next slides]



  

Solution:
The problem can be solved by dynamic programming 
(which is polynomial time assuming that vi are given in unary): 

Let V=max(vi).
For every i=0...n and v=0...nV we compute W(i,v) – the minimal 
weight, which can be obtained by choosing among the first i objects
so that the value is precisely v. 
We have a recursive formula:

W(i+1,v)=min(W(i,v), W(i,v-vi+1)+wi+1)

Running time: O(n2V)    (formally: times logarithmic factors)

Since V is given in binary, this is not polynomial in the size of the input.

BTW. We see that the knapsack problem is FPT with parameter V
BTW2. Another algorithm (also dynamic programming) works in

time O(nWmax). So the problem is FPT also with parameter Wmax

Easy approximation (strong PTAS)



  

Thus, for V=max(vi) we have an exact algorithm in time O(n2V).

We use it as follows: for some b we take v'i=⌊vi/2
b⌋ (i.e., we cut off

the last b bits of every value). Now the running time is O(n2V/2b).

How precise is the solution?

Let S and S' be the optimal choices for vi and v'i. It holds that:

Si∈Svi ≥ Si∈S' vi ≥ Si∈S' 2
bv'i ≥ Si∈S 2

bv'i ≥ Si∈S vi-n2b

Thus S' approximates the optimal solution of the original problem
with error ≤e=n2b/V (notice that V is a lower bound for the solution,
assuming that no weight exceeds Wmax).

For a fixed e we take b=⌈log(eV/n)⌉. Then the algorithms gives 
error ≤e, and the running time is O(n2V/2b)=O(n3/e)   

Easy approximation (strong PTAS)



  

Complexity and cryptography
● Basic goal of cryptography: encode a message so that the 

adversary cannot decode it
● We should think about the adversary as about a device with a

limited computational power – for example RSA: the encoded
message and the public key uniquely determine the original
message, but we cannot compute it quickly

● Thus: the desired situation is that the problem of decoding 
messages reduces to (i.e., is not easier than) some difficult
computational problem



  

● A security proof has to base at least on the P≠NP conjecture
(or on some stronger conjecture)
For example consider public-key cryptography (RSA): 
having access to nondeterminism, one can easily decode – it is 
enough to guess the original message, and check that after 
encoding it gives the encoded message (encoding is easy).
Thus if P=NP, we can quickly decode deterministically.

Complexity and cryptography



  

● A security proof has to base at least on the P≠NP conjecture
(or on some stronger conjecture)
For example consider public-key cryptography (RSA): 
having access to nondeterminism, one can easily decode – it is 
enough to guess the original message, and check that after 
encoding it gives the encoded message (encoding is easy).
Thus if P=NP, we can quickly decode deterministically.

● Initially, people tried to base security of cryptographic protocols
on hardness of some NP-complete problem (i.e., on the P≠NP
conjecture). Without any success, till now.

● The reason (generally): NP-completeness talks about hardness
of problems for the worst input. But in cryptography we need
problems that are hard for most inputs. When we are encoding
something, it should be hard for the adversary to decode (almost)
every uncoded message, not only some of them (the hardest)

Complexity and cryptography



  

Some hard problems, on which security of cryptographic protocols
is based:
● Finding factors of composite numbers. The best known algorithm

works in time ∼2O(n1/3). It is difficult to decompose numbers of the
for p 

.q, where p and q are prime numbers of similar size.
● Discrete logarithm. Let g be a generator of the group ℤp.

Knowing (gx mod p) it is difficult to find x. It can be shown that if
this problem is difficult in the worst case, then it is also difficult
in the average case.

● And other (e.g., basing on elliptic curves)

*
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Discrete logarithm. Let g be a generator of the group ℤp.
Knowing (gx mod p) it is difficult to find x. It can be shown that if
this problem is difficult in the worst case, then it is also difficult
in the average case.
More precisely: If a polynomial time algorithm computes the 
discrete logarithm for a 1/log(p) (i.e. 1/poly(size_of_input)) fraction of 
all inputs, then there is a randomized polynomial time algorithm for 
discrete logarithm for all inputs.
Proof
Suppose that we want to compute the discrete logarithm of x, that is,
compute k such that x=gk (mod p).
We pick a random number b, and we try to compute the discrete
logarithm of xgb – a number k' such that xgb=gk' (mod  p).
Then k=k'-b.
We succeed with probability 1/log(p), i.e., 1/poly(size_of_input).
Notice that (xgb mod p) is distributed uniformly over {0,...,p-1}.

*
Complexity and cryptography



  

Some hard problems, on which security of cryptographic protocols
is based:
● Finding factors of composite numbers. The best known algorithm

works in time ∼2O(n1/3). It is difficult to decompose numbers of the
for p 

.q, where p and q are prime numbers of similar size.
● Discrete logarithm. Let g be a generator of the group ℤp.

Knowing (gx mod p) it is difficult to find x. It can be shown that if
this problem is difficult in the worst case, then it is also difficult
in the average case.

● And other (e.g., basing on elliptic curves)
We want to prove security of cryptographic protocols assuming that
these problems are hard.
What does it mean that they are hard for a majority of instances?
How should this be defined?

Complexity and cryptography

*



  

A family of functions fn:{0,1}n→{0,1}m(n) is (e(n),s(n))-one-way,
if it is computable in polynomial time, and if for every randomized 
algorithm A working in time s(n) it holds that Pr[A reverses fn(x)]≤e(n) 
● „reverses” means: knowing fn(x) it finds y such that fn(y)=fn(x)

● the probability is over input strings x∈{0,1}n and over random
bits tossed by A  

● it is a reasonable assumption that the adversary can use random
bits

● we could even assume that A is non-uniform, depending on n (i.e., from P/poly)
 

One-way functions



  

A family of functions fn:{0,1}n→{0,1}m(n) is (e(n),s(n))-one-way,
if it is computable in polynomial time, and if for every randomized 
algorithm A working in time s(n) it holds that Pr[A reverses fn(x)]≤e(n) 
● we usually consider functions s(n) growing faster than any poly-

nomial; we suppose that the problems mentioned on the previous
slide cannot be solved in subexponential time, i.e., faster than 2nc 
for some (maybe small) constant c>0

● the probability e(n) should decrease while increassing n (e.g.,
polynomially)

● Theorem (Yao): if there exist one-way functions for e(n)=1-1/nc 
for some c (so-called “weak one-way function”, which are difficult
to reverse only for 1/nc of inputs), then there exist one-way 
functions for e(n)<1/nk, for every k (so-called “strong one-way 
functions”)
 

One-way functions



  

How our problems can be written as one-way functions:
● Discrete logarithm. Let p1,p2,... be a sequence of prime numbers,

where pi has i bits. Let gi be a generator of ℤpi
. Then the i-th 

function is given by:   x → (gi
x mod pi).

● Factorization. It is known that there is a polynomial (wrt. n)
randomized algorithm generating prime numbers of length n.
We can treat it as a deterministic algorithm converting a sequence
of random bits r to a prime number A(r) of length n.
Then the considered function (supposingly one-way) is
(r1,r2) → A(r1) 

.A(r2)
● The RSA encoding is also a (supposingly one-way) function, etc.

*

One-way functions



  

The best encoding (one-time pad): 
● The sender and the receiver both know a common (one-time) key

x of the same length as the message m
● The sender sends (m XOR x)
● Receiver computes ((m XOR x) XOR x)=m
● A full security: the adversary, knowing (m XOR x), but not 

knowing x, does not know anything about m (independently 
from his computational power)

Pseudorandom generators



  

The best encoding (one-time pad): 
● The sender and the receiver both know a common (one-time) key

x of the same length as the message m
● The sender sends (m XOR x)
● Receiver computes ((m XOR x) XOR x)=m
● A full security: the adversary, knowing (m XOR x), but not 

knowing x, does not know anything about m (independently 
from his computational power)

● A difficulty: the parties need to share a very long key
● A connected difficulty: how to create such a long random string?
● A solution: pseudorandom generator – basing on a short (known

to both parties) key, generate a long string, which looks like a
random string 

Pseudorandom generators



  

Definition:
● We consider a family of functions gn:{0,1}n→{0,1}m(n) computable

in polynomial time
● It is a (e(n),s(n))-pseudorandom generator, if for any randomized

algorithm A working in time s(n), for every sufficiently large n:
|Prx∈{0,1}n[A(gn(x))=1]-Pry∈{0,1}n[A(y)=1]|≤e(n)

(i.e., the generated sequence cannot be distinguished from a
random sequence)

Pseudorandom generators



  

Definition:
● We consider a family of functions gn:{0,1}n→{0,1}m(n) computable

in polynomial time
● It is a (e(n),s(n))-pseudorandom generator, if for any randomized

algorithm A working in time s(n), for every sufficiently large n:
|Prx∈{0,1}n[A(gn(x))=1]-Pry∈{0,1}n[A(y)=1]|≤e(n)

(i.e., the generated sequence cannot be distinguished from a
random sequence)

● Equivalent definition: 
Prx∈{0,1}n[A(gn(x)[1..i])=gn(x)[i+1]]≤e(n)

(when we see i bits of a pseudorandom sequence, we cannot
compute the next bit)
The equivalence is not obvious, but it is not difficult

Pseudorandom generators



  

Theorem: There exist one-way functions ⇔ there exist pseudoran-
dom generators

Implication ⇐ almost obvious: a pseudorandom generator has to
be a one-way function

Implication ⇒ much harder (using a one-way function in an 
appropriate way, one can create a pseudorandom generator)

Pseudorandom generators



  

A zero-knowledge proof – a procedure in which one party can 
prove to the other party that it has access to some information,
without revealing this information

Zero-knowledge proofs



  

A zero-knowledge proof – a procedure in which one party can 
prove to the other party that it has access to some information,
without revealing this information:
● If the prover indeed knows the information, he can always

convince the verifier about this
● If the prover does not have the information, he can convince the 

verifier only with a small probability
● Verifier (even while cheating, i.e., not following the protocol)

cannot reveal any knowledge about the information (this can be
formalized appropriately)

● Both parties have a limited computational power (these are
standard algorithms, working in polynomial time, having access
to random bits).

Zero-knowledge proofs



  

Example – graph isomorphism:
● P claims that he knows an isomorphism between G1 and G2
● V wants to confirm this
● P sends a graph H
● V sends a number i∈{1,2}
● P sends an isomorphism between H and Gi

Zero-knowledge proofs



  

Example – graph isomorphism:
● P claims that he knows an isomorphism between G1 and G2
● V wants to confirm this
● P sends a graph H
● V sends a number i∈{1,2}
● P sends an isomorphism between H and Gi

● If P knowns an isomorphism between G1 and G2, he generates H 
by randomly permuting node labels of G1. Then he can easily
find an isomorphism between H and any Gi.

● If P does not know an isomorphism between G1 and G2, then he
cannot find a graph H, from which he knows an isomorphism
to both G1 and G2 – he succeeds with probability 1/2

● Knowing an isomorphism between Gi and a random permutation
of Gi does not help V in finding an isomorphism between G1 and G2 
(because this is a knowledge which could be generated by V
himself)

Zero-knowledge proofs



  

● a new computational model
● one supposes, that it will be possibly to realize them physically,

in the future (oppositely to e.g. nondeterministic or alternating 
computations) – in principle, they cannot be realized currently;
but it seems that the physical lows allow their existence

● although quantum computers do not exist, the mathematical model
of quantum computations is well defined

Quantum computing



  

● a new computational model
● one supposes, that it will be possibly to realize them physically,

in the future (oppositely to e.g. nondeterministic or alternating 
computations) – in principle, they cannot be realized currently;
but it seems that the physical lows allow their existence

● although quantum computers do not exist, the mathematical model
of quantum computations is well defined

● it is possible that in some problems quantum computers are
exponentially faster than classical computers (deterministic or
randomized)

● thus, potentially, this is in contrary with the strong Church-Turing
thesis (every physically realizable computational device can be
simulated on a Turing machine, with a polynomial overhead)

Quantum computing



  

How do we compute?
● m qubits = a vector v (of norm 1) from ℂ2m

● an operation = multiplying the vector v by a fixed unitary matrix
(unitary = not changing the norm of v) 

● only operations “modifying ≤3 qubits” are allowed (elementary
operations)

● a “read” operation: a value i∈{0,1}m is read with probability

|vi|
2 (we cannot directly read the whole vector v)

Quantum computing



  

How do we compute?
● m qubits = a vector v (of norm 1) from ℂ2m

● an operation = multiplying the vector v by a fixed unitary matrix
(unitary = not changing the norm of v) 

● only operations “modifying ≤3 qubits” are allowed (elementary
operations)
Can we apply any elementary operation? There are infinitely many
of them.
 Every elementary operation can be simulated (approximated)
by a composition of two basic operations, called Hadamard
operation and Tofolli operation.
What about operations touching >3 qubits?
Every operation on k qubits can be simulated by composing
2O(k) elementary operations  

● a “read” operation: a value i∈{0,1}m is read with probability

|vi|
2 (we cannot directly read the whole vector v)

Quantum computing



  

How do we compute?
● m qubits = a vector v (of norm 1) from ℂ2m

● an operation = multiplying the vector v by a fixed unitary matrix
(unitary = not changing the norm of v) 

● only operations “modifying ≤3 qubits” are allowed (elementary
operations)

● a “read” operation: a value i∈{0,1}m is read with probability

|vi|
2 (we cannot directly read the whole vector v)

How is this related to a classical computation?
● a classical computation, in which the memory content is i∈{0,1}m 

corresponds to a situation when vi=1 and vj=0 ∀j≠i 
● thus (intuitively): in a quantum computation we perform the same

computation in parallel for many possible memory contents, and
at the end we pick randomly one of the obtained outputs

Quantum computing



  

What can be computed?
● Let BQP – languages recognizable on a quantum computer in

polynomial time (defined similarly to BPP – the probability of
getting a correct result >3/4)

● It is easy to prove that BPP⊆BQP
● On the other hand BQP⊆PSPACE

Quantum computing



  

What can be computed?
● Let BQP – languages recognizable on a quantum computer in

polynomial time (defined similarly to BPP – the probability of
getting a correct result >3/4)

● It is easy to prove that BPP⊆BQP
● On the other hand BQP⊆PSPACE

Proof sketch: 
➔ A recursive procedure Coeff(i,t), where i∈{0,1}m and t is the 

number of steps – compute the value of vi after t steps.
➔ This value depends on Coeff(j,t-1) for 8 values of j – because

only 3 qubits are modified.
➔ Because t is polynomial, the memory used for computing

Coeff(i,t) (the depth of the stack) is polynomial

Quantum computing



  

What can be computed?
● Let BQP – languages recognizable on a quantum computer in

polynomial time (defined similarly to BPP – the probability of
getting a correct result >3/4)

● It is easy to prove that BPP⊆BQP
● On the other hand BQP⊆PSPACE
● In BQP we can decompose numbers into prime factors (Shor's

algorithm, 1994) – and classically we cannot!
● A general formulation of search problems (NP): given a function

f:{0,1}n→{0,1} computable in polynomial time, does there exist
some a such that f(a)=1? Classically one needs 2n calls to f, on
quantum computers 2n/2 is enough (quadratically less) – Grover's
algorithm 

Quantum computing



  

What can be computed?
● Let BQP – languages recognizable on a quantum computer in

polynomial time (defined similarly to BPP – the probability of
getting a correct result >3/4)

● It is easy to prove that BPP⊆BQP
● On the other hand BQP⊆PSPACE
● In BQP we can decompose numbers into prime factors (Shor's

algorithm, 1994) – and classically we cannot!
● A general formulation of search problems (NP): given a function

f:{0,1}n→{0,1} computable in polynomial time, does there exist
some a such that f(a)=1? Classically one needs 2n calls to f, on
quantum computers 2n/2 is enough (quadratically less) – Grover

● If f is given as an oracle, one cannot do better
(i.e., NPA⊈BQPA for some oracle A)

● Thus a quantum computer can quickly solve a search problem 
only by taking advantage of the structure of the problem
(like for finding prime factors)

Quantum computing
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