

Computational complexity

lecture 13

PCP
The PCP theorem gives another, interesting definition of the NP
class, as the set of languages that have a “locally checkable”
proofs of belonging to the language.

In effect, we obtain hardness of approximation for many
NP-complete problems.

PCP = “probabilistically checkable proof”

PCP
The PCP theorem gives another, interesting definition of the NP
class, as the set of languages that have a “locally checkable”
proofs of belonging to the language.

In effect, we obtain hardness of approximation for many
NP-complete problems.
● The question whether P≠NP is not only an important theoretical

question. It is also important from the practical point of view,
because of many real-life problems that are NP-hard.

● In practice, in many applications it is not necessary to find the
(completely) best solution, it is enought to have a solution close
to the best one (approximation)

● In effect, the PCP theorem (hardness of approximation) is
important from the practical point of view: it shows for many
problems that even their approximation is NP-hard

PCP
The PCP theorem gives another, interesting definition of the NP
class, as the set of languages that have a “locally checkable”
proofs of belonging to the language. Somehow similarly to the
theorem saying that IP=PSPACE. The idea:
● Suppose that someone wants to convince us that a Boolean

formula is satisfiable.
● He can show us a standard witness, that is, a valuation.

In order to check it, we substitute it to the formula. In order to do
this, though, we have to read the whole witness.

● The PCP theorem gives us an interesting alternative: the “prover”
can write his witness (his proof) in such a way, that we can check
its correctness by randomly choosing only a constant number of
letters to be read (it is enough to read only 3 bits).

● A correct witness will be always accepted.
● If a formula is not satisfiable, with high probability we will reject

every proposed witness with high probability.

PCP
Example: non-isomorphism of graphs G1 and G2

● An IP approach: V picks i∈{1,2} at random, creates a graph H
permuting randomly nodes of Gi, and asks P: “is H jest isomorphic
to G1 or to G2?”

● A PCP approach: Now P provides a huge witness (of exponential
size), which for every graph H says: to which graph Gi is the
graph H isomorphic. Having this witness, V picks i∈{1,2} at
random, creates a graph H permuting randomly nodes of Gi, and
reads from the proof to which graph is H isomorphic. To this end,
V needs poly(n) random bits, but he reads only 1 bit of the proof.

PCP
Definition: PCP(r(n),q(n))-verifier for a language L – a randomized
machine V, working in polynomial time (wrt. the length of the input
word), which:
● on a word w of length n, having access to a word p (a proof /

a witness), uses r(n) random bits, and reads q(n) positions of p
● we assume that V writes numbers of positions to be read on

a special tape, and then in a single step he receives bits written
on these positions

● in particular V is not adaptive: consecutive questions do not
depend on answers to previous questions (we ask all questions
at once)

● for w∈L there exists p such that V always accepts
● for w∉L, for every p V accepts with probability ≤1/2

The language L is in the class PCP(r(n),q(n)) if there exist constants
c, d such that there exists a PCP(c .r(n), d .q(n))-verifier for L

PCP
● Fact: amplification – the number 1/2 in the definition of PCP can

be replaced by any number from the interval (0,1) (simple exercise)

PCP
● Fact: amplification – the number 1/2 in the definition of PCP can

be replaced by any number from the interval (0,1) (simple exercise)
● Fact: we can assume that a PCP(r(n), q(n))-verifier receives

a proof of length at most q(n)2r(n), because anyway he is able to
check only this number of positions

● For example, if r(n)=O(log n), then we can restrict ourselves to
proofs of polynomial length

PCP
● Fact: amplification – the number 1/2 in the definition of PCP can

be replaced by any number from the interval (0,1) (simple exercise)
● Fact: we can assume that a PCP(r(n), q(n))-verifier receives

a proof of length at most q(n)2r(n), because anyway he is able to
check only this number of positions

● For example, if r(n)=O(log n), then we can restrict ourselves to
proofs of polynomial length

● Trivial cases: PCP(poly(n), 0)=coRP, PCP(0, poly(n))=NP
● Tutorials: PCP(log n, poly(n))=NP

PCP
● Fact: amplification – the number 1/2 in the definition of PCP can

be replaced by any number from the interval (0,1) (simple exercise)
● Fact: we can assume that a PCP(r(n), q(n))-verifier receives

a proof of length at most q(n)2r(n), because anyway he is able to
check only this number of positions

● For example, if r(n)=O(log n), then we can restrict ourselves to
proofs of polynomial length

● Trivial cases: PCP(poly(n), 0)=coRP, PCP(0, poly(n))=NP
● Tutorials: PCP(log n, poly(n))=NP
● The PCP Theomem (Arora, Lund, Motwani, Safra, Sudan,

Szegedy 1992):
PCP(log n, 1)=NP

PCP
● Fact: amplification – the number 1/2 in the definition of PCP can

be replaced by any number from the interval (0,1) (simple exercise)
● Fact: we can assume that a PCP(r(n), q(n))-verifier receives

a proof of length at most q(n)2r(n), because anyway he is able to
check only this number of positions

● For example, if r(n)=O(log n), then we can restrict ourselves to
proofs of polynomial length

● Trivial cases: PCP(poly(n), 0)=coRP, PCP(0, poly(n))=NP
● Tutorials: PCP(log n, poly(n))=NP
● The PCP Theomem (Arora, Lund, Motwani, Safra, Sudan,

Szegedy 1992):
PCP(log n, 1)=NP

● The verifier reads a constant number of bits. How many?
➔ This does not depend on the choice of the language (reductions)
➔ The original theorem: about 106

➔ [1998] It is enough to read 3 bits, for error 1/2+e
(and reading 2 bits is not sufficient)

PCP
The PCP Theomem (Arora, Lund, Motwani, Safra, Sudan,
Szegedy 1992): PCP(log n, 1)=NP
● Inclusion PCP(log n, 1)⊆NP obvious: a proof is of polynomial

length, so it can serve as a witness, and in polynomial time we can
check all possible sequences of O(log n) random bits

● We remark that verifiers tossing less than O(log n) random bits do
not make too much sense, since some parts of proofs (of
polynomial length) will be never read by such verifiers

PCP
The PCP Theomem (Arora, Lund, Motwani, Safra, Sudan,
Szegedy 1992): PCP(log n, 1)=NP
This means that for every problem in NP, there is a verifier s.t.
● given an input word, it expects a proof of polynomial size
● tossing log n random bits it checks a contant number of bits of

the proof
● basing on this, it certainly accepts all correct words, and with

high probability it rejects incorrect words
This is a strange theorem. Consider, e.g., 3-colorability of a graph,
where a coloring serves as a proof. If the coloring is incorrect in
a single place, it is difficult to find this place (more-or-less, the
whole coloring has to be read). The PCP theorem says that the
coloring can be written in such a way that every error is visible
in many places.
Important! we should reject with high probability in two cases:
● when we have a (correct) encoding of an incorrect coloring,
● when the proof is not a correct encoding of any coloring.

(ensuring the latter seems much more difficult)

PCP
The PCP Theomem (Arora, Lund, Motwani, Safra, Sudan,
Szegedy 1992): PCP(log n, 1)=NP
Consider another problem: does a given mathematical theorem f
have a proof of length n, where n is given in unary?
Ordinarily, in order to check a proof (given in a classic way),
it is necessary to read the whole proof, and an error in every single
place disqualifies the whole proof. The PCP theorem implies that
there is such a format for writing proofs, that:
● every error can be detected with high probability, by checking a

random fragment
● with high probability, one can also reject proofs which do not follow

the format

PCP vs approximation
We will prove that the problem of 1/2-approximating the size of the
largest clique is NP-hard

We will prove that the problem of 1/2-approximating the size of the
largest clique is NP-hard

What does it mean?
There is a reduction from every problem L in NP to the clique
problem (i.e., a function converting inputs of problem L to inputs
of the clique problem, computable in logarithmic space), such that:
● instances with answer YES are transformed to instances (G,k)

such that in G there is a clique of size k
● instances with answer NO are transformed to instances (G,k)

such that in G there is no clique of size k/2

PCP vs approximation

We will prove that the problem of 1/2-approximating the size of the
largest clique is NP-hard
● Fix a language L∈NP. There is a PCP(c

.log(n),d)-verifier V for L
● Consider an input word w. Let qi(w,r) denote the i-th position of the

proof read by V for input w and a sequence of random bits r.
● Take k=2clog(n) (the size of a clique). We construct a graph G.
● As nodes we take (r,a1,...,ad), where r∈{0,1}clog(n), ai∈{0,1}, such

that if the input is w, random bits are r, and bits read from the
proof are a1,...,ad, then V accepts

● We create an edge between (r,a1,...,ad),(r',b1,...,bd) if they are

consistent, i.e., if qi(w,r)=qj(w,r') implies ai=bj (edges exist only for r≠r')

PCP vs approximation

We will prove that the problem of 1/2-approximating the size of the
largest clique is NP-hard
● Fix a language L∈NP. There is a PCP(c

.log(n),d)-verifier V for L
● Consider an input word w. Let qi(w,r) denote the i-th position of the

proof read by V for input w and a sequence of random bits r.
● Take k=2clog(n) (the size of a clique). We construct a graph G.
● As nodes we take (r,a1,...,ad), where r∈{0,1}clog(n), ai∈{0,1}, such

that if the input is w, random bits are r, and bits read from the
proof are a1,...,ad, then V accepts

● We create an edge between (r,a1,...,ad),(r',b1,...,bd) if they are

consistent, i.e., if qi(w,r)=qj(w,r') implies ai=bj (edges exist only for r≠r')

● If w∈L, then there exists a correct proof p
● For every r we take one node (r,a1,...,ad), where as ai we take

the qi(w,r)-th bit of the proof p. They form a clique of size k=2clog(n)

PCP vs approximation

We will prove that the problem of 1/2-approximating the size of the
largest clique is NP-hard
● Fix a language L∈NP. There is a PCP(c

.log(n),d)-verifier V for L.
● Consider an input word w. Let qi(w,r) denote the i-th position of the

proof read by V for input w and a sequence of random bits r.
● Take k=2clog(n) (the size of a clique). We construct a graph G.
● As nodes we take (r,a1,...,ad), where r∈{0,1}clog(n), ai∈{0,1}, such

that if the input is w, random bits are r, and bits read from the
proof are a1,...,ad, then V accepts

● We create an edge between (r,a1,...,ad),(r',b1,...,bd) if they are

consistent, i.e., if qi(w,r)=qj(w,r') implies ai=bj (edges exist only for r≠r')

● Every clique of size m defines a proof: if (r,a1,...,ad) is in the clique,

as the qi(w,r)-th bit of a proof p we take ai; remaining bits arbitrarily

● V accepts p with probability ≥m/k ⇒ for w∉L we have m<k/2

PCP vs approximation

We have proved that the problem of 1/2-approximating the size
of the largest clique is NP-hard
● Using amplification for PCP, we can prove the same for every

constant c∈(0,1) instead of 1/2
● One can even show that for every constant c∈(0,1), the problem

of n-c-approximation is NP-hard (i.e., finding a clique of size
best_size/nc), by appropriately modifying the resulting graph G,
using so-called expanders

● This result cannot be stronger: one can always find a clique of size
best_size/n – a single node

PCP vs approximation

PCP vs approximation - 3SAT
MAX3SAT – find a valuation for which the largest number of clauses
is satisfied.
We will show that for some constant r∈(0,1), the r-approximation of
this problem (i.e., obtaining r.opt satisfied clauses) is NP-hard

MAX3SAT – find a valuation for which the largest number of clauses
is satisfied.
We will show that for some constant r∈(0,1), the r-approximation of
this problem (i.e., obtaining r.opt satisfied clauses) is NP-hard
● Fix a language L∈NP. There is a PCP(c

.log(n),d)-verifier V for L.
● Consider an input word w. Variables of a created formula describe

consecutive bits of a proof (their number = expected proof length).
● For every sequence r of random bits, V reads d bits of a proof.

Basing on this, we create a formula fr (a disjunction of ≤2d con-
junctions) saying that this bits have values for which V accepts.

● We replace every fr by a conjunction of ≤f(d) (constant number) of
clauses (disjunctions) of length 3, introducing fresh variables.

● We take a conjunction of these formulas over all sequences r.

PCP vs approximation - 3SAT

MAX3SAT – find a valuation for which the largest number of clauses
is satisfied.
We will show that for some constant r∈(0,1), the r-approximation of
this problem (i.e., obtaining r.opt satisfied clauses) is NP-hard
● Fix a language L∈NP. There is a PCP(c

.log(n),d)-verifier V for L.
● Consider an input word w. Variables of a created formula describe

consecutive bits of a proof (their number = expected proof length).
● For every sequence r of random bits, V reads d bits of a proof.

Basing on this, we create a formula fr (a disjunction of ≤2d con-
junctions) saying that this bits have values for which V accepts.

● We replace every fr by a conjunction of ≤f(d) (constant number) of
clauses (disjunctions) of length 3, introducing fresh variables.

● We take a conjunction of these formulas over all sequences r.
● Correspondence: proofs ↔ valuations of variables
● w∈L ⇒ exists a correct proof ⇒ all clauses satisfied

PCP vs approximation - 3SAT

MAX3SAT – find a valuation for which the largest number of clauses
is satisfied.
We will show that for some constant r∈(0,1), the r-approximation of
this problem (i.e., obtaining r.opt satisfied clauses) is NP-hard
● Fix a language L∈NP. There is a PCP(c

.log(n),d)-verifier V for L.
● Consider an input word w. Variables of a created formula describe

consecutive bits of a proof (their number = expected proof length).
● For every sequence r of random bits, V reads d bits of a proof.

Basing on this, we create a formula fr (a disjunction of ≤2d con-
junctions) saying that this bits have values for which V accepts.

● We replace every fr by a conjunction of ≤f(d) (constant number) of
clauses (disjunctions) of length 3, introducing fresh variables.

● We take a conjunction of these formulas over all sequences r.
● Correspondence: proofs ↔ valuations of variables
● w∉L ⇒ every proof rejected for >1/2 sequences r ⇒ for these r

≥1 false clause ⇒ a fraction of >1/(2f(d)) false clauses

PCP vs approximation - 3SAT

MAX3SAT – find a valuation for which the largest number of clauses
is satisfied.
We have shown that for some constant r∈(0,1), the r-approximation
of this problem (i.e., obtaining r.opt satisfied clauses) is NP-hard

This can be shown for r=7/8+e (for every e>0), using the „3-bits”
version of the PCP theorem.

On the other hand, there is an easy algorithm for 7/8-approximation,
because the expected number of clauses satisfied by a random
valuation is 7/8.

PCP vs approximation - 3SAT

MAX3SAT – find a valuation for which the largest number of clauses
is satisfied.
We have shown that for some constant r∈(0,1), the r-approximation
of this problem (i.e., obtaining r.opt satisfied clauses) is NP-hard

This can be shown for r=7/8+e (for every e>0), using the „3-bits”
version of the PCP theorem.

On the other hand, there is an easy algorithm for 7/8-approximation,
because the expected number of clauses satisfied by a random
valuation is 7/8.

Remark
Using the formula obtained from the standard proof of NP-hardness
of 3SAT, we cannot prove hardness of approximation.

Remark 2
Thanks to the PCP theorem, for many problems we can very
precisely say what is the best factor of approximation.

PCP vs approximation - 3SAT

PCP – idea of a proof
We will prove an easier version of the PCP theorem:
NP⊆PCP(poly(n), 1)
● even this inclusion is surprising
● the proof of the full PCP theorem bases on this inclusion
● it turns out that PCP(poly(n), 1)=NEXPTIME

We will prove that NP⊆PCP(poly(n), 1).
● Walsh-Hadamard codes: to a sequence of bits v∈{0,1}n we assign

the following function from {0,1}n to {0,1}:
x → x .v = x1

.v1+...+xn
.vn (mod 2) (scalar product)

Every such a function can be written as a sequence of length 2n

PCP – idea of a proof

We will prove that NP⊆PCP(poly(n), 1).
● Walsh-Hadamard codes: to a sequence of bits v∈{0,1}n we assign

the following function from {0,1}n to {0,1}:
x → x .v = x1

.v1+...+xn
.vn (mod 2) (scalar product)

Every such a function can be written as a sequence of length 2n

● This is a linear function, i.e., f(x+y)=f(x)+f(y) for all x,y
● If v≠w, then their encodings differ on exactly half positions

(because: a nonempty set has the same number of subsets of even size
as subsets of odd size)

PCP – idea of a proof

Our first goal: check that a given function f:{0,1}n→{0,1} (given as a
sequence of length 2n) is a W-H code of some sequence of length n

PCP – idea of a proof

Our first goal: check that a given function f:{0,1}n→{0,1} (given as a
sequence of length 2n) is a W-H code of some sequence of length n
● W-H codes = linear functions: for every linear function it holds

f(x)=f(x1
.b1+...+xn

.bn)=x1
.f(b1)+...+xn

.f(bn)=x.(f(b1),...,f(bn))
where bi – base vectors

● thus we need to check that a function is linear

PCP – idea of a proof

Our first goal: check that a given function f:{0,1}n→{0,1} (given as a
sequence of length 2n) is a W-H code of some sequence of length n
● W-H codes = linear functions: for every linear function it holds

f(x)=f(x1
.b1+...+xn

.bn)=x1
.f(b1)+...+xn

.f(bn)=x.(f(b1),...,f(bn))
where bi – base vectors

● thus we need to check that a function is linear
● this can be checked only approximately, if we read only a few bits
● for r∈(0,1) we say that a function f:{0,1}n→{0,1} is r-close to a

linear function if there is a linear function g such that
Prx∈{0,1}n[f(x)=g(x)]≥r

PCP – idea of a proof

Our first goal: check that a given function f:{0,1}n→{0,1} (given as a
sequence of length 2n) is a W-H code of some sequence of length n
● W-H codes = linear functions: for every linear function it holds

f(x)=f(x1
.b1+...+xn

.bn)=x1
.f(b1)+...+xn

.f(bn)=x.(f(b1),...,f(bn))
where bi – base vectors

● thus we need to check that a function is linear
● this can be checked only approximately, if we read only a few bits
● for r∈(0,1) we say that a function f:{0,1}n→{0,1} is r-close to a

linear function if there is a linear function g such that
Prx∈{0,1}n[f(x)=g(x)]≥r

● we use the following theorem: if a function f satisfies
Prx∈{0,1}n[f(x+y)=f(x)+f(y)]≥r

(for some r>1/2), then it is r-close to linear
● checking (a few times) linearity on selected arguments, we can

ensure that with probability ≥r the function f is r-close to a linear
function

PCP – idea of a proof

Assume that f is r-close to a linear function g, where r>3/4.
Then g is determined uniquely (because different linear functions
differ for at least half of arguments).

PCP – idea of a proof

Assume that f is r-close to a linear function g, where r>3/4.
Then g is determined uniquely (because different linear functions
differ for at least half of arguments). Suppose that we are given an
argument x, and we want to compute g(x) having access to f. For
every x we want to succeed with high probability.
● Reading of f(x) does not have this properyty: if it happened that

f(x)≠g(x), then we (always) obtain an incorrect result.

PCP – idea of a proof

Assume that f is r-close to a linear function g, where r>3/4.
Then g is determined uniquely (because different linear functions
differ for at least half of arguments). Suppose that we are given an
argument x, and we want to compute g(x) having access to f. For
every x we want to succeed with high probability.
● Reading of f(x) does not have this properyty: if it happened that

f(x)≠g(x), then we (always) obtain an incorrect result.
● Instead, we randomly choose y, and we return f(y)+f(x+y)
● With high probability f(y)=g(y) and f(x+y)=g(x+y), that is,

f(y)+f(x+y)=g(y)+g(x+y)=g(x)

PCP – idea of a proof

We will show a (poly(n),1)-verifier for the following NP-complete
problem: is a given system of quadratic equation over ℤ2
satisfiable?
An example system of such equations:

x1x2+x3x4+x2x5=1 (mod 2)
 x2x3+x4x5=0 (mod 2)

x1x3+x3x5+x3x4=1 (mod 2)
(valuation x1=x2=x3=x4=x5=1 satisfies this system)

PCP – idea of a proof

We will show a (poly(n),1)-verifier for the following NP-complete
problem: is a given system of quadratic equation over ℤ2
satisfiable?
An example system of such equations:

x1x2+x3x4+x2x5=1 (mod 2)
 x2x3+x4x5=0 (mod 2)

x1x3+x3x5+x3x4=1 (mod 2)
(valuation x1=x2=x3=x4=x5=1 satisfies this system)

A system of m equations for n variables can be represented by a
matrix A of size mn2, and a vector b of length m.
We ask whether there is a vector v of length n such that A.(vv)=b
(where xy denotes the tensor product – a vector of length n2,
which on position n

.(i-1)+j has xiyj)

PCP – idea of a proof

Input: a matrix A of size mn2, vector b of length m
Question: is there a vector v of length n such that A.(vv)=b?

Verifier V expects a proof of length 2n+2n2
, which encodes functions

f: {0,1}n→{0,1} and g: {0,1}n2
→{0,1}

In a correct proof, f and g are W-H codes of vectors v and vv.

1) V checks that f and g are r-close to linear functions.
We have already shown how to read these linear functions having
f and g; below for simplicity we assume that f and g are linear.

PCP – idea of a proof

Input: a matrix A of size mn2, vector b of length m
Question: is there a vector v of length n such that A.(vv)=b?

Verifier V expects a proof of length 2n+2n2
, which encodes functions

f: {0,1}n→{0,1} and g: {0,1}n2
→{0,1}

In a correct proof, f and g are W-H codes of vectors v and vv.

1) V checks that f and g are r-close to linear functions.
We have already shown how to read these linear functions having
f and g; below for simplicity we assume that f and g are linear.

2) V checks that g encodes vv, if f encodes v:
➔ pick randomly x,x'∈{0,1}n

➔ reject if g(xx')f(x)f(x')
➔ repeat 10 times
One can see that the equality g(xx')=f(x)f(x') always holds for
a correct proof; for an incorrect proof it holds with probability ≤3/4.
Thus, after this test, g probably encodes vv

PCP – idea of a proof

3) V checks that A.(vv)=b
➔ the i-th equation is Ai

.(vv)=bi, where Ai (the i-th row of matrix A)
is a vector of length n2

➔ by definition Ai
.(vv)=g(Ai), thus it is enough to read g(Ai) and

check that g(Ai)=bi

PCP – idea of a proof

3) V checks that A.(vv)=b
➔ the i-th equation is Ai

.(vv)=bi, where Ai (the i-th row of matrix A)
is a vector of length n2

➔ by definition Ai
.(vv)=g(Ai), thus it is enough to read g(Ai) and

check that g(Ai)=bi
➔ difficulty: it is not enough to check a constant number of

equations
➔ solution: pick a random subset of equations, and check that

their sum is satisfied (i.e., that g(AS)=bS, where AS equals the sum
of appropriate vectors Ai, similarly bS)

➔ if a system is not satisfied, then with probability 1/2 the sum of
a random subset of equations is not satisfied

THE END

PCP – idea of a proof

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42

