## Computational complexity

lecture 13

## PCP

The PCP theorem gives another, interesting definition of the NP class, as the set of languages that have a "locally checkable" proofs of belonging to the language.
In effect, we obtain hardness of approximation for many NP-complete problems.

PCP = "probabilistically checkable proof"

## PCP

The PCP theorem gives another, interesting definition of the NP class, as the set of languages that have a "locally checkable" proofs of belonging to the language.
In effect, we obtain hardness of approximation for many NP-complete problems.

- The question whether $\mathbf{P} \neq \mathbf{N P}$ is not only an important theoretical question. It is also important from the practical point of view, because of many real-life problems that are NP-hard.
- In practice, in many applications it is not necessary to find the (completely) best solution, it is enought to have a solution close to the best one (approximation)
- In effect, the PCP theorem (hardness of approximation) is important from the practical point of view: it shows for many problems that even their approximation is NP-hard


## PCP

The PCP theorem gives another, interesting definition of the NP class, as the set of languages that have a "locally checkable" proofs of belonging to the language. Somehow similarly to the theorem saying that IP=PSPACE. The idea:

- Suppose that someone wants to convince us that a Boolean formula is satisfiable.
- He can show us a standard witness, that is, a valuation. In order to check it, we substitute it to the formula. In order to do this, though, we have to read the whole witness.
- The PCP theorem gives us an interesting alternative: the "prover" can write his witness (his proof) in such a way, that we can check its correctness by randomly choosing only a constant number of letters to be read (it is enough to read only 3 bits).
- A correct witness will be always accepted.
- If a formula is not satisfiable, with high probability we will reject every proposed witness with high probability.

Example: non-isomorphism of graphs $G_{1}$ and $G_{2}$

- An IP approach: V picks $i \in\{1,2\}$ at random, creates a graph $H$ permuting randomly nodes of $G_{i}$, and asks P: "is $H$ jest isomorphic to $G_{1}$ or to $G_{2}$ ?"
- A PCP approach: Now P provides a huge witness (of exponential size), which for every graph $H$ says: to which graph $G_{i}$ is the graph $H$ isomorphic. Having this witness, V picks $i \in\{1,2\}$ at random, creates a graph $H$ permuting randomly nodes of $G_{i}$, and reads from the proof to which graph is $H$ isomorphic. To this end, $\checkmark$ needs poly(n) random bits, but he reads only 1 bit of the proof.


## PCP

Definition: $\mathbf{P C P}(r(n), q(n))$-verifier for a language $L-\mathrm{a}$ randomized machine V , working in polynomial time (wrt. the length of the input word), which:

- on a word $w$ of length $n$, having access to a word $\pi$ (a proof / a witness), uses $r(n)$ random bits, and reads $q(n)$ positions of $\pi$
- we assume that $V$ writes numbers of positions to be read on a special tape, and then in a single step he receives bits written on these positions
- in particular V is not adaptive: consecutive questions do not depend on answers to previous questions (we ask all questions at once)
- for $w \in L$ there exists $\pi$ such that V always accepts
- for $w \notin L$, for every $\pi \vee$ accepts with probability $\leq 1 / 2$

The language $L$ is in the class $\operatorname{PCP}(r(n), q(n))$ if there exist constants $c, d$ such that there exists a $\mathbf{P C P}(c \cdot r(n), d \cdot q(n))$-verifier for $L$

- Fact: amplification - the number $1 / 2$ in the definition of PCP can be replaced by any number from the interval $(0,1)$ (simple exercise)
- Fact: amplification - the number $1 / 2$ in the definition of PCP can be replaced by any number from the interval ( 0,1 ) (simple exercise)
- Fact: we can assume that a $\operatorname{PCP}(r(n), q(n))$-verifier receives a proof of length at most $q(n) r^{r(n)}$, because anyway he is able to check only this number of positions
- For example, if $r(n)=O(\log n)$, then we can restrict ourselves to proofs of polynomial length
- Fact: amplification - the number $1 / 2$ in the definition of PCP can be replaced by any number from the interval $(0,1)$ (simple exercise)
- Fact: we can assume that a $\operatorname{PCP}(r(n), q(n))$-verifier receives a proof of length at most $q(n)^{r^{r(n)}}$, because anyway he is able to check only this number of positions
- For example, if $r(n)=O(\log n)$, then we can restrict ourselves to proofs of polynomial length
- Trivial cases: $\operatorname{PCP}(p o l y(n), 0)=\mathbf{c o R P}, \mathbf{P C P}(0, p o l y(n))=\mathbf{N P}$
- Tutorials: PCP $(\log n, p o l y(n))=\mathbf{N P}$


## PCP

- Fact: amplification - the number $1 / 2$ in the definition of PCP can be replaced by any number from the interval ( 0,1 ) (simple exercise)
- Fact: we can assume that a $\operatorname{PCP}(r(n), q(n))$-verifier receives a proof of length at most $q(n)^{r^{r(n)}}$, because anyway he is able to check only this number of positions
- For example, if $r(n)=O(\log n)$, then we can restrict ourselves to proofs of polynomial length
- Trivial cases: $\operatorname{PCP}(p o l y(n), 0)=\mathbf{c o R P}, \mathbf{P C P}(0, p o l y(n))=\mathbf{N P}$
- Tutorials: PCP(log n, poly(n))=NP
- The PCP Theomem (Arora, Lund, Motwani, Safra, Sudan, Szegedy 1992): $\mathbf{P C P}(\log n, 1)=\mathbf{N P}$


## PCP

- Fact: amplification - the number $1 / 2$ in the definition of PCP can be replaced by any number from the interval ( 0,1 ) (simple exercise)
- Fact: we can assume that a $\operatorname{PCP}(r(n), q(n))$-verifier receives a proof of length at most $q(n) 2^{r(n)}$, because anyway he is able to check only this number of positions
- For example, if $r(n)=O(\log n)$, then we can restrict ourselves to proofs of polynomial length
- Trivial cases: $\operatorname{PCP}(p o l y(n), 0)=\mathbf{c o R P}, \mathbf{P C P}(0, p o l y(n))=\mathbf{N P}$
- Tutorials: PCP $(\log n, p o l y(n))=\mathbf{N P}$
- The PCP Theomem (Arora, Lund, Motwani, Safra, Sudan, Szegedy 1992):
$\mathbf{P C P}(\log n, 1)=\mathbf{N P}$
- The verifier reads a constant number of bits. How many?
$\rightarrow$ This does not depend on the choice of the language (reductions)
$\rightarrow$ The original theorem: about $10^{6}$
$\rightarrow$ [1998] It is enough to read 3 bits, for error $1 / 2+\varepsilon$ (and reading 2 bits is not sufficient)


## PCP

The PCP Theomem (Arora, Lund, Motwani, Safra, Sudan, Szegedy 1992): PCP( $\log n, 1)=\mathbf{N P}$

- Inclusion PCP $(\log n, 1) \subseteq \mathbf{N P}$ obvious: a proof is of polynomial length, so it can serve as a witness, and in polynomial time we can check all possible sequences of $O(\log n)$ random bits
- We remark that verifiers tossing less than $O(\log n)$ random bits do not make too much sense, since some parts of proofs (of polynomial length) will be never read by such verifiers


## PCP

The PCP Theomem (Arora, Lund, Motwani, Safra, Sudan, Szegedy 1992): PCP ( $\log n, 1)=\mathbf{N P}$
This means that for every problem in NP, there is a verifier s.t.

- given an input word, it expects a proof of polynomial size
- tossing $\log n$ random bits it checks a contant number of bits of the proof
- basing on this, it certainly accepts all correct words, and with high probability it rejects incorrect words
This is a strange theorem. Consider, e.g., 3-colorability of a graph, where a coloring serves as a proof. If the coloring is incorrect in a single place, it is difficult to find this place (more-or-less, the whole coloring has to be read). The PCP theorem says that the coloring can be written in such a way that every error is visible in many places.
Important! we should reject with high probability in two cases:
- when we have a (correct) encoding of an incorrect coloring,
- when the proof is not a correct encoding of any coloring. (ensuring the latter seems much more difficult)


## PCP

The PCP Theomem (Arora, Lund, Motwani, Safra, Sudan, Szegedy 1992): PCP( $\log n, 1)=\mathbf{N P}$
Consider another problem: does a given mathematical theorem $\phi$ have a proof of length $n$, where $n$ is given in unary? Ordinarily, in order to check a proof (given in a classic way), it is necessary to read the whole proof, and an error in every single place disqualifies the whole proof. The PCP theorem implies that there is such a format for writing proofs, that:

- every error can be detected with high probability, by checking a random fragment
- with high probability, one can also reject proofs which do not follow the format

PCP vs approximation
We will prove that the problem of $1 / 2$-approximating the size of the largest clique is NP-hard

## PCP vs approximation

We will prove that the problem of $1 / 2$-approximating the size of the largest clique is NP-hard
What does it mean?
There is a reduction from every problem $L$ in NP to the clique problem (i.e., a function converting inputs of problem $L$ to inputs of the clique problem, computable in logarithmic space), such that:

- instances with answer YES are transformed to instances ( $G, k$ ) such that in $G$ there is a clique of size $k$
- instances with answer NO are transformed to instances ( $G, k$ ) such that in $G$ there is no clique of size $k / 2$


## PCP vs approximation

We will prove that the problem of $1 / 2$-approximating the size of the largest clique is NP-hard

- Fix a language $L \in \mathbf{N P}$. There is a $\mathbf{P C P}(c \cdot \log (n), d)$-verifier $V$ for $L$
- Consider an input word $w$. Let $q_{i}(w, r)$ denote the $i$-th position of the proof read by $V$ for input $w$ and a sequence of random bits $r$.
- Take $k=2^{c l o g(n)}$ (the size of a clique). We construct a graph $G$.
- As nodes we take $\left(r, a_{1}, \ldots, a_{d}\right)$, where $r \in\{0,1\}^{c l o g(n)}, a_{i} \in\{0,1\}$, such that if the input is $w$, random bits are $r$, and bits read from the proof are $a_{1}, \ldots, a_{d}$, then $V$ accepts
- We create an edge between $\left(r, a_{1}, \ldots, a_{d}\right),\left(r^{\prime}, b_{1}, \ldots, b_{d}\right)$ if they are consistent, i.e., if $q_{i}(w, r)=q_{j}\left(w, r^{\prime}\right)$ implies $a_{i}=b_{j}$ (edges exist only for $\left.r \neq r^{\prime}\right)$


## PCP vs approximation

We will prove that the problem of $1 / 2$-approximating the size of the largest clique is NP-hard

- Fix a language $L \in \mathbf{N P}$. There is a $\mathbf{P C P}(c \cdot \log (n), d)$-verifier $V$ for $L$
- Consider an input word $w$. Let $q_{i}(w, r)$ denote the $i$-th position of the proof read by $V$ for input $w$ and a sequence of random bits $r$.
- Take $k=2^{c l o g(n)}$ (the size of a clique). We construct a graph $G$.
- As nodes we take $\left(r, a_{1}, \ldots, a_{d}\right)$, where $r \in\{0,1\}^{c \log (n)}, a_{i} \in\{0,1\}$, such that if the input is $w$, random bits are $r$, and bits read from the proof are $a_{1}, \ldots, a_{d}$, then $V$ accepts
- We create an edge between $\left(r, a_{1}, \ldots, a_{d}\right),\left(r^{\prime}, b_{1}, \ldots, b_{d}\right)$ if they are consistent, i.e., if $q_{i}(w, r)=q_{j}\left(w, r^{\prime}\right)$ implies $a_{i}=b_{j}$ (edges exist only for $\left.r \neq r^{\prime}\right)$
- If $w \in L$, then there exists a correct proof $\pi$
- For every $r$ we take one node $\left(r, a_{1}, \ldots, a_{d}\right)$, where as $a_{i}$ we take the $q_{i}(w, r)$-th bit of the proof $\pi$. They form a clique of size $k=2^{\operatorname{clog}(n)}$


## PCP vs approximation

We will prove that the problem of $1 / 2$-approximating the size of the largest clique is NP-hard

- Fix a language $L \in \mathbf{N P}$. There is a $\mathbf{P C P}(c \cdot \log (n), d)$-verifier $V$ for $L$.
- Consider an input word $w$. Let $q_{i}(w, r)$ denote the $i$-th position of the proof read by $V$ for input $w$ and a sequence of random bits $r$.
- Take $k=2^{c l o g(n)}$ (the size of a clique). We construct a graph $G$.
- As nodes we take $\left(r, a_{1}, \ldots, a_{d}\right)$, where $r \in\{0,1\}^{c \log (n)}, a_{i} \in\{0,1\}$, such that if the input is $w$, random bits are $r$, and bits read from the proof are $a_{1}, \ldots, a_{d}$, then $V$ accepts
- We create an edge between $\left(r, a_{1}, \ldots, a_{d}\right),\left(r^{\prime}, b_{1}, \ldots, b_{d}\right)$ if they are consistent, i.e., if $q_{i}(w, r)=q_{j}\left(w, r^{\prime}\right)$ implies $a_{i}=b_{j}$ (edges exist only for $\left.r \neq r^{\prime}\right)$
- Every clique of size $m$ defines a proof: if $\left(r, a_{1}, \ldots, a_{d}\right)$ is in the clique, as the $q_{i}(w, r)$-th bit of a proof $\pi$ we take $a_{i}$; remaining bits arbitrarily
- $V$ accepts $\pi$ with probability $\geq m / k \Rightarrow$ for $\omega \notin L$ we have $m<k / 2$


## PCP vs approximation

We have proved that the problem of $1 / 2$-approximating the size of the largest clique is NP-hard

- Using amplification for PCP, we can prove the same for every constant $c \in(0,1)$ instead of $1 / 2$
- One can even show that for every constant $c \in(0,1)$, the problem of $n^{-c}$-approximation is NP-hard (i.e., finding a clique of size best_size $/ n^{c}$ ), by appropriately modifying the resulting graph $G$, using so-called expanders
- This result cannot be stronger: one can always find a clique of size best_size/n - a single node

We will show that for some constant $\rho \in(0,1)$, the $\rho$-approximation of this problem (i.e., obtaining $\rho \cdot o p t$ satisfied clauses) is NP-hard

## PCP vs approximation - 3SAT

MAX3SAT - find a valuation for which the largest number of clauses is satisfied.
We will show that for some constant $\rho \in(0,1)$, the $\rho$-approximation of this problem (i.e., obtaining $\rho$-opt satisfied clauses) is NP-hard

- Fix a language $L \in \mathbf{N P}$. There is a $\mathbf{P C P}(c \cdot \log (n), d)$-verifier $V$ for $L$.
- Consider an input word $w$. Variables of a created formula describe consecutive bits of a proof (their number = expected proof length).
- For every sequence $r$ of random bits, $V$ reads $d$ bits of a proof. Basing on this, we create a formula $\phi_{r}$ (a disjunction of $\leq 2^{d}$ conjunctions) saying that this bits have values for which $V$ accepts.
- We replace every $\phi_{r}$ by a conjunction of $\leq f(d)$ (constant number) of clauses (disjunctions) of length 3 , introducing fresh variables.
- We take a conjunction of these formulas over all sequences $r$.


## PCP vs approximation - 3SAT

MAX3SAT - find a valuation for which the largest number of clauses is satisfied.
We will show that for some constant $\rho \in(0,1)$, the $\rho$-approximation of this problem (i.e., obtaining $\rho$-opt satisfied clauses) is NP-hard

- Fix a language $L \in \mathbf{N P}$. There is a $\mathbf{P C P}(c \cdot \log (n), d)$-verifier $V$ for $L$.
- Consider an input word $w$. Variables of a created formula describe consecutive bits of a proof (their number = expected proof length).
- For every sequence $r$ of random bits, $V$ reads $d$ bits of a proof. Basing on this, we create a formula $\phi_{r}$ (a disjunction of $\leq 2^{d}$ conjunctions) saying that this bits have values for which $V$ accepts.
- We replace every $\phi_{r}$ by a conjunction of $\leq f(d)$ (constant number) of clauses (disjunctions) of length 3 , introducing fresh variables.
- We take a conjunction of these formulas over all sequences $r$.
- Correspondence: proofs $\leftrightarrow$ valuations of variables
- $w \in L \Rightarrow$ exists a correct proof $\Rightarrow$ all clauses satisfied


## PCP vs approximation - 3SAT

MAX3SAT - find a valuation for which the largest number of clauses is satisfied.
We will show that for some constant $\rho \in(0,1)$, the $\rho$-approximation of this problem (i.e., obtaining $\rho$-opt satisfied clauses) is NP-hard

- Fix a language $L \in \mathbf{N P}$. There is a $\mathbf{P C P}(c \cdot \log (n), d)$-verifier $V$ for $L$.
- Consider an input word $w$. Variables of a created formula describe consecutive bits of a proof (their number = expected proof length).
- For every sequence $r$ of random bits, $V$ reads $d$ bits of a proof. Basing on this, we create a formula $\phi_{r}$ (a disjunction of $\leq 2^{d}$ conjunctions) saying that this bits have values for which $V$ accepts.
- We replace every $\phi_{r}$ by a conjunction of $\leq f(d)$ (constant number) of clauses (disjunctions) of length 3 , introducing fresh variables.
- We take a conjunction of these formulas over all sequences $r$.
- Correspondence: proofs $\leftrightarrow$ valuations of variables
- $w \notin L \Rightarrow$ every proof rejected for $>1 / 2$ sequences $r \Rightarrow$ for these $r$ $\geq 1$ false clause $\Rightarrow$ a fraction of $>1 /(2 f(d))$ false clauses


## PCP vs approximation - 3SAT

MAX3SAT - find a valuation for which the largest number of clauses is satisfied.
We have shown that for some constant $\rho \in(0,1)$, the $\rho$-approximation of this problem (i.e., obtaining $\rho$-opt satisfied clauses) is NP-hard

This can be shown for $\rho=7 / 8+\varepsilon$ (for every $\varepsilon>0$ ), using the „ 3 -bits" version of the PCP theorem.

On the other hand, there is an easy algorithm for 7/8-approximation, because the expected number of clauses satisfied by a random valuation is $7 / 8$.

## PCP vs approximation - 3SAT

MAX3SAT - find a valuation for which the largest number of clauses is satisfied.
We have shown that for some constant $\rho \in(0,1)$, the $\rho$-approximation of this problem (i.e., obtaining $\rho$-opt satisfied clauses) is NP-hard

This can be shown for $\rho=7 / 8+\varepsilon$ (for every $\varepsilon>0$ ), using the „ 3 -bits" version of the PCP theorem.

On the other hand, there is an easy algorithm for 7/8-approximation, because the expected number of clauses satisfied by a random valuation is $7 / 8$.

## Remark

Using the formula obtained from the standard proof of NP-hardness of 3SAT, we cannot prove hardness of approximation.

Remark 2
Thanks to the PCP theorem, for many problems we can very precisely say what is the best factor of approximation.

We will prove an easier version of the PCP theorem: $\mathbf{N P} \subseteq \mathbf{P C P}($ poly $(n), 1)$

- even this inclusion is surprising
- the proof of the full PCP theorem bases on this inclusion
- it turns out that $\operatorname{PCP}($ poly $(n), 1)=$ NEXPTIME

We will prove that $\mathbf{N P} \subseteq \mathbf{P C P}($ poly $(n), 1)$.

- Walsh-Hadamard codes: to a sequence of bits $\boldsymbol{v} \in\{0,1\}^{n}$ we assign the following function from $\{0,1\}^{n}$ to $\{0,1\}$ :

$$
\boldsymbol{x} \rightarrow \boldsymbol{x} \cdot \boldsymbol{v}=x_{1} \cdot v_{1}+\ldots+x_{n} \cdot v_{n}(\bmod 2) \quad \text { (scalar product) }
$$

Every such a function can be written as a sequence of length $2^{n}$

We will prove that $\mathbf{N P} \subseteq \mathbf{P C P}($ poly $(n), 1)$.

- Walsh-Hadamard codes: to a sequence of bits $\boldsymbol{v} \in\{0,1\}^{n}$ we assign the following function from $\{0,1\}^{n}$ to $\{0,1\}$ :

$$
\boldsymbol{x} \rightarrow \boldsymbol{x} \cdot \boldsymbol{v}=x_{1} \cdot v_{1}+\ldots+x_{n} \cdot v_{n}(\bmod 2) \quad(\text { scalar product })
$$

Every such a function can be written as a sequence of length $2^{n}$

- This is a linear function, i.e., $f(x+y)=f(x)+f(y)$ for all $x, y$
- If $v \neq \boldsymbol{w}$, then their encodings differ on exactly half positions (because: a nonempty set has the same number of subsets of even size as subsets of odd size)


## PCP - idea of a proof

Our first goal: check that a given function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ (given as a sequence of length $2^{n}$ ) is a $\mathrm{W}-\mathrm{H}$ code of some sequence of length $n$

## PCP - idea of a proof

Our first goal: check that a given function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ (given as a sequence of length $2^{n}$ ) is a W-H code of some sequence of length $n$

- W-H codes = linear functions: for every linear function it holds

$$
f(x)=f\left(x_{1} \cdot b_{1}+\ldots+x_{n} \cdot b_{n}\right)=x_{1} \cdot f\left(b_{1}\right)+\ldots+x_{n} \cdot f\left(b_{n}\right)=\boldsymbol{x} \cdot\left(f\left(b_{1}\right), \ldots, f\left(b_{n}\right)\right)
$$

where $b_{i}$ - base vectors

- thus we need to check that a function is linear


## PCP - idea of a proof

Our first goal: check that a given function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ (given as a sequence of length $2^{n}$ ) is a W-H code of some sequence of length $n$

- W-H codes = linear functions: for every linear function it holds

$$
f(x)=f\left(x_{1} \cdot b_{1}+\ldots+x_{n} \cdot b_{n}\right)=x_{1} \cdot f\left(b_{1}\right)+\ldots+x_{n} \cdot f\left(b_{n}\right)=\boldsymbol{x} \cdot\left(f\left(b_{1}\right), \ldots, f\left(b_{n}\right)\right)
$$

where $b_{i}$ - base vectors

- thus we need to check that a function is linear
- this can be checked only approximately, if we read only a few bits
- for $\rho \in(0,1)$ we say that a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is $\rho$-close to a linear function if there is a linear function $g$ such that

$$
P r_{x \in\{0,1\}^{n}}[f(x)=g(x)] \geq \rho
$$

## PCP - idea of a proof

Our first goal: check that a given function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ (given as a sequence of length $2^{n}$ ) is a W-H code of some sequence of length $n$

- W-H codes = linear functions: for every linear function it holds

$$
f(x)=f\left(x_{1} \cdot b_{1}+\ldots+x_{n} \cdot b_{n}\right)=x_{1} \cdot f\left(b_{1}\right)+\ldots+x_{n} \cdot f\left(b_{n}\right)=\boldsymbol{x} \cdot\left(f\left(b_{1}\right), \ldots, f\left(b_{n}\right)\right)
$$

where $b_{i}$ - base vectors

- thus we need to check that a function is linear
- this can be checked only approximately, if we read only a few bits
- for $\rho \in(0,1)$ we say that a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is $\rho$-close to a linear function if there is a linear function $g$ such that

$$
P r_{x \in\{0,1\}^{n}}[f(x)=g(x)] \geq \rho
$$

- we use the following theorem: if a function $f$ satisfies

$$
\operatorname{Pr}_{x \in\{0,1\}^{n}}[f(x+y)=f(x)+f(y)] \geq \rho
$$

(for some $\rho>1 / 2$ ), then it is $\rho$-close to linear

- checking (a few times) linearity on selected arguments, we can ensure that with probability $\geq \rho$ the function $f$ is $\rho$-close to a linear function

Assume that $f$ is $\rho$-close to a linear function $g$, where $\rho>3 / 4$. Then $g$ is determined uniquely (because different linear functions differ for at least half of arguments).

Assume that $f$ is $\rho$-close to a linear function $g$, where $\rho>3 / 4$.
Then $g$ is determined uniquely (because different linear functions differ for at least half of arguments). Suppose that we are given an argument $x$, and we want to compute $g(x)$ having access to $f$. For every $x$ we want to succeed with high probability.

- Reading of $f(x)$ does not have this properyty: if it happened that $f(x) \neq g(x)$, then we (always) obtain an incorrect result.


## PCP - idea of a proof

Assume that $f$ is $\rho$-close to a linear function $g$, where $\rho>3 / 4$.
Then $g$ is determined uniquely (because different linear functions differ for at least half of arguments). Suppose that we are given an argument $x$, and we want to compute $g(x)$ having access to $f$. For every $x$ we want to succeed with high probability.

- Reading of $f(x)$ does not have this properyty: if it happened that $f(x) \neq g(x)$, then we (always) obtain an incorrect result.
- Instead, we randomly choose $\boldsymbol{y}$, and we return $f(y)+f(\boldsymbol{x}+\boldsymbol{y})$
- With high probability $f(y)=g(y)$ and $f(x+y)=g(x+y)$, that is, $f(\boldsymbol{y})+f(\boldsymbol{x}+\boldsymbol{y})=g(\boldsymbol{y})+g(\boldsymbol{x}+\boldsymbol{y})=g(\boldsymbol{x})$


## PCP - idea of a proof

We will show a (poly(n),1)-verifier for the following NP-complete problem: is a given system of quadratic equation over $\mathbb{Z}_{2}$ satisfiable?
An example system of such equations:

$$
\begin{aligned}
& x_{1} x_{2}+x_{3} x_{4}+x_{2} x_{5}=1 \\
& x_{2} x_{3}+x_{4} x_{5}=0 \\
&(\bmod 2) \\
& x_{1} x_{3}+x_{3} x_{5}+x_{3} x_{4}=1 \\
&(\bmod 2)
\end{aligned}
$$

(valuation $x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=1$ satisfies this system)

## PCP - idea of a proof

We will show a (poly(n),1)-verifier for the following NP-complete problem: is a given system of quadratic equation over $\mathbb{Z}_{2}$ satisfiable?
An example system of such equations:

$$
\begin{aligned}
x_{1} x_{2}+x_{3} x_{4}+x_{2} x_{5}=1 & (\bmod 2) \\
x_{2} x_{3}+x_{4} x_{5}=0 & (\bmod 2) \\
x_{1} x_{3}+x_{3} x_{5}+x_{3} x_{4}=1 & (\bmod 2)
\end{aligned}
$$

(valuation $x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=1$ satisfies this system)
A system of $m$ equations for $n$ variables can be represented by a matrix $A$ of size $m \times n^{2}$, and a vector $\boldsymbol{b}$ of length $m$.
We ask whether there is a vector $v$ of length $n$ such that $A \cdot(v \otimes v)=\boldsymbol{b}$ (where $\boldsymbol{x} \otimes \boldsymbol{y}$ denotes the tensor product - a vector of length $n^{2}$, which on position $n \cdot(i-1)+j$ has $\left.x_{i} y_{j}\right)$

## PCP - idea of a proof

Input: a matrix $A$ of size $m \times n^{2}$, vector $\boldsymbol{b}$ of length $m$ Question: is there a vector $v$ of length $n$ such that $A \cdot(v \otimes v)=\boldsymbol{b}$ ?
Verifier $V$ expects a proof of length $2^{n}+2^{n^{2}}$, which encodes functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and $g:\{0,1\}^{n^{2}} \rightarrow\{0,1\}$
In a correct proof, $f$ and $g$ are W-H codes of vectors $\boldsymbol{v}$ and $\boldsymbol{v} \otimes v$.

1) $V$ checks that $f$ and $g$ are $\rho$-close to linear functions.

We have already shown how to read these linear functions having $f$ and $g$; below for simplicity we assume that $f$ and $g$ are linear.

## PCP - idea of a proof

Input: a matrix $A$ of size $m \times n^{2}$, vector $\boldsymbol{b}$ of length $m$ Question: is there a vector $v$ of length $n$ such that $A \cdot(v \otimes v)=b$ ?
Verifier $V$ expects a proof of length $2^{n}+2^{n^{2}}$, which encodes functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and $g:\{0,1\}^{n^{2}} \rightarrow\{0,1\}$
In a correct proof, $f$ and $g$ are W-H codes of vectors $\boldsymbol{v}$ and $\boldsymbol{v} \otimes v$.

1) $V$ checks that $f$ and $g$ are $\rho$-close to linear functions.

We have already shown how to read these linear functions having $f$ and $g$; below for simplicity we assume that $f$ and $g$ are linear.
2) $V$ checks that $g$ encodes $\boldsymbol{v} \otimes v$, if $f$ encodes $\boldsymbol{v}$ :
$\rightarrow$ pick randomly $x, x^{\prime} \in\{0,1\}^{n}$
$\rightarrow$ reject if $g\left(x \otimes x^{\prime}\right) \neq f(x) f\left(x^{\prime}\right)$
$\rightarrow$ repeat 10 times
One can see that the equality $g\left(x \otimes x^{\prime}\right)=f(x) f\left(x^{\prime}\right)$ always holds for a correct proof; for an incorrect proof it holds with probability $\leq 3 / 4$. Thus, after this test, $g$ probably encodes $\boldsymbol{v} \otimes \boldsymbol{v}$

## PCP - idea of a proof

3) $V$ checks that $A \cdot(\boldsymbol{v} \otimes \boldsymbol{v})=\boldsymbol{b}$
$\rightarrow$ the $i$-th equation is $A_{i}(v \otimes v)=b_{i}$, where $A_{i}$ (the $i$-th row of matrix $A$ ) is a vector of length $n^{2}$
$\rightarrow$ by definition $A_{i}(v \otimes v)=g\left(A_{i}\right)$, thus it is enough to read $g\left(A_{i}\right)$ and check that $g\left(A_{i}\right)=b_{i}$

## PCP - idea of a proof

3) $V$ checks that $A \cdot(\boldsymbol{v} \otimes \boldsymbol{v})=\boldsymbol{b}$
$\rightarrow$ the $i$-th equation is $A_{i}(v \otimes v)=b_{i}$, where $A_{i}$ (the $i$-th row of matrix A) is a vector of length $n^{2}$
$\rightarrow$ by definition $A_{i}(\boldsymbol{v} \otimes \boldsymbol{v})=g\left(A_{i}\right)$, thus it is enough to read $g\left(A_{i}\right)$ and check that $g\left(A_{i}\right)=b_{i}$
$\rightarrow$ difficulty: it is not enough to check a constant number of equations
$\rightarrow$ solution: pick a random subset of equations, and check that their sum is satisfied (i.e., that $g\left(A_{S}\right)=b_{S}$, where $A_{S}$ equals the sum of appropriate vectors $A_{i}$, similarly $b_{S}$ )
$\rightarrow$ if a system is not satisfied, then with probability $1 / 2$ the sum of a random subset of equations is not satisfied

THE END

