

Computational complexity

lecture 11

End of previous lecture: we have presented two „practical” methods
of derandomization:

1) The method of conditional expected values
(we invariably ensure that the expected value of a good result
is high)

2) The method of pairwise-independent variables
(out of log(n) random bits we produce n pseudorandom bits, for
which our algorithm performs as for completely random bits)

Derandomization

End of previous lecture: we have presented two „practical” methods
of derandomization:

1) The method of conditional expected values
(we invariably ensure that the expected value of a good result
is high)

2) The method of pairwise-independent variables
(out of log(n) random bits we produce n pseudorandom bits, for
which our algorithm performs as for completely random bits)

Now more theoretically: how one can try to derandomize an
arbitrary randomized algorithm.
● We want to generalize the second method − having only log(n)

random bits, we want to generate n pseudorandom bits, such that
no polynomial algorithm can distinguish them from completely
random bits

Derandomization

Having only log(n) random bits, we want to generate n pseudo-
random bits, such that no polynomial algorithm can distinguish
them from completely random bits.

More precisely:
● a generator – a function G:{0,1}log(n)→{0,1}n computable in time

polynomial in n
● a generator is e-pseudorandom, if for every family of functions

D:{0,1}n→{0,1} from the class P/poly we have the property that
for every large enough n:

Prx∈{0,1}log(n)[D(G(x))=1]-Pry∈{0,1}n[D(y)=1]≤e

Theorem (Yao 1982)
If a (1/10)-pseudorandom generator exists, then BPP=P.

Derandomization

Theorem (Yao 1982)
If a (1/10)-pseudorandom generator exists, then BPP=P.

Proof
Take a machine M, which BPP-recognizes some language L in
time p(n). Given an input word w of length n:
● generate, consecutively, all sequences of bits x of length log(p(n))
● for each of them compute G(x)
● simulate M on the word w with bits G(x)
● accept if at least half of computations have accepted

Derandomization

Theorem (Yao 1982)
If a (1/10)-pseudorandom generator exists, then BPP=P.

Proof
Take a machine M, which BPP-recognizes some language L in
time p(n). Given an input word w of length n:
● generate, consecutively, all sequences of bits x of length log(p(n))
● for each of them compute G(x)
● simulate M on the word w with bits G(x)
● accept if at least half of computations have accepted

Correctness proof:
The amount of “yes” results equals: aw=Prx∈{0,1}log(p(n))[M(w,G(x))=1]

For a random algorithm this is: bw=Pry∈{0,1}p(n)[M(w,y)=1]

If for every (long enough) w it holds that |aw-bw|≤1/10, then OK:

for w∈L it is bw≥3/4, i.e., aw>1/2, similarly for w∉L

(a finite number of short inputs can be handled “manually”)

Derandomization

Correctness proof:

The amount of “yes” results equals: aw=Prx∈{0,1}log(p(n))[M(w,G(x))=1]

For a random algorithm this is: bw=Pry∈{0,1}p(n)[M(w,y)=1]

If for every (long enough) w it holds that |aw-bw|≤1/10, then OK:

for w∈L it is bw≥3/4, i.e., aw>1/2, similarly for w∉L

(a finite number of short inputs can be handled “manually”)
If the difference is ≥1/10 for arbitrarily long words wn, then we

consider D(y)=M(wn, y) (it is in P/poly) and we obtain a contradiction

with the definition of a pseudorandom generator – for every (large
enough) n it should hold that:

Prx∈{0,1}log(n)[D(G(x))=1]-Pry∈{0,1}n[D(y)=1]≤1/10

Derandomization

Theorem (Yao 1982)
If a (1/10)-pseudorandom generator exists, then BPP=P.

Formerly, people supposed that such generators rather do not exist.

But in the course of time, it turned out that they exist under weaker
and weaker assumptions. The strongest result of this form is:

Theorem (Impagliazzo-Wigderson 1998)
If SAT cannot be solved by a (not necessarily uniform) family of
circuits of size smaller than 2e

n, then BPP=P

The proof is difficult.

Notice an interesting phenomenon: out of hardness of one problem
(SAT) it is possible to deduce that other problems (those from BPP)
are easy.

Derandomization

Fixed-parameter tractability
Idea:
● sometimes the reason for hardness lies not in the length of the

input, but in some its parameter
● while fixing the parameter, we can sometimes obtain a polynomial

algorithm
● sometimes even the exponent in this polynomial does not depend

on the parameter
Such problems are called FPT (fixed-parameter tractable)

More formally:
● a parameter – a function from input words to natural numbers
● a problem is fixed-parameter tractable with respect to a para-

meter k, if it has complexity f(k).nc (important: the exponent does
not depend on k)

Fixed-parameter tractability
Formally:
● a parameter – a function from input words to natural numbers
● a problem is fixed-parameter tractable with respect to a para-

meter k, if it has complexity f(k).nc (important: the exponent does
not depend on k)

Example:
SAT is FPT with respect to the number of variables k
algorithm: check all valuations
complexity: 2kn

Fixed-parameter tractability
Example 2:
VERTEX-COVER is FPT with respect to the size of the maximal
cover.
● Algorithm: A full backtracking – for every edge (not having any of

its ends in the cover yet), consecutively, decide which of its ends
should be taken to the cover.

● This backtracking has depth k; in each step we choose one of two
nodes, so the complexity is 2kn.

● Attention: One can consider another backtracking (a more natural
one) – for every node decide whether it should be taken to the
cover or not. This is not an FPT algorithm: it considers all
k-element sets of nodes, so k goes to the exponent here.

Fixed-parameter tractability
Example 3:
k-colorability of a graph is not FPT with respect to the number of
colors (unless P=NP).
If it was FPT, then it would be possible to solve the NP-complete

problem of 3-colorability in time f(3).nc, i.e., in polynomial time

But there is another parameter, under which k-colorability of a graph
is FPT.
This is treewidth.

Treewidth
Intuitively: treewidth is small when the graph is similar to a tree.

Formally: we consider a tree decomposition.

A tree decomposition of a graph (V,E) consists of a tree T, in which
nodes (called bags) are labeled by subsets of V, such that:
● for every v∈V, the bags of T to which v

belongs form a connected (and nonempty)
subtree

● for every edge (u,v)∈E there is a bag X
in T such that u,v∈X

The decomposition is not unique.
Treewidth = maximal size of a bag in
a decomposition, minus 1.

A

B

B

A
C

C

C

C

B B

B

D

D

E

E

E

E

E

F

F

G

G

G

G
H

H

(drawing: wikipedia)

Treewidth = 2

Treewidth
k-colorability of a graph having treewidth s
Algorithm: dynamic programming over the tree decomposition.
We compute which k-colorings of a bag in the decomposition
(out of ks+1 possibilities) can be extended to a k-coloring of the
whole subtree. We ensure that:
● if some node belongs to neighboring bags,

then it should have the same color in both
bags (this is enough, since the subtree
containing a node is connected), and

● if two nodes in a bag are neighbors, then
they should have different colors (this is
enough, since every edge “belongs” to
some bag).

Running time: f(s).n

A

B

B

A
C

C

C

C

B B

B

D

D

E

E

E

E

E

F

F

G

G

G

G
H

H

(drawing: wikipedia)

Treewidth
k-colorability of a graph having treewidth s
Algorithm: dynamic programming over the tree decomposition.
We compute which k-colorings of a bag in the decomposition
(out of ks+1 possibilities) can be extended to a k-coloring of the
whole subtree.

Running time: f(s).n

Additional problem: one has to find an
optimal tree decomposition, before running
this algorithm
● computing the treewidth is NP-hard
● but for a fixed treewidth s, a decompo-

sition can be found in time f(s).n
● a decomposition of width slightly worse

than the optimal one can be found in
polynomial time

A

B

B

A
C

C

C

C

B B

B

D

D

E

E

E

E

E

F

F

G

G

G

G
H

H

(drawing: wikipedia)

Treewidth
A dynamic programming over the tree decomposition of a graph,
like for k-colorability, can be applied to many other problems.
There is even a general theorem (“metatheorem”):
Theorem (Courcelle 1990):
Every property of graphs expressible in the MSO logic can be

decided in time f(s).n, where s is the treewidth.

Treewidth
A dynamic programming over the tree decomposition of a graph,
like for k-colorability, can be applied to many other problems.
There is even a general theorem (“metatheorem”):
Theorem (Courcelle 1990):
Every property of graphs expressible in the MSO logic can be

decided in time f(s).n, where s is the treewidth.
● in this logic, we allow quantification over sets of nodes, and over

sets of edges
● for most properties, it is easy to express them in this logic
● in this way we easily obtain an FPT algorithm, but the function f(s)

is fast-growing. In order to obtain a practical algorithm, it is
necessary to concentrate on a particular problem

● another version of this theorem: the MSO logic without quantifi-
cation over sets of edges (i.e., a weaker logic), but instead of
treewidth we have “cliquewidth” (which can be smaller)

Treewidth
An example application of treewidth:
Graphs of control flow in structural programs (without GOTO)
have treewidth at most 6 (Thorup 1998)
This helps e.g. in an optimal allocation of registers during
compilation of programs

Fixed-parameter tractability
More on hardness:
k-colorability of a graph is not FPT with respect to the number of
colors (unless P=NP).
If it was FPT, then it would be possible to solve the NP-complete

problem of 3-colorability in time f(3).nc, i.e., in polynomial time

This example is very unusual. There are many problems, which for
a fixed value of a parameter are polynomial, but are not FTP

(i.e., they can be solved in time nf(k), but not in f(k).nc)

There exist multiple reductions between such problems (similarly
to reductions between NP-complete problems), thus either all are
are FPT, or none of them (we rather believe that none of them).
In this context, it makes sense to consider only reductions which
do not change the value of the parameter.

In this context, one considers classes called W[k] for all k≥0 (we skip a definition)
W[0] contains FPT problems
it is assumed that problems from W[1] are not FPT
problems from W[2] are even harder (can be reduced to W[1], but not vice-versa), etc.

Approximation
● Approximation is considered for hard optimization problems:

find the smallest vertex cover, the greatest clique, etc.

● One often says that these problems are e.g. NP-complete.
What does it mean precisely? These are not decision problems.
But optimization problems can be considered in a decision variant,
and then they can be NP-complete, e.g.
➔ for a given graph, and a number k, is there a clique of size k?
➔ or: for a given graph, a number k, and a set of nodes, is there

a clique of size k containing these nodes?
(this corresponds to searching for the clique, not only its size)

● The problem in the optimization version can be easily reduced to
many calls of the problem in the decision version.

● Approximation: looking for approximate solutions for (hard)
optimization problems
➔ We want an algorithm that outputs some solution, which is

maybe not optimal, but not much worse than the optimal solution

Approximation

● Approximation: looking for approximate solutions for (hard)
optimization problems

● An approximation algorithm has error e when:
➔ for maximization problems:

(optimum-solution)/optimum ≤ e

that is: solution ≥ optimum.(1-e)
➔ for minimization problems:

(solution-optimum)/solution ≤ e
that is: solution ≤ optimum/(1-e)

Approximation

● Approximation: looking for approximate solutions for (hard)
optimization problems

● An approximation algorithm has error e when:
➔ for maximization problems:

(optimum-solution)/optimum ≤ e

that is: solution ≥ optimum.(1-e)
➔ for minimization problems:

(solution-optimum)/solution ≤ e
that is: solution ≤ optimum/(1-e)

● The infimum of all e for which there is a polynomial algorithm,
is called approximation factor
➔ factor = 1 – effective approximation impossible
➔ factor = 0 – we say that there exists a PTAS (polynomial time

approximation scheme); if the exponent in the algorithm does
not depend on e, we say that there exists a strong PTAS

Approximation

Example: VERTEX-COVER
Vertex cover: a set of nodes containing at least one end of every
edge (we want to find a smallest one)

A simple idea: in a loop – take a node of the maximal degree, take
it to the cover, and remove it from the graph, together with all its
neighbors.

Does it approximate well the minimal cover?

Vertex cover: a set of nodes containing at least one end of every
edge (we want to find a smallest one)

A simple idea: in a loop – take a node of the maximal degree, take
it to the cover, and remove it from the graph, together with all its
neighbors.

Does it approximate well the minimal cover?

The solution can be log(n) times worse than the minimal one, e.g.
for such a bipartite graph:

the algorithm chooses all the nodes on the right, instead of nodes
on the left

n nodes

⌊n/n⌋ nodes of degree n

⌊n/(n-1)⌋ nodes of degree n-1

⌊n/2⌋ nodes of degree 2

...

Example: VERTEX-COVER

But there is an approximation of VERTEX-COVER with factor 1/2:

In a loop – add both ends of some edge to the cover, and remove
them from the graph, together with their neighbors

Every cover contains at least one of these ends, thus our cover
is at most twice larger (error 1/2)

A known hypothesis: there is no better algorithm

Example: VERTEX-COVER

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26

