Computational complexity

lecture 10

Probabilistic machines

Class **RP** (randomized polynomial time): a language L is in **RP** iff there is a polynomial T(n) and a machine M with a source of random bits, working in at most T(n) steps, and such that:

- $w \in L \Rightarrow Pr_s[(w,s) \in L_M] \ge 0.5$
- $w \notin L \Rightarrow \exists s. (w,s) \in L_M$

As s we can take sequences of length T(n), or infinite sequences, does not matter.

Intuition: a word is in L, if at least half of possible witnesses confirm this (but there are no witnesses for words not in L)

In other words: if a word is not in L, we will certainly reject; if it is in L, then choosing transitions randomly, we will accept with probability at least 0.5

Amplification

Fact (amplification)

Instead of 0.5, in the definition of **RP** we can take any constant between 0 and 1.

Amplification

At the end of the previous lecture, as a side effect, we have observed the following stronger version of amplification:

Fact

Suppose that a language L is recognized by a machine M with a source of random bits, working in polynomial time, and such that for some polynomial p(n):

- $w \in L \Rightarrow Pr_s[(w,s) \in L_M] \ge 1/p(n)$ (error probability almost 1)
- $w \notin L \Rightarrow \exists s. (w,s) \in L_M$

Then $L \in \mathbf{RP}$.

Proof

- We execute the machine p(n) times. This is enough, since $\lim_{n\to\infty} (1-1/p(n))^{p(n)} = 1/e$
- For large n this is <0.5
- We have finitely many "small" n, we can deal with them somehow

Amplification

We can go even further:

Fact

Let $L \in \mathbf{RP}$. Then, for every polynomial q(n) there is a machine M with a source of random bits, working in polynomial time, and such that:

- $w \in L \Rightarrow Pr_s[(w,s) \in L_M] \ge 1 1/2^{q(n)}$ (error probability exponentially small)
- $w \notin L \Rightarrow \exists s. (w,s) \in L_M$

Proof

• We take a machine that makes a mistake with probability <1/2, and we run it q(n) times

Examples of randomized algorithms

- Perfect matching in a bipartite graph:
- input: bipartite graph $G=(V_1,V_2,E)$, where $|V_1|=|V_2|$
- question: is there a perfect matching in *G*?
- several deterministic algorithms are known for detecting if a perfect matching exists
- we present here a randomized algorithm

Examples of randomized algorithms

Perfect matching in a bipartite graph:

input: bipartite graph $G=(V_1,V_2,E)$, where $|V_1|=|V_2|=n$

question: is there a perfect matching in *G*?

Solution

- Consider the $n \times n$ matrix X whose entry X_{ij} is a variable x_{ij} if $(i,j) \in E$, and 0 otherwise.
- Recall that the determinant det(X) is

$$det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i=1}^n X_{i,\sigma(i)}$$

- Every permutation in S_n is a potential perfect matching.
- A perfect matching exists iff the determinant is nonzero.

Examples of randomized algorithms

- Perfect matching in a bipartite graph:
- input: bipartite graph $G=(V_1,V_2,E)$, where $|V_1|=|V_2|=n$
- question: is there a perfect matching in *G*?

Solution

- Consider the $n \times n$ matrix X whose entry X_{ij} is a variable x_{ij} if $(i,j) \in E$, and 0 otherwise.
- Recall that the determinant *det(X)* is

$$det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i=1}^n X_{i,\sigma(i)}$$

- Every permutation in S_n is a potential perfect matching.
- A perfect matching exists iff the determinant is nonzero.
- The determinant itself, as a polynomial, is large.
- But for specific numbers substituted for the variables, we can compute in quickly (as fast as matrix multiplication).
- Randomized algorithm: substitute something for the variables, and check that the determinant is nonzero.
- Advantage: the algorithm parallelizes (matrix_determinant ∈ NC)

Class PP (probabilistic polynomial): like RP, but:

• $w \in L \Rightarrow Pr_s[(w,s) \in L_M] \ge 0.5$

• $w \notin L \Rightarrow Pr_s[(w,s) \in L_M] < 0.5$

Intuition: acceptance by voting of witnesses

Class **PP** (probabilistic polynomial): like **RP**, but:

- $w \in L \Rightarrow Pr_s[(w,s) \in L_M] \ge 0.5$
- $w \notin L \Rightarrow Pr_s[(w,s) \in L_M] < 0.5$

Intuition: acceptance by voting of witnesses

Advantages of this class:

- errors allowed on both sides ⇒ closed under complement
- a "syntactic" class ⇒ has a complete problem MAJSAT: is a given boolean formula satisfied by at least half of possible valuations?

Class **PP** (probabilistic polynomial): like **RP**, but:

- $w \in L \Rightarrow Pr_s[(w,s) \in L_M] \ge 0.5$
- $w \notin L \Rightarrow Pr_s[(w,s) \in L_M] < 0.5$

Intuition: acceptance by voting of witnesses

Advantages of this class:

- errors allowed on both sides ⇒ closed under complement
- a "syntactic" class ⇒ has a complete problem MAJSAT: is a given boolean formula satisfied by at least half of possible valuations?

Disadvantages of this class – it is too large:

- in practice: maybe M gives probabilities close to 0.5, so running it (even many times) does not tell us too much about the result
- NP⊆PP tutorials

Class **BPP** (bounded probabilistic polynomial): errors allowed on both sides, but only small errors:

- $w \in L \Rightarrow Pr_s[(w,s) \in L_M] \ge 3/4$
- $w \notin L \Rightarrow Pr_s[(w,s) \in L_M] \le 1/4$

In other words: the probability of an error is $\leq 1/4$, both sides

Class **BPP** (bounded probabilistic polynomial): errors allowed on both sides, but only small errors:

- $w \in L \Rightarrow Pr_s[(w,s) \in L_M] \ge 3/4$
- $w \notin L \Rightarrow Pr_s[(w,s) \in L_M] \le 1/4$

In other words: the probability of an error is $\leq 1/4$, both sides

Remarks:

- easy fact: RP⊆BPP⊆PP
- we are not aware of any problem, which is in BPP, and about which we do not know whether it is in RP or in coRP
- **BPP** is a good candidate for the class of these problems, which can be quickly solved "in practice"
- open problem: how is BPP related to NP?
- tutorials: if NP⊆BPP, then NP⊆RP (i.e., NP=RP)
- conjecture (open problem): BPP=P ("randomization doesn't add anything")

Amplification for **BPP**:

answers

instead of the error 1/4, one can take any number $p \in (0,1/2)$

Proof:

Let the original error probability be p < 1/2.

We run the algorithm 2m+1 times, and we take the decision of majority. The probability of error decreases to:

$$\sum_{i=0}^{m} \binom{2m+1}{i} (1-p)^{i} p^{2m+1-i} \leq \sum_{i=0}^{m} \binom{2m+1}{i} (1-p)^{m} p^{m+1} = 2^{2m} (1-p)^{m} p^{m+1} \leq (4p(1-p))^{m}$$
precisely *i* correct

Amplification for **BPP**:

instead of the error 1/4, one can take any number $p \in (0,1/2)$

Proof:

Let the original error probability be p < 1/2.

We run the algorithm 2m+1 times, and we take the decision of majority. The probability of error decreases to:

$$\sum_{i=0}^{m} \binom{2m+1}{i} (1-p)^{i} p^{2m+1-i} \leq \sum_{i=0}^{m} \binom{2m+1}{i} (1-p)^{m} p^{m+1} = 2^{2m} (1-p)^{m} p^{m+1} \leq (4p(1-p))^{m}$$
precisely *i* correct answers

Remark:

As for **RP**, we can prove a stronger version: we can start from an algorithm with error probability 1-1/p(n) (very large), and obtain an algorithm with error probability $1/2^{q(n)}$, for polynomials p(n), q(n). It is enough to take as m appropriate polynomial.

Class ZPP

Two types of randomized algorithms:

- Monte Carlo: the algorithm is always fast, usually the answer is correct – RP, BPP, PP
- Las Vegas: the answer is always correct, usually the algorithm is fast – ZPP

Class **ZPP** (zero-error probabilistic polynomial time): problems that can be solved in expected polynomial time.

Class ZPP

Two types of randomized algorithms:

- Monte Carlo: the algorithm is always fast, usually the answer is correct – RP, BPP, PP
- Las Vegas: the answer is always correct, usually the algorithm is fast – ZPP

Class **ZPP** (zero-error probabilistic polynomial time): problems that can be solved in expected polynomial time.

How do we compute the expected running time?

- The machine has access to an infinite tape with random bits
- Every bit is chosen independently (0 or 1 with probability 0.5)
- I.e., a computation that halts after reading k random bits has probability 2^{-k}
- The probability of looping forever is required to be 0

Class ZPP

Two types of randomized algorithms:

- Monte Carlo: the algorithm is always fast, usually the answer is correct – RP, BPP, PP
- Las Vegas: the answer is always correct, usually the algorithm is fast – ZPP

Class **ZPP** (zero-error probabilistic polynomial time): problems that can be solved in expected polynomial time.

How do we compute the expected running time?

- The machine has access to an infinite tape with random bits
- Every bit is chosen independently (0 or 1 with probability 0.5)
- I.e., a computation that halts after reading k random bits has probability 2^{-k}
- The probability of looping forever is required to be 0

Tutorials: **ZPP=RP**∩**coRP** (i.e, Las Vegas algorithms can be changed to Monte Carlo algorithms)

Non-uniform derandomization

Theorem (Adleman 1978):

BPP⊆P/poly

Remark: this theorem says that for every language in **BPP** there is a sequence of circuits of polynomial size, which recognizes it. If this sequence would be uniform, the language would be in **P** (it would be possible to derandomize every language from **BPP**). This is an open problem, though, so the sequence of circuits obtained in our proof should be "strange", i.e., difficult to compute.

Non-uniform derandomization

Theorem (Adleman 1978):

BPP⊆P/poly

Proof:

- Suppose that *M* recognizes *L* with error probability $\leq 1/4$.
- On input of length n we repeat the computation 2(3n)+1 times; the error decreases to $\leq (4p(1-p))^{3n} = (3/4)^{3n}$ (running time is still polynomial, number of random bits polynomial)
- The probability that a random sequence of bits gives an incorrect answer for a fixed input of length n is $\le (3/4)^{3n}$, thus the probability that a random sequence of bits gives an incorrect answer for at least one input of length n is $\le 2^n(3/4)^{3n} = (27/32)^n < 1$
- Thus there exists a sequence of bits, which gives a correct answer for every input of length n we take this sequence of bits as the advice

Generally, we only know that **BPP**⊆**PSPACE**, but some algorithms can be derandomized, and there are some techniques for this.

Consider the example: approximation of MAX-CUT – for an undirected graph G=(V,E) compute a subset $S\subseteq V$ such that $cut(S)=\{\{u,v\}\in E\mid u\in S,v\not\in S\}$ is largest possible.

The decision problem (is $cut(S) \ge k$ some S?) is **NP**-complete.

Generally, we only know that **BPP**⊆**PSPACE**, but some algorithms can be derandomized, and there are some techniques for this.

Consider the example: approximation of MAX-CUT – for an undirected graph G=(V,E) compute a subset $S\subseteq V$ such that $cut(S)=\{\{u,v\}\in E\mid u\in S,v\not\in S\}$ is largest possible.

The decision problem (is $cut(S) \ge k$ some S?) is **NP**-complete.

There is a simple randomized algorithm, which computes S so that the expected value of cut(S) is $\geq |E|/2$: for every node, take it to S with probability 1/2:

• Every edge is in *cut* with probability 1/2 (because the choices are independent), thus by linearity of the expected value, the expected size of *cut* is |E|/2.

There is a simple randomized algorithm, which computes S so that the expected value of cut(S) is $\geq |E|/2$: for every node, take it to S with probability 1/2:

• Every edge is in *cut* with probability 1/2 (because the choices are independent), thus by linearity of the expected value, the expected size of *cut* is |E|/2.

And how can be bound (from below) the probability that the resulting cut has size at least |E|/2?

• The worst case is when rarely (in k cases, for some k) the algorithm returns a cut of size |E|, and often (in $2^{|V|}$ -k cases) it returns a cut of size |E|/2-1. We have an inequality:

$$k|E|+(2^{|V|}-k)(|E|/2-1)\ge 2^{|V|}|E|/2$$

This gives: $k(|E|/2+1)\ge 2^{|V|} \Rightarrow k/2^{|V|} \ge 2/(|E|+2)$

• Thus the probability that the resulting cut has size $\ge |E|/2$ is $\ge 1/|E|$ (assuming $|E|\ge 2$). By repeating the algorithm a linear number of times, the probability can be changed to a constant, since $\lim_{n\to\infty} (1-1/n)^n = 1/e$

- Thus: we have a <u>randomized</u> algorithm, giving with probability $\geq 1/2$ a cut of size $\geq |E|/2$.
- How can we derandomize it, i.e., give a <u>deterministic</u> algorithm computing S for which $cut(S) \ge |E|/2$?
- We will show two concepts:
- 1) The method of conditional expected values
- In order to derandomize the algorithm, we should be able to find a "good" witness in our case such that $cut(S) \ge |E|/2$
- For a fixed sequence of guesses $b_1,...,b_k$, let $E(b_1,...,b_k)$ be the expected value of the size of a cut in the case when the first k bits are $b_1,...,b_k$. It is clear that:

$$E(b_1,...,b_k)=E(b_1,...,b_k,0)/2+E(b_1,...,b_k,1)/2$$

so either $E(b_1,...,b_k,0)$ or $E(b_1,...,b_k,1)$ is $\geq E(b_1,...,b_k)$

• Assume that we can deterministically compute $E(b_1,\ldots,b_k)$. In such a situation, we can proceed "greedly": we choose this b_{k+1} which gives larger expected size of a cut.

- 1) The method of conditional expected values
- Then we have that: $E(b_1,...,b_n) \ge E(b_1,...,b_{n-1}) \ge ... \ge E(b_1) \ge E() = |E|/2$
- Thus at the end we obtain a cut of size $\geq |E|/2$.
- Generally, it is not always possible to quickly compute $E(b_1,...,b_k)$, but for MAXCUT we can do it: if we have chosen nodes from S, and we have discarded nodes from T, and X is the set of those edges in which at least one end is neither in S nor in T, then $E(b_1,...,b_k)=|cut(S,T)|+|X|/2$

- 2) The method of pairwise-independent variables
- We were assuming that the random bits are all independent. But in the algorithm for MAXCUT it is enough to assume that they are pairwise independent, i.e., that $Pr[b_i=b_j]=1/2$ for all $i\neq j$
- Fact: having log(n) independent random bits, one can produce n pairwise independent bits. Namely, for every nonempty subset of bits we take the XOR of these bits.
- On the other hand, all combinations of log(n) bits can be browsed in polynomial time.