

Computational complexity

lecture 9

Definition of an alternating Turing machine (ATM):
● a configuration can have multiple successors (as in NTM)
● additionally states of the machine (and in effect its configurations)

are divided to existential and universal ones
The set of wining configurations is defined as the smallest set s.t.:
● accepting configurations are winning
● every existential configuration, whose some successor is winning,

is also winning
● every universal configuration, whose all successors are winning,

is also winning
We accept a word w, if the initial configuration for this word is
winning.
M works in time T(n) / in space S(n), if every computation fits in
this time / space.

Observation:
NTM is a special case of an ATM – only existential states

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)),
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)),
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Proof AP⊆PSPACE
Backtracking: we browse through all computations of the alternating
machine (such a computation can be represented in polynomial
space)

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)),
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Proof AL⊆P
We construct the graph containing all reachable configurations of
the alternating machine – it is of polynomial size. Then in
polynomial time we can find all winning configurations,
by going backwards (starting from accepting configurations).

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)),
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Proof PSPACE⊆AP

It is enough to prove that QBF∈AP, as QBF is PSPACE-complete.
This is almost obvious – player ∃ chooses values of variables
quantified existentially, and player ∀ chooses values of variables
quantified universally; at the end we deterministically compute the
value of the formula.
Actually: the algorithm for AP is simpler than for PSPACE.

Alternating machines

Classes ATIME(T(n)), ASPACE(S(n)),
AP=∪k ATIME(nk), AL=ASPACE(log n)

Theorem
AL=P, AP=PSPACE (the same can be said more generally)

Proof P⊆AL
● For an algorithm in P there is an equivalent boolean circuit,

and we can construct it in logarithmic space.
● It is easy to give an algorithm in AL, which computes the value of

a circuit: players walk from the output gate, in OR gates player ∃
decides which predecessor is true, and in AND gates player ∀
decides which predecessor is supposed to be false.

● We do not generate the whole circuit, only particular fragments,
„on demand”.

Alternating machines

Consider alternating machines which:
● work in polynomial time
● the initial state is existential (universal)
● every computation leads to at most k-1 changes between

existential and universal states

Fact
Such machines recognize languages from S

k
 (P

k
)

(we skip the formal proof, although it is easy)

Alternating machines

p p

Machines with a source of random bits (probabilistic machines):
● a deterministic machine
● an additional read-once tape (the head cannot move left along

this tape)

Probabilistic machines

Machines with a source of random bits (probabilistic machines):
● a deterministic machine
● an additional read-once tape (the head cannot move left along

this tape)

Notice that NP can be defined as follows: a language L is in NP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ ∃s. (w,s)∈LM

● w∉L ⇒ ∄s. (w,s)∈LM

(a word is in L iff some witness confirms this)

Probabilistic machines

Machines with a source of random bits (probabilistic machines):
● a deterministic machine
● an additional read-once tape (the head cannot move left along

this tape)

Notice that NP can be defined as follows: a language L is in NP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ ∃s. (w,s)∈LM

● w∉L ⇒ ∄s. (w,s)∈LM

Class RP (randomized polynomial time): as above, but
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ ∄s. (w,s)∈LM

Intuition: a word is in L, if at least half of possible witnesses confirm
this.

Probabilistic machines

Class RP (randomized polynomial time): a language L is in RP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ ∄s. (w,s)∈LM

As s we can take sequences of length p(n), or infinite sequences,
does not matter.

Intuition: a word is in L, if at least half of possible witnesses confirm
this (but there are no witnesses for words not in L)

In other words: if a word is not in L, we will certainly reject;
if it is in L, then choosing transitions randomly, we will accept with
probability at least 0.5

Probabilistic machines

Class RP (randomized polynomial time): a language L is in RP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ ∄s. (w,s)∈LM

Remark: Some machines does not accept any language in the
sense of RP. It is undecidable whether a machine is correct in the
sense of RP, even if we know the polynomial p(n)

For this reason we do not know any RP-complete problem.
Intuition: we cannot reduce from every machine recognizing
a language from RP, because we do not know how such machines
look like.

Probabilistic machines

Class RP (randomized polynomial time): a language L is in RP iff
there is a polynomial p(n) and a machine M with a source of random
bits, working in at most p(n) steps, and such that:
● w∈L ⇒ Prs[(w,s)∈LM]≥0.5
● w∉L ⇒ ∄s. (w,s)∈LM

Fact: P⊆RP⊆NP (both inclusions are obvious)

Probabilistic machines

Class RP (randomized polynomial time): a language L is in RP iff
there is a polynomial T(n) and a machine M with a source of random
bits, working in at most T(n) steps, and such that:
● w∈L ⇒ Prs[(w,s)∈LM]≥1-p=0.5
● w∉L ⇒ ∄s. (w,s)∈LM

Fact (amplification): in the definition of RP the number 0.5 can be
changed to any number from the interval (0,1), and the class of
defined languages will remain the same

Proof: Let RP
p
 be the class with error probability p

Obviously RP
p
⊆RP

q
 when p≤q

We will now prove that RP
p
⊆RP

p2
● Out of a machine M with error p we construct a machine M', which

on the same input chooses randomly two witnesses, and accepts
if some of them is a correct witness

● The running time doubles, so it remains polynomial
● The error probability decreases to p2 – M' is wrong only when

M made a mistake twice

Probabilistic machines

Is this a realistic model?
● It is more realistic than nondeterministic or alternating machines:

we can run a probabilistic machine, give it some sequence of
bits as random bits, and obtain a result that is correct with some
probability.

● We obtain a result that is correct with some probability (and due to
amplification this probability can be arbitrarily high), but we cannot
be sure.

● How to generate bits that are really random? There exist physical
random number generators (basing e.g. on quantum effects).
Problems: they are relatively slow, and can be biased (in particular
after some time, when they start to be broken).

● In practice, we use pseudo-random generators, that generate
“random” bits using some algorithm. In practice, this works well,
as the generated sequence looks like a random one.
But theoretically, we cannot be sure about the probability of
correctness.

Probabilistic machines

An example of an algorithm in coRP – primality testing
input: n
question: is n prime?
[So the converse: “is n composite?” is in RP.]

Examples of randomized algorithms

An example of an algorithm in coRP – primality testing
input: n
question: is n prime?
[So the converse: “is n composite?” is in RP.]

History:
● Clearly primality∈coNP: a nontrivial divisor is a witness,

but it is difficult to find it.
● For years it was not known how to check that a number is prime

(even before the era of computers, this was an interesting problem)

Examples of randomized algorithms

An example of an algorithm in coRP – primality testing
input: n
question: is n prime?
[So the converse: “is n composite?” is in RP.]

History:
● Clearly primality∈coNP: a nontrivial divisor is a witness,

but it is difficult to find it.
● For years it was not known how to check that a number is prime

(even before the era of computers, this was an interesting problem)
● Pratt 1975, primality∈NP (i.e., ∈NP∩coNP) – certificate for

primality that can be checked in polynomial time
● probabilistic tests discovered, showing primality∈coRP

(Solovay-Strassen test 1977, Miller-Rabin test 1976-1980)

Examples of randomized algorithms

An example of an algorithm in coRP – primality testing
input: n
question: is n prime?
[So the converse: “is n composite?” is in RP.]

History:
● Clearly primality∈coNP: a nontrivial divisor is a witness,

but it is difficult to find it.
● For years it was not known how to check that a number is prime

(even before the era of computers, this was an interesting problem)
● Pratt 1975, primality∈NP (i.e., ∈NP∩coNP) – certificate for

primality that can be checked in polynomial time
● probabilistic tests discovered, showing primality∈coRP

(Solovay-Strassen test 1977, Miller-Rabin test 1976-1980)
● Adleman-Pomerance-Rumely 1983: determin. alg., |n|O(ln ln |n|)

● Adleman-Huang 1992: primality∈RP∩coRP
● Agrawal-Kayal-Saxena 2002: primality∈P, best known time: O(|n|6)
● in practice, probabilistic tests are used (the determ. alg. is too slow)

Examples of randomized algorithms

An example of an algorithm in coRP – primality testing
input: n
question: is n prime?
Miller-Rabin test:
● let n-1=2s.d
● choose randomly n∈{1,...,n-1}
● If ad≡1 (mod n) and a2rd≡-1 (mod n) for all r∈{0,...,s-1}, say

“composite”, otherwise say “prime”

Examples of randomized algorithms

An example of an algorithm in coRP – primality testing
input: n
question: is n prime?
Miller-Rabin test:
● let n-1=2s.d
● choose randomly n∈{1,...,n-1}
● If ad≡1 (mod n) and a2rd≡-1 (mod n) for all r∈{0,...,s-1}, say

“composite”, otherwise say “prime”
➔ For prime numbers, the algorithm always says “prime”
➔ For composite numbers, the algorithm says “composite”

with probability ≥3/4 (probability of error ≤1/4)
➔ We skip a proof

Examples of randomized algorithms

An example of an algorithm in RP: check that a polynomial (given
in an implicit form) is nonzero?

Formally, we are given an arithmetic circuit, where we have gates
+, *, –, and input gates corresponding to variables – notice that
such a circuit always encodes a polynomial with integer coefficients.
We ask whether there is a valuation of variables for which the result
of the circuit is nonzero.
The problem can be considered over rational (real) numbers, or
over some finite field.

Examples of randomized algorithms

An example of an algorithm in RP: check that a polynomial (given
in an implicit form) is nonzero?

Formally, we are given an arithmetic circuit, where we have gates
+, *, –, and input gates corresponding to variables – notice that
such a circuit always encodes a polynomial with integer coefficients.
We ask whether there is a valuation of variables for which the result
of the circuit is nonzero.
The problem can be considered over rational (real) numbers, or
over some finite field.

In both cases, we do not know whether the problem is in P.

An idea for a probabilistic algorithm:
take a random valuation of variables, and check the result

Does it makes sense?
Yes, if every nonzero polynomial is nonzero for a majority of
valuations of variables.

Examples of randomized algorithms

Lemma (Schwartz-Zippel)
Let p be a nonzero polynomial of k variables, of total degree d,
over a field F (finite or not), let S be a finite subset of this field.
We pick r1,...,rk∈S randomly.

Then Pr[p(r1,...,rk)=0] ≤ d / |S|

Examples of randomized algorithms (*)

Lemma (Schwartz-Zippel)
Let p be a nonzero polynomial of k variables, of total degree d,
over a field F (finite or not), let S be a finite subset of this field.
We pick r1,...,rk∈S randomly.

Then Pr[p(r1,...,rk)=0] ≤ d / |S|

Proof: induction over k
k=1 → Bezout's theorem: a polynomial of degree d has ≤d zeroes

Examples of randomized algorithms (*)

Lemma (Schwartz-Zippel)
Let p be a nonzero polynomial of k variables, of total degree d,
over a field F (finite or not), let S be a finite subset of this field.
We pick r1,...,rk∈S randomly.

Then Pr[p(r1,...,rk)=0] ≤ d / |S|

Proof: induction over k
k=1 → Bezout's theorem: a polynomial of degree d has ≤d zeroes
Induction step: write p as a polynomial of the variable x1:

p(x1,...,xk)=S x1
.pi(x2,...,xk)

Take the greatest i, for which pi is nonzero (exists, since p≠0).

The degree of pi is ≤d-i. From the induction assumption:
Pr[pi(r2,...,rk)=0] ≤ (d-i) / |S|

i=0
i

d

Examples of randomized algorithms (*)

Lemma (Schwartz-Zippel)
Let p be a nonzero polynomial of k variables, of total degree d,
over a field F (finite or not), let S be a finite subset of this field.
We pick r1,...,rk∈S randomly.

Then Pr[p(r1,...,rk)=0] ≤ d / |S|

Proof: induction over k
k=1 → Bezout's theorem: a polynomial of degree d has ≤d zeroes
Induction step: write p as a polynomial of the variable x1:

p(x1,...,xk)=S x1
.pi(x2,...,xk)

Take the greatest i, for which pi is nonzero (exists, since p≠0).

The degree of pi is ≤d-i. From the induction assumption:
Pr[pi(r2,...,rk)=0] ≤ (d-i) / |S|

If pi(r2,...,rk)≠0, then p(x1,r2,...,rk) is of degree i , so

Pr[p(r1,...,rk)=0 | pi(r2,...,rk)≠0] ≤ i / |S|

This is enough, since Pr[A]≤Pr[B]+Pr[A|Bc] for arbitrary events A,B

i=0
i

d

Examples of randomized algorithms (*)

The Schwartz-Zippel lemma shows that the question whether a
polynomial is nonzero is in RP, when we consider it over a large
finite field.
● We see that a circuit with n gates defines a polynomial of total

degree at most 2n. If there are k variables, it is enough to pick k
random numbers from 0,...,10

.2n (it requires O(kn) bits), compute
the value of the polynomial (i.e., simulate the circuit), and accept
if the result is nonzero. We are wrong with probability ≤0.1.

Examples of randomized algorithms (*)

The Schwartz-Zippel lemma shows that the question whether a
polynomial is nonzero is in RP, when we consider it over a large
finite field.
● We see that a circuit with n gates defines a polynomial of total

degree at most 2n. If there are k variables, it is enough to pick k
random numbers from 0,...,10

.2n (it requires O(kn) bits), compute
the value of the polynomial (i.e., simulate the circuit), and accept
if the result is nonzero. We are wrong with probability ≤0.1.

Over the field of rationals (or if the considered finite field is too large)
there is an additional problem: how to evaluate the circuit in poly-
nomial time? Even if the final result is 0, intermediate results can be
very long.
● Solution: pick a random number m from 2,...,22n, and compute

everything modulo m
Why this works well?

Examples of randomized algorithms (*)

● We take random m from 2,...,22n, and we compute modulo m
● If the value of a polynomial Y=p(r

1
,...,r

k
) is 0, then modulo m it is 0

as well.
● If the value is nonzero, we will prove that with probability ≥1/(10n)

it does not divide by m (i.e., is nonzero modulo m)

Examples of randomized algorithms (*)

● We take random m from 2,...,22n, and we compute modulo m
● If the value of a polynomial Y=p(r

1
,...,r

k
) is 0, then modulo m it is 0

as well.
● If the value is nonzero, we will prove that with probability ≥1/(10n)

it does not divide by m (i.e., is nonzero modulo m)
● The number p(N) of prime numbers smaller than N satisfies:

● Thus m is prime with probability at least 1/(5n) (for large enough n)

lim =1
N→∞

p(N)
N/ln(N)

Examples of randomized algorithms (*)

● We take random m from 2,...,22n, and we compute modulo m
● If the value of a polynomial Y=p(r

1
,...,r

k
) is 0, then modulo m it is 0

as well.
● If the value is nonzero, we will prove that with probability ≥1/(10n)

it does not divide by m (i.e., is nonzero modulo m)
● The number p(N) of prime numbers smaller than N satisfies:

● Thus m is prime with probability at least 1/(5n) (for large enough n)
● We have Y≤(10

.2n)2n
● The number of prime divisors of Y equals is at most logarithmic,

i.e., ≤5n2n

● A randomly chosen m is among these divisors with probability
≤5n2n/22n<1/(10n)

● Thus m is prime and is NOT a divisor of Y with probability >1/(10n)

Examples of randomized algorithms (*)

lim =1
N→∞

p(N)
N/ln(N)

● We take random m from 2,...,22n, and we compute modulo m
● If the value of a polynomial Y=p(r

1
,...,r

k
) is 0, then modulo m it is 0

as well.
● If the value is nonzero, then with probability ≥1/(10n) it does not

divide by m (i.e., is nonzero modulo m)
● This is still not enough – our algorithm fails with prob. ≤1-1/(10n)
● Let us repeat the whole algorithm n times. This is enough, since

● For large n this is <0.5
● We have finitely many „small” n, where the error is a constant;

we can decrease it using the standard amplification

lim (1-1/n)n = 1/e
n→∞

Examples of randomized algorithms (*)

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34

