Computational complexity

lecture 8

Theorem (Berman 1978)

If $P \neq NP$, then no language over a single-letter alphabet is NP-hard.

In consequence there are difficult (and even undecidable) languages that are not **NP**-hard.

Theorem (Berman 1978)

If $P \neq NP$, then no language over a single-letter alphabet is NP-hard.

<u>Proof</u>

Let L be an **NP**-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting **P** \neq **NP**.

- Theorem (Berman 1978)
- If $P \neq NP$, then no language over a single-letter alphabet is NP-hard.
- <u>Proof</u>
- Let *L* be an **NP**-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting $P \neq NP$. By assumption there is a reduction *g* from SAT to *L*.
- The algorithm is as follows:
- \bullet We are given a formula φ
- We will keep a list of formulas $\psi_1, ..., \psi_k$ such that: ϕ is satisfiable iff some of $\psi_1, ..., \psi_k$ is satisfiable. Initially the list contains ϕ .

- Theorem (Berman 1978)
- If $P \neq NP$, then no language over a single-letter alphabet is NP-hard.
- <u>Proof</u>
- Let *L* be an **NP**-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting $P \neq NP$. By assumption there is a reduction *g* from SAT to *L*.
- The algorithm is as follows:
- We are given a formula $\boldsymbol{\varphi}$
- We will keep a list of formulas $\psi_1, ..., \psi_k$ such that: ϕ is satisfiable iff some of $\psi_1, ..., \psi_k$ is satisfiable. Initially the list contains ϕ .
- We alternatingly repeat two kinds of steps:
- 1) Replace every ψ_i by two formulas: $\psi_i[true/x]$ and $\psi_i[false/x]$, obtained by substituting true/false for one of variables. (clearly ψ_i is satisfiable iff some of $\psi_i[true/x]$, $\psi_i[false/x]$ is satisfiable)

- Theorem (Berman 1978)
- If $P \neq NP$, then no language over a single-letter alphabet is NP-hard.
- <u>Proof</u>
- Let *L* be an **NP**-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting $P \neq NP$. By assumption there is a reduction *g* from SAT to *L*.
- The algorithm is as follows:
- We are given a formula $\boldsymbol{\varphi}$
- We will keep a list of formulas $\psi_1, ..., \psi_k$ such that: ϕ is satisfiable iff some of $\psi_1, ..., \psi_k$ is satisfiable. Initially the list contains ϕ .
- We alternatingly repeat two kinds of steps:
- 1) Replace every ψ_i by two formulas: $\psi_i[true/x]$ and $\psi_i[false/x]$, obtained by substituting true/false for one of variables. (clearly ψ_i is satisfiable iff some of $\psi_i[true/x]$, $\psi_i[false/x]$ is satisfiable)
- 2) For every pair ψ_i, ψ_j such that $g(\psi_i) = g(\psi_j)$, remove ψ_i from the list, leave only ψ_j (notice that ψ_i is satisfiable iff some of ψ_j is satisfiable)

We alternatingly repeat two kinds of steps:

- 1) Replace every ψ_i by two formulas: $\psi_i[true/x]$ and $\psi_i[false/x]$, obtained by substituting true/false for one of variables. (clearly ψ_i is satisfiable iff some of $\psi_i[true/x]$, $\psi_i[false/x]$ is satisfiable)
- 2) For every pair ψ_i, ψ_j such that $g(\psi_i) = g(\psi_j)$, remove ψ_i from the list, leave only ψ_j (notice that ψ_i is satisfiable iff some of ψ_j is satisfiable)
- The algorithm is correct. Why does it work in polynomial time?
- Recall that *g* is a polynomial-time reduction to a single-letter language. Thus |g(ψ_i)| < p(|ψ_i|) for some polynomial *p*. Since there is only one single-letter word of every length, there are only p(|ψ_i|)≤p(|φ|) possibilities for g(ψ_i).
- In effect, the list has length $\leq p(|\phi|)$ after every execution of step 2, and $\leq 2p(|\phi|)$ after every execution of step 1.
- Moreover, every step can be performed in polynomial time.

This finishes the proof.

Relativisation

Many proofs in the complexity theory uses Turing machines as "black-boxes" – the proofs are of the form:

- assume that there is a machine *M* working in time ... recognizing ...
- Out of it, we create M', which executes M many times in a loop...
- ... then it negates the results, executes itself on every machine ...
- at the end we obtain a machine *M*''''', about which we know that it cannot exist, thus *M* could not exist.

Such proofs <u>relativize</u>, i.e., they work also when every machine in the world has access to some fixed oracle (that is, it can ask whether a word belongs to a language L, and immediately obtain an answer)

Relativisation

Many proofs in the complexity theory uses Turing machines as "black-boxes" – the proofs are of the form:

- assume that there is a machine *M* working in time ... recognizing ...
- Out of it, we create M', which executes M many times in a loop...
 ...
- Such proofs <u>relativize</u>, i.e., they work also when every machine in the world has access to some fixed oracle.
- Examples of relativizing proofs: Turing theorem about undecidability, hierarchy theorems, gap theorems, Ladner's theorem, Immerman-Szelepcseny theorem, Savitch theorem, ...
- On the other hand, proofs based on circuits do not relativize (it is not at all clear what is an oracle for a circuit)
- The next theorem shows that using relativizing arguments we cannot solve the \mathbf{P} vs. \mathbf{NP} problem.

Theorem (Baker-Gill-Solovay, 1975)

There exist languages A and B such that $\mathbf{P}^{A} = \mathbf{N}\mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N}\mathbf{P}^{B}$

- <u>Theorem</u> (Baker-Gill-Solovay, 1975)
- There exist languages A and B such that $\mathbf{P}^{A} = \mathbf{N}\mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N}\mathbf{P}^{B}$ <u>Proof</u>
- As *A* we can take QBF we have:

$\textbf{NP}^{\text{QBF}} {\subseteq} \textbf{NPSPACE} {=} \textbf{PSPACE} {=} \textbf{P}^{\text{QBF}}$

- Steps from the left:
- instead of asking the QBF oracle about a word, a machine can itself compute the answer (questions are of polynomial length, and QBF can be solved in polynomial space)
- Savitch theorem
- **PSPACE**-completeness of the QBF problem

- <u>Theorem</u> (Baker-Gill-Solovay, 1975)
- There exist languages A and B such that $\mathbf{P}^{A} = \mathbf{N}\mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N}\mathbf{P}^{B}$ <u>Proof</u>
- As *A* we can take QBF we have:

$\textbf{NP}^{\text{QBF}} {\subseteq} \textbf{NPSPACE}{=} \textbf{PSPACE}{=} \textbf{P}^{\text{QBF}}$

- Steps from the left:
- instead of asking the QBF oracle about a word, a machine can itself compute the answer (questions are of polynomial length, and QBF can be solved in polynomial space)
- Savitch theorem
- **PSPACE**-completeness of the QBF problem
- Does A=SAT work as well? NP^{SAT} \subseteq NP \subseteq P^{SAT}

- <u>Theorem</u> (Baker-Gill-Solovay, 1975)
- There exist languages A and B such that $\mathbf{P}^{A} = \mathbf{N}\mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N}\mathbf{P}^{B}$ <u>Proof</u>
- As *A* we can take QBF we have:

$\textbf{NP}^{\text{QBF}} {\subseteq} \textbf{NPSPACE} {=} \textbf{PSPACE} {=} \textbf{P}^{\text{QBF}}$

- Steps from the left:
- instead of asking the QBF oracle about a word, a machine can itself compute the answer (questions are of polynomial length, and QBF can be solved in polynomial space)
- Savitch theorem
- **PSPACE**-completeness of the QBF problem
- Does A=SAT work as well? NPSAT \subseteq NP \subseteq PSAT
- NO an **NP** algorithm for SAT doesn't give the inclusion $NP^{SAT} \subseteq NP$ (maybe the external algorithm "prefers" to obtain that a formula is not satisfiable, and it will incorrectly compute its satisfiability) It is important that QBF can be solved in <u>deterministic</u> **PSPACE**

- Theorem (Baker-Gill-Solovay, 1975)
- There exist languages A and B such that $\mathbf{P}^{A} = \mathbf{N}\mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N}\mathbf{P}^{B}$ <u>Proof</u>
- We now construct an oracle *B*, and we consider the language

 $L = \{1^n : \text{some word } w \text{ of length } n \text{ belongs to } B\}$

- Clearly $L \in \mathbf{NP}^B$ nondeterministic machine can guess some $w \in B$
- A deterministic machine recognizing *L* has a problem: it can only ask the oracle for consecutive words, but it has not enough time to check all of them. We only need to choose *B* so that indeed it is impossible to do anything better.

- Theorem (Baker-Gill-Solovay, 1975)
- There exist languages A and B such that $\mathbf{P}^{A} = \mathbf{N}\mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N}\mathbf{P}^{B}$ <u>Proof</u>
 - $L = \{1^n : \text{some word } w \text{ of length } n \text{ belongs to } B\}$
- We now choose *B*:
- Fix a list M_1, M_2, M_3, \dots of all Turing machines with oracle working in polynomial time
 - \rightarrow an oracle is not a part of the definition of the machine,
 - → for every M_i there should exist a polynomial p_i such that for every oracle the machine M_i works in time $p_i(n)$
 - → if some M with oracle C recognizes a language L in polynomial time, then some M_i with oracle C also recognizes L
 - → such a list $M_1, M_2, M_3, ...$ is created as in the proof of Ladner's theo.
 - this time, we do not use the fact that the list is computable (conversely to the proof of the Ladner's theorem)
- We construct *B* gradually, cheating consecutive machines

- $L = \{1^n : \text{some word } w \text{ of length } n \text{ belongs to } B\}$
- We create $B = \bigcup_{i \in \mathbb{N}} B_i$ and a sequence n_i such that:
- $M_i^{B_i}$ incorrectly recognizes the word 1^{n_i}
- M_i^B agrees with $M_i^{B_i}$ on the word 1^{n_i}
- We start with $B_0 = \emptyset$; then for consecutive *i*:
- we take n_i so large that for all j < i, machine M_j for on the word 1^{n_j} produces only queries shorter than n_i (thanks to this the machines that were cheated earlier remain cheated), and such that M_i on the word 1^{n_i} works in less than 2^{n_i} steps

- $L = \{1^n : \text{some word } w \text{ of length } n \text{ belongs to } B\}$
- We create $B = \bigcup_{i \in \mathbb{N}} B_i$ and a sequence n_i such that:
- $M_i^{B_i}$ incorrectly recognizes the word 1^{n_i}
- M_i^B agrees with $M_i^{B_i}$ on the word 1^{n_i}
- We start with $B_0 = \emptyset$; then for consecutive *i*:
- we take n_i so large that for all j < i, machine M_j for on the word 1^{n_j} produces only queries shorter than n_i (thanks to this the machines that were cheated earlier remain cheated), and such that M_i on the word 1^{n_i} works in less than 2^{n_i} steps
- run $M_i^{B_{i-1}}$ on the word 1^{n_i}
- if it accepts, take $B_i = B_{i-1}$ then $1^{n_i} \notin L$, we have cheated M_i
- if it rejects, find a word *w* of length n_i about which M_i haven't asked (it exists, since M_i has made $<2^{n_i}$ step) and define $B_i = B_{i-1} \cup \{w\}$ Then $1^{n_i} \in L$, and we have cheated M_i

- $L = \{1^n : \text{some word } w \text{ of length } n \text{ belongs to } B\}$
- We create $B = \bigcup_{i \in \mathbb{N}} B_i$ and a sequence n_i such that:
- $M_i^{B_i}$ incorrectly recognizes the word 1^{n_i} The language *B* is computable, but in this theorem this is meaningless
- M_i^B agrees with $M_i^{B_i}$ on the word 1^{n_i}
- We start with $B_0 = \emptyset$; then for consecutive *i*:
- we take n_i so large that for all j < i, machine M_j for on the word 1^{n_j} produces only queries shorter than n_i (thanks to this the machines that were cheated earlier remain cheated), and such that M_i on the word 1^{n_i} works in less than 2^{n_i} steps
- run $M_i^{B_{i-1}}$ on the word 1^{n_i}
- if it accepts, take $B_i = B_{i-1}$ then $1^{n_i} \notin L$, we have cheated M_i
- if it rejects, find a word *w* of length n_i about which M_i haven't asked (it exists, since M_i has made $<2^{n_i}$ step) and define $B_i = B_{i-1} \cup \{w\}$ Then $1^{n_i} \in L$, and we have cheated M_i

- The NP class was defined for decision problems ("yes/no"),
- e.g., does there exist a valuation satisfying a formula,

does there exist a Hamiltonian cycle, ...

- We can also consider search problems,
- e.g., find a valuation satisfying a formula, find a Hamiltonian cycle, ...
- Of course search problems are not easier than decision problems. Thus if P≠NP, then search problems cannot be solved in polynomial time as well.
- And what if **P=NP**? Maybe it is possible to decide quickly whether there is a Hamiltonian cycle, but it is impossible to quickly find it?

- The NP class was defined for decision problems ("yes/no"),
- e.g., does there exist a valuation satisfying a formula,

does there exist a Hamiltonian cycle, ...

- We can also consider search problems,
- e.g., find a valuation satisfying a formula, find a Hamiltonian cycle, ...
- Of course search problems are not easier than decision problems. Thus if P≠NP, then search problems cannot be solved in polynomial time as well.
- And what if **P=NP**? Maybe it is possible to decide quickly whether there is a Hamiltonian cycle, but it is impossible to quickly find it?
- Then it possible to solve also search problems in polynomial time.

<u>Theorem</u>

- If **P=NP**, then for every language $L \in NP$ there is a polynomial algorithm that reads $v \in L$ and finds a witness for v.
- We refer here to the definition of **NP** using witnesses:
- **NP** contains languages of the form $\{v : \exists w. v \$ w \in R\}$, where *R* is a relation recognizable in polynomial time and such that $v \$ w \in R$ implies $|w| \le p(|v|)$ for some polynomial *p*.

<u>Theorem</u>

- If **P=NP**, then for every language $L \in NP$ there is a polynomial algorithm that reads $v \in L$ and finds a witness for v.
- We refer here to the definition of **NP** using witnesses:
- **NP** contains languages of the form $\{v : \exists w. v \$ w \in R\}$, where *R* is a relation recognizable in polynomial time and such that $v \$ w \in R$ implies $|w| \le p(|v|)$ for some polynomial *p*.

<u>Proof</u>

Consider first the SAT problem – we assume that there is a polynomial-time algorithm A for SAT, we want to find a valuation:

- Using A we check whether the formula is satisfiable
- If yes, we set $x_1=1$ and we check whether it is still satisfiable
- Yes \Rightarrow keep $x_1 = 1$ and continue for a smaller formula
- No \Rightarrow set $x_1 = 0$ and continue for a smaller formula
- In this way we eliminate consecutive variables, and we obtain a whole valuation

<u>Theorem</u>

- If **P=NP**, then for every language $L \in NP$ there is a polynomial algorithm that reads $v \in L$ and finds a witness for v.
- We refer here to the definition of **NP** using witnesses:
- **NP** contains languages of the form $\{v : \exists w. v \$ w \in R\}$, where *R* is a relation recognizable in polynomial time and such that $v \$ w \in R$ implies $|w| \le p(|v|)$ for some polynomial *p*.

<u>Proof</u>

- For SAT we already know, consider now an arbitrary problem from NP
- It is enough to see that the reduction from the Cook-Levin theorem (NP-hardness of SAT) is actually a Levin reduction (i.e., it allows to recover witnesses)

The following problem is in **NP**:

INDSET = {(*G*,*k*) : in graph *G* there is an independent set of size $\geq k$ }

Consider now a slightly more difficult problem:

```
EXACT-INDSET = {(G,k) : the largest independent set in G is
of size k}
```

We see no reason for this problem to be in **NP**...

What would be a witness?

EXACT-INDSET = {(G,k) : the largest independent set in G is of size k}

A similar problem:

 $MIN-DNF = \{ \phi : \phi \text{ is a formula in the DNF form, not equivalent to} \\ any smaller formula in the DNF form \}$

= { ϕ : $\forall \psi$, $|\psi| < |\phi| \Rightarrow \exists$ valuation *s* such that $\phi(s) \neq \psi(s)$ }

In order to describe these problems, it is not enough to use one "exists" quantifier (as in **NP**), neither one "for all" quantifier (as in **coNP**). We have here a combination of two quantifiers.

EXACT-INDSET = {(*G*,*k*) : the largest independent set in *G* is of size *k*}

A similar problem:

 $\label{eq:MIN-DNF} MIN-DNF = \{ \ensuremath{\varphi} : \ensuremath{\varphi} \ensuremath{\text{ is a formula in the DNF form, not equivalent to}} \\ any smaller formula in the DNF form \}$

= { ϕ : $\forall \psi$, $|\psi| < |\phi| \Rightarrow \exists$ valuation *s* such that $\phi(s) \neq \psi(s)$ }

In order to describe these problems, it is not enough to use one "exists" quantifier (as in **NP**), neither one "for all" quantifier (as in **coNP**). We have here a combination of two quantifiers.

Class Σ_2^p contains languages *L* for which there is a machine *M* working in polynomial time, and a polynomial *q* such that:

 $\mathbf{x} \in L \Leftrightarrow \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} M(x,u,v) = 1$

The language EXACT-INDSET is of this form:

 $\exists S \forall S' . S \text{ is an independent set of size } k \text{ and}$

S' is not an independent set of size >k

Class Σ_2^p contains languages *L* for which there is a machine *M* working in polynomial time, and a polynomial *q* such that: $x \in L \Leftrightarrow \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} M(x,u,v) = 1$ The language EXACT-INDSET is of this form

Class Π_2^p contains complements of languages from Σ_2^p ; it is easy to see that it contains languages *L* for which there is a machine *M* working in polynomial time, and a polynomial *q* such that:

 $\mathsf{x} \in L \Leftrightarrow \forall \ u \in \{0,1\}^{q(|x|)} \exists \ v \in \{0,1\}^{q(|x|)} M(x,u,v) = 1$

The language EXACT-INDSET is of this form as well: $\forall S' \exists S \ S$ is an independent set of size k and S' is not an independent set of size >k

Also the language MIN–DNF is of this form:

 $\forall \ \forall \ \exists s \ . \ |\psi| < |\phi| \Rightarrow \phi(s) \neq \psi(s)$

However, it is believed that MIN-DNF does not belong to Σ_2^p

Class Σ_2^p contains languages *L* for which there is a machine *M* working in polynomial time, and a polynomial *q* such that: $x \in L \Leftrightarrow \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} M(x,u,v) = 1$

<u>Fact</u>

Class Σ_2^p contains precisely languages recognizable by nondeterministic Turing machines with an oracle for SAT (or with an oracle for an arbitrary language in **NP**).

For this reason, the class is sometimes denoted $\mathbf{NP}^{\mathsf{NP}}$

Obviously $\boldsymbol{\Sigma}_2^{\text{p}}$ contains all languages from \boldsymbol{NP} and from \boldsymbol{coNP}

Class Σ_k^p contains languages L for which there is a machine Mworking in polynomial time, and a polynomial q such that: $x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} \dots Qu_k \in \{0,1\}^{q(|x|)} \dots M(x,u_1,\dots,u_k) = 1$

Class Π_k^p contains complements of languages from Σ_k^p , i.e., languages *L* for which there is a machine *M* working in polynomial time, and a polynomial *q* such that:

 $\mathbf{x} \in L \Leftrightarrow \forall u_1 \in \{0,1\}^{q(|x|)} \exists u_2 \in \{0,1\}^{q(|x|)} \dots Qu_k \in \{0,1\}^{q(|x|)} \dots M(x,u_1,\dots,u_k) = 1$

We also define $\mathbf{PH} = \bigcup_{k} \Sigma_{k}^{p}$

Class Σ_k^p contains languages L for which there is a machine Mworking in polynomial time, and a polynomial q such that: $x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} \dots Qu_k \in \{0,1\}^{q(|x|)} \dots M(x,u_1,\dots,u_k) = 1$

Class Π_k^p contains complements of languages from Σ_k^p , i.e., languages *L* for which there is a machine *M* working in polynomial time, and a polynomial *q* such that:

 $\mathbf{x} \in L \Leftrightarrow \forall u_1 \in \{0,1\}^{q(|x|)} \exists u_2 \in \{0,1\}^{q(|x|)} \dots Qu_k \in \{0,1\}^{q(|x|)} M(x,u_1,\dots,u_k) = 1$

We also define $\mathbf{PH} = \bigcup_{k} \Sigma_{k}^{p}$

How are these classes related?

 $\underline{\mathsf{Fact 1}}: \boldsymbol{\Sigma}_{k}^{p} \subseteq \boldsymbol{\Sigma}_{k+1}^{p}, \, \boldsymbol{\Sigma}_{k}^{p} \subseteq \boldsymbol{\Pi}_{k+1}^{p}, \, \boldsymbol{\Pi}_{k}^{p} \subseteq \boldsymbol{\Sigma}_{k+1}^{p}, \, \boldsymbol{\Pi}_{k}^{p} \subseteq \boldsymbol{\Pi}_{k+1}^{p}$

<u>Fact 1</u>: $\Sigma_k^p \subseteq \Sigma_{k+1}^p$, $\Sigma_k^p \subseteq \Pi_{k+1}^p$, $\Pi_k^p \subseteq \Sigma_{k+1}^p$, $\Pi_k^p \subseteq \Pi_{k+1}^p$ <u>Proof</u>

- For $L \in \Sigma_k^p$ we have a machine *M* working in polynomial time, and a polynomial bound *q* on the length of u_1, \dots, u_k , such that:
- $\mathbf{x} \in L \Leftrightarrow \exists u_1 \; \forall u_2 \dots Qu_k M(x, u_1, \dots, u_k) = 1$
- Consider *M*' such that $M'(x,u_0,u_1,...,u_k) = M(x,u_1,...,u_k)$. Then $x \in L \Leftrightarrow \forall u_0 \exists u_1 \forall u_2 \dots Qu_k M'(x,u_0,u_1,...,u_k) = 1$
- So $L \in \Pi_{k+1}^p$
- Consider *M*'' such that $M''(x,u_1,...,u_k,u_{k+1}) = M(x,u_1,...,u_k)$. Then $x \in L \Leftrightarrow \exists u_1 \forall u_2 \dots Qu_k \overline{Q}u_{k+1} M''(x,u_1,...,u_k,u_{k+1}) = 1$ So $L \in \Sigma_{k+1}^p$
- Similarly we proceed for $L \in \Pi_k^p$

$\begin{array}{c} \textbf{Polynomial hierarchy} \\ \underline{Fact 1}: \Sigma_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Sigma_{k}^{p} \subseteq \Pi_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Pi_{k+1}^{p} \\ \textbf{NP} = \Sigma_{1}^{p} \subseteq \Sigma_{2}^{p} \subseteq \Sigma_{3}^{p} \subseteq \cdots \\ \textbf{P} & \swarrow & \swarrow & \swarrow \\ & & & & & & & \\ \textbf{V} & & & & & & \\ \textbf{CoNP} = \Pi_{1}^{p} \subseteq \Pi_{2}^{p} \subseteq \Pi_{3}^{p} \subseteq \cdots \end{array}$

Are these inclusions strict? And how are Σ^{p}_{k} and Π^{p}_{k} related?

Are these inclusions strict? And how are Σ_k^p and Π_k^p related? We don't know (it is believed that all these classes are different).

But there are only two possibilities:

• either all the classes are different, or

• they are different to some point, and then they start to be equal

Fact 2: If $\Sigma_k^p = \Pi_k^p$, then $\Sigma_k^p = \Sigma_{k+1}^p = \dots = \Pi_k^p = \Pi_{k+1}^p = \dots = \mathbf{PH}$. If $\mathbf{P} = \mathbf{NP}$, then $\mathbf{P} = \Sigma_1^p = \Sigma_2^p = \dots = \Pi_1^p = \Pi_2^p = \dots = \mathbf{PH}$.

Fact 2:

If $\Sigma_{k}^{p} = \Pi_{k}^{p}$, then $\Sigma_{k}^{p} = \Sigma_{k+1}^{p} = ... = \Pi_{k}^{p} = \Pi_{k+1}^{p} = ... = PH$. If P=NP, then $P = \Sigma_{1}^{p} = \Sigma_{2}^{p} = ... = \Pi_{1}^{p} = \Pi_{2}^{p} = ... = PH$.

Proof (first part, the second part is analogous): Consider a language L in **PH**. It is in some Σ_n^p , where n > k. There is a machine M working in polynomial time, and a polynomial bound on the length of u_1, \dots, u_n , such that (suppose that n, k even): $\mathsf{X} \in L \Leftrightarrow \exists u_1 \forall u_2 \dots \exists u_{n-k-1} \forall u_{n-k} \exists u_{n-k+1} \forall u_{n-k+2} \dots \exists u_{n-1} \forall u_n M(x, u_1, \dots, u_n) = 1$ Consider now the language $L' = \{ (x, u_1, \dots, u_k) : \exists u_{n-k+1} \forall u_{n-k+2} \dots \exists u_{n-1} \forall u_n M(x, u_1, \dots, u_k) = 1 \}$ We have $L' \in \Sigma^p_{\nu} = \Pi^p_{\nu}$, so L' is of the form (for some M'): $L' = \{ (x, u_1, \dots, u_k) : \forall u_{n-k+1} \exists u_{n-k+2} \dots \forall u_{n-1} \exists u_n M'(x, u_1, \dots, u_n) = 1 \}$ This means that $\mathsf{X} \in L \Leftrightarrow \exists u_1 \forall u_2 \dots \exists u_{n-k-1} \forall u_{n-k} \forall u_{n-k+1} \exists u_{n-k+2} \dots \forall u_{n-1} \exists u_n M'(x, u_1, \dots, u_n) = 1$ We can merge u_{n-k} and u_{n-k+1} to a single word (longer twice), SO $L \in \Sigma_{n-1}^{p}$

There are only two possibilities:

- either all the classes are different, or
- they are different to some point, and then they start to be equal
- Complete language in Σ_{k}^{p} ?

Input: a sentence of the following form (with *k* blocks of quantifiers)

 $\exists x_{11}, \dots, x_{1n} \forall x_{21}, \dots, x_{2n} \exists x_{21}, \dots, x_{2n} \dots Q x_{k1}, \dots, x_{kn} \phi(x_{11}, \dots, x_{kn})$

Question: is the sentence true?

There are only two possibilities:

- either all the classes are different, or
- they are different to some point, and then they start to be equal
- Complete language in Σ_{k}^{p} ?

Input: a sentence of the following form (with *k* blocks of quantifiers)

 $\exists x_{11}, \dots, x_{1n} \forall x_{21}, \dots, x_{2n} \exists x_{21}, \dots, x_{2n} \dots Q x_{k1}, \dots, x_{kn} \phi(x_{11}, \dots, x_{kn})$ Question: is the sentence true? (similarly for Π_k^p)

Complete language in **PH**? Fact 3:

If there exists a **PH**-complete language, then **PH**= Σ_k^p for some k<u>Proof</u> – The **PH**-complete language belongs to some Σ_k^p , and Σ_k^p is closed under reductions in polynomial time.

- $\underline{\mathsf{Fact 1}}: \boldsymbol{\Sigma}_{k}^{p} \subseteq \boldsymbol{\Sigma}_{k+1}^{p}, \boldsymbol{\Sigma}_{k}^{p} \subseteq \boldsymbol{\Pi}_{k+1}^{p}, \boldsymbol{\Pi}_{k}^{p} \subseteq \boldsymbol{\Sigma}_{k+1}^{p}, \boldsymbol{\Pi}_{k}^{p} \subseteq \boldsymbol{\Pi}_{k+1}^{p}$
- <u>Fact 2:</u> If $\Sigma_{k}^{p} = \Pi_{k}^{p}$, then $\Sigma_{k}^{p} = \Sigma_{k+1}^{p} = ... = \Pi_{k}^{p} = \Pi_{k+1}^{p} = ... = PH$. If **P=NP**, then **P**= $\Sigma_{1}^{p} = \Sigma_{2}^{p} = ... = \Pi_{1}^{p} = \Pi_{2}^{p} = ... = PH$.
- Fact 3:
- If there exists a **PH**-complete language, then **PH**= Σ_{k}^{p} for some k
- <u>Fact 4:</u> **PH**⊆**PSPACE**
- <u>Proof</u>: The Σ_k^p -complete language mentioned above is a special case of QBF, which belongs to **PSPACE**.

- $\underline{\mathsf{Fact 1}}: \boldsymbol{\Sigma}_{k}^{p} \subseteq \boldsymbol{\Sigma}_{k+1}^{p}, \boldsymbol{\Sigma}_{k}^{p} \subseteq \boldsymbol{\Pi}_{k+1}^{p}, \boldsymbol{\Pi}_{k}^{p} \subseteq \boldsymbol{\Sigma}_{k+1}^{p}, \boldsymbol{\Pi}_{k}^{p} \subseteq \boldsymbol{\Pi}_{k+1}^{p}$
- <u>Fact 2:</u> If $\Sigma_{k}^{p} = \Pi_{k}^{p}$, then $\Sigma_{k}^{p} = \Sigma_{k+1}^{p} = ... = \Pi_{k}^{p} = \Pi_{k+1}^{p} = ... = PH$. If P=NP, then $P = \Sigma_{1}^{p} = \Sigma_{2}^{p} = ... = \Pi_{1}^{p} = \Pi_{2}^{p} = ... = PH$.
- Fact 3:
- If there exists a **PH**-complete language, then **PH**= Σ_{k}^{p} for some k
- <u>Fact 4:</u> **PH**⊆**PSPACE**
- <u>Fact 5:</u> If the classes Σ_k^p are all different, then **PH** \neq **PSPACE**
- <u>Proof</u>: Follows from Fact 3 in **PSPACE** there is a complete language.

- Alternating Turing machines (ATM) generalize nondeterministic ones (NTM)
- Both NTM and ATM are not a realistic model of computation (we cannot build such machines). But NTM help us to observe a very natural phenomenon: a difference between finding a solution and verifying a solution.
- ATMs have a similar role for some languages, for which there are no short witnesses, i.e., which cannot be characterized using nondeterminism.

Definition of ATM:

- a configuration can have multiple successors (as in NTM)
- additionally states of the machine (and in effect its configurations) are divided to existential and universal ones

Definition of ATM:

- a configuration can have multiple successors (as in NTM)
- additionally states of the machine (and in effect its configurations) are divided to existential and universal ones
- The set of <u>wining</u> configurations is defined as the smallest set s.t.:
- accepting configurations are winning
- every <u>existential</u> configuration, whose <u>some</u> successor is winning, is also winning
- every <u>universal</u> configuration, whose <u>all</u> successors are winning, is also winning
- We accept a word w, if the initial configuration for this word is winning.
- *M* works in time T(n) / in space S(n), if every computation fits in this time / space.

Definition of ATM:

- a configuration can have multiple successors (as in NTM)
- additionally states of the machine (and in effect its configurations) are divided to existential and universal ones
- The set of <u>wining</u> configurations is defined as the smallest set s.t.:
- accepting configurations are winning
- every <u>existential</u> configuration, whose <u>some</u> successor is winning, is also winning
- every <u>universal</u> configuration, whose <u>all</u> successors are winning, is also winning
- We accept a word w, if the initial configuration for this word is winning.
- *M* works in time T(n) / in space S(n), if every computation fits in this time / space.
- Observation:
- NTM is a special case of an ATM only existential states

Equivalently: acceptance can be defined using a game:

- we consider the configuration graph (edges = possible transitions)
- players ∃ and ∀ alternatingly move a pawn (common to both player) around the graph
- in existential states player ∃ decides, in universal states player ∀ decides (player ∃ wants to accept, player ∀ wants to reject)
- we accept a word, if player ∃ has a winning strategy he can reach an accepting configuration regardless moves of player ∀