Computational complexity

lecture 8

Berman's theorem (*)

Theorem (Berman 1978) If $\mathbf{P} \neq \mathbf{N P}$, then no language over a single-letter alphabet is $\mathbf{N P}$-hard. In consequence there are difficult (and even undecidable) languages that are not NP-hard.

Berman's theorem (*)

Theorem (Berman 1978)
If $\mathbf{P} \neq \mathbf{N P}$, then no language over a single-letter alphabet is NP-hard.
Proof
Let L be an NP-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting $\mathbf{P} \neq \mathbf{N P}$.

Berman's theorem (*)

Theorem (Berman 1978)
If $\mathbf{P} \neq \mathbf{N P}$, then no language over a single-letter alphabet is NP-hard. Proof
Let L be an NP-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting $\mathbf{P} \neq \mathbf{N P}$. By assumption there is a reduction g from SAT to L.
The algorithm is as follows:

- We are given a formula ϕ
- We will keep a list of formulas $\psi_{1}, \ldots, \psi_{k}$ such that: ϕ is satisfiable iff some of $\psi_{1}, \ldots, \psi_{k}$ is satisfiable. Initially the list contains ϕ.

Berman's theorem (*)

Theorem (Berman 1978)
If $\mathbf{P} \neq \mathbf{N P}$, then no language over a single-letter alphabet is NP-hard. Proof
Let L be an NP-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting $\mathbf{P} \neq \mathbf{N P}$.
By assumption there is a reduction g from SAT to L.
The algorithm is as follows:

- We are given a formula ϕ
- We will keep a list of formulas $\psi_{1}, \ldots, \psi_{k}$ such that: ϕ is satisfiable iff some of $\psi_{1}, \ldots, \psi_{k}$ is satisfiable. Initially the list contains ϕ.
- We alternatingly repeat two kinds of steps:

1) Replace every ψ_{i} by two formulas: $\psi_{i}[$ true $/ x]$ and $\psi_{i}[f a l s e / x]$, obtained by substituting true/false for one of variables. (clearly ψ_{i} is satisfiable iff some of $\psi_{i}\left[\right.$ true/x], $\psi_{i}[$ false/x] is satisfiable)

Berman's theorem (*)

Theorem (Berman 1978)
If $\mathbf{P} \neq \mathbf{N P}$, then no language over a single-letter alphabet is NP-hard. Proof
Let L be an NP-hard language over a single-letter alphabet. We will give a polynomial-time algorithm for SAT, contradicting $\mathbf{P} \neq \mathbf{N P}$.
By assumption there is a reduction g from SAT to L.
The algorithm is as follows:

- We are given a formula ϕ
- We will keep a list of formulas $\psi_{1}, \ldots, \psi_{k}$ such that: ϕ is satisfiable iff some of $\psi_{1}, \ldots, \psi_{k}$ is satisfiable. Initially the list contains ϕ.
- We alternatingly repeat two kinds of steps:

1) Replace every ψ_{i} by two formulas: $\psi_{i}[$ true $/ x]$ and $\psi_{i}[f a l s e / x]$, obtained by substituting true/false for one of variables. (clearly ψ_{i} is satisfiable iff some of $\psi_{i}[$ true $/ x], \psi_{i}[f a l s e / x]$ is satisfiable)
2) For every pair ψ_{i}, ψ_{j} such that $g\left(\psi_{i}\right)=g\left(\psi_{j}\right)$, remove ψ_{i} from the list, leave only ψ_{j} (notice that ψ_{i} is satisfiable iff some of ψ_{j} is satisfiable)

Berman's theorem (*)

We alternatingly repeat two kinds of steps:

1) Replace every ψ_{i} by two formulas: $\psi_{i}[$ true $/ x]$ and $\psi_{i}[$ false $/ x]$, obtained by substituting true/false for one of variables. (clearly ψ_{i} is satisfiable iff some of $\psi_{i}[$ true $/ x], \psi_{i}[$ false/x] is satisfiable)
2) For every pair ψ_{i}, ψ_{j} such that $g\left(\psi_{i}\right)=g\left(\psi_{j}\right)$, remove ψ_{i} from the list, leave only ψ_{j} (notice that ψ_{i} is satisfiable iff some of ψ_{j} is satisfiable)
The algorithm is correct. Why does it work in polynomial time?

- Recall that g is a polynomial-time reduction to a single-letter language. Thus $\left|g\left(\psi_{i}\right)\right|<p\left(\left|\psi_{i}\right|\right)$ for some polynomial p. Since there is only one single-letter word of every length, there are only $p\left(\left|\psi_{i}\right|\right) \leq p(|\phi|)$ possibilities for $g\left(\psi_{i}\right)$.
- In effect, the list has length $\leq p(|\phi|)$ after every execution of step 2, and $\leq 2 \cdot p(|\phi|)$ after every execution of step 1.
- Moreover, every step can be performed in polynomial time.

This finishes the proof.

Relativisation

Many proofs in the complexity theory uses Turing machines as "black-boxes" - the proofs are of the form:

- assume that there is a machine M working in time ... recognizing ...
- Out of it, we create M^{\prime}, which executes M many times in a loop...
- ... then it negates the results, executes itself on every machine ...
- at the end we obtain a machine $M^{\prime \prime \prime "}{ }^{\prime \prime}$, about which we know that it cannot exist, thus M could not exist.
Such proofs relativize, i.e., they work also when every machine in the world has access to some fixed oracle (that is, it can ask whether a word belongs to a language L, and immediately obtain an answer)

Relativisation

Many proofs in the complexity theory uses Turing machines as "black-boxes" - the proofs are of the form:

- assume that there is a machine M working in time ... recognizing ... - Out of it, we create M^{\prime}, which executes M many times in a loop... - ...

Such proofs relativize, i.e., they work also when every machine in the world has access to some fixed oracle.
Examples of relativizing proofs: Turing theorem about undecidability, hierarchy theorems, gap theorems, Ladner's theorem, Immerman-Szelepcseny theorem, Savitch theorem, ...
On the other hand, proofs based on circuits do not relativize (it is not at all clear what is an oracle for a circuit)
The next theorem shows that using relativizing arguments we cannot solve the \mathbf{P} vs. NP problem.

Baker-Gill-Solovay theorem

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that $\mathbf{P}^{A}=\mathbf{N P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N P}^{B}$

Baker-Gill-Solovay theorem

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that $\mathbf{P}^{A}=\mathbf{N} \mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N} \mathbf{P}^{B}$ Proof
As A we can take QBF - we have:
NPQBF \subseteq NPSPACE=PSPACE=PQBF
Steps from the left:

- instead of asking the QBF oracle about a word, a machine can itself compute the answer (questions are of polynomial length, and QBF can be solved in polynomial space)
- Savitch theorem
- PSPACE-completeness of the QBF problem

Baker-Gill-Solovay theorem

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that $\mathbf{P}^{A}=\mathbf{N} \mathbf{P}^{A}$ and $\mathbf{P}^{B \neq \mathbf{N}} \mathbf{P}^{B}$ Proof
As A we can take QBF - we have:
NPQBF \subseteq NPSPACE=PSPACE=PQBF
Steps from the left:

- instead of asking the QBF oracle about a word, a machine can itself compute the answer (questions are of polynomial length, and QBF can be solved in polynomial space)
- Savitch theorem
- PSPACE-completeness of the QBF problem

Does $A=$ SAT work as well? - NPSAT \subseteq NP \subseteq PSAT

Baker-Gill-Solovay theorem

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that $\mathbf{P}^{A}=\mathbf{N} \mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N} \mathbf{P}^{B}$ Proof
As A we can take QBF - we have:
NPQBF \subseteq NPSPACE=PSPACE=PQBF
Steps from the left:

- instead of asking the QBF oracle about a word, a machine can itself compute the answer (questions are of polynomial length, and QBF can be solved in polynomial space)
- Savitch theorem
- PSPACE-completeness of the QBF problem

Does $A=$ SAT work as well? - NPSAT \subseteq NP $\subseteq P S A T$
NO - an NP algorithm for SAT doesn't give the inclusion NPSAT \subseteq NP (maybe the external algorithm „prefers" to obtain that a formula is not satisfiable, and it will incorrectly compute its satisfiability) It is important that QBF can be solved in deterministic PSPACE

Baker-Gill-Solovay theorem (*)

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that $\mathbf{P}^{A}=\mathbf{N P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N P}^{B}$ Proof
We now construct an oracle B, and we consider the language $L=\left\{1^{n}\right.$: some word w of length n belongs to $\left.B\right\}$

- Clearly $L \in \mathbf{N P}^{B}$ - nondeterministic machine can guess some $w \in B$
- A deterministic machine recognizing L has a problem: it can only ask the oracle for consecutive words, but it has not enough time to check all of them. We only need to choose B so that indeed it is impossible to do anything better.

Baker-Gill-Solovay theorem (*)

Theorem (Baker-Gill-Solovay, 1975)

There exist languages A and B such that $\mathbf{P}^{A}=\mathbf{N} \mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N} \mathbf{P}^{B}$ Proof
$L=\left\{1^{n}\right.$: some word w of length n belongs to $\left.B\right\}$
We now choose B :

- Fix a list $M_{1}, M_{2}, M_{3}, \ldots$ of all Turing machines with oracle working in polynomial time
\rightarrow an oracle is not a part of the definition of the machine,
\rightarrow for every M_{i} there should exist a polynomial p_{i} such that for every oracle the machine M_{i} works in time $p_{i}(n)$
\rightarrow if some M with oracle C recognizes a language L in polynomial time, then some M_{i} with oracle C also recognizes L
\rightarrow such a list $M_{1}, M_{2}, M_{3}, \ldots$ is created as in the proof of Ladner's theo.
\rightarrow this time, we do not use the fact that the list is computable (conversely to the proof of the Ladner's theorem)
- We construct B gradually, cheating consecutive machines

Baker-Gill-Solovay theorem (*)

$L=\left\{1^{n}\right.$: some word w of length n belongs to $\left.B\right\}$
We create $B=\bigcup_{i \in \mathbb{N}} B_{i}$ and a sequence n_{i} such that:

- $M_{i}^{B_{i}}$ incorrectly recognizes the word $1^{n_{i}}$
- M_{i}^{B} agrees with $M_{i}^{B_{i}}$ on the word $1^{n_{i}}$

We start with $B_{0}=\varnothing$; then for consecutive i :

- we take n_{i} so large that for all $j<i$, machine M_{j} for on the word $1^{n_{j}}$ produces only queries shorter than n_{i} (thanks to this the machines that were cheated earlier remain cheated), and such that M_{i} on the word $1^{n_{i}}$ works in less than $2^{n_{i}}$ steps

Baker-Gill-Solovay theorem (*)

$L=\left\{1^{n}\right.$: some word w of length n belongs to $\left.B\right\}$
We create $B=\cup_{i \in \mathbb{N}} B_{i}$ and a sequence n_{i} such that:

- $M_{i}^{B_{i}}$ incorrectly recognizes the word $1^{n_{i}}$
- M_{i}^{B} agrees with $M_{i}^{B_{i}}$ on the word $1^{n_{i}}$

We start with $B_{0}=\varnothing$; then for consecutive i :

- we take n_{i} so large that for all $j<i$, machine M_{j} for on the word $1^{n_{j}}$ produces only queries shorter than n_{i} (thanks to this the machines that were cheated earlier remain cheated), and such that M_{i} on the word $1^{n_{i}}$ works in less than $2^{n_{i}}$ steps
- run $M_{i}^{B_{i-1}}$ on the word $1^{n_{i}}$
- if it accepts, take $B_{i}=B_{i-1}$ - then $1^{n_{i}} \notin L$, we have cheated M_{i}
- if it rejects, find a word w of length n_{i} about which M_{i} haven't asked (it exists, since M_{i} has made $<2^{n_{i}}$ step) and define $B_{i}=B_{i-1} \cup\{w\}$ Then $1^{n_{i}} \in L$, and we have cheated M_{i}

Baker-Gill-Solovay theorem (*)

$L=\left\{1^{n}\right.$: some word w of length n belongs to $\left.B\right\}$
We create $B=\cup_{i \in \mathbb{N}} B_{i}$ and a sequence n_{i} such that:

- $M_{i}^{B_{i}}$ incorrectly recognizes the word $1^{n_{i}}$
- M_{i}^{B} agrees with $M_{i}^{B_{i}}$ on the word $1^{n_{i}}$

The language B is computable, but in this theorem this is meaningless

We start with $B_{0}=\varnothing$; then for consecutive i :

- we take n_{i} so large that for all $j<i$, machine M_{j} for on the word $1^{n_{j}}$ produces only queries shorter than n_{i} (thanks to this the machines that were cheated earlier remain cheated), and such that M_{i} on the word $1^{n_{i}}$ works in less than $2^{n_{i}}$ steps
- run $M_{i}^{B_{i-1}}$ on the word $1^{n_{i}}$
- if it accepts, take $B_{i}=B_{i-1}$ - then $1^{n_{i}} \notin L$, we have cheated M_{i}
- if it rejects, find a word w of length n_{i} about which M_{i} haven't asked (it exists, since M_{i} has made $<2^{n_{i}}$ step) and define $B_{i}=B_{i-1} \cup\{w\}$ Then $1^{n_{i}} \in L$, and we have cheated M_{i}

Search problems

The NP class was defined for decision problems („yes/no"), e.g., does there exist a valuation satisfying a formula, does there exist a Hamiltonian cycle, ...
We can also consider search problems, e.g., find a valuation satisfying a formula, find a Hamiltonian cycle, ...

- Of course search problems are not easier than decision problems. Thus if $\mathbf{P} \neq \mathbf{N P}$, then search problems cannot be solved in polynomial time as well.
- And what if $\mathbf{P}=\mathbf{N P}$? Maybe it is possible to decide quickly whether there is a Hamiltonian cycle, but it is impossible to quickly find it?

Search problems

The NP class was defined for decision problems („yes/no"), e.g., does there exist a valuation satisfying a formula, does there exist a Hamiltonian cycle, ...
We can also consider search problems, e.g., find a valuation satisfying a formula, find a Hamiltonian cycle, ...

- Of course search problems are not easier than decision problems. Thus if $\mathbf{P} \neq \mathbf{N P}$, then search problems cannot be solved in polynomial time as well.
- And what if $\mathbf{P}=\mathbf{N P}$? Maybe it is possible to decide quickly whether there is a Hamiltonian cycle, but it is impossible to quickly find it?
- Then it possible to solve also search problems in polynomial time.

Search problems

Theorem

If $\mathbf{P}=\mathbf{N P}$, then for every language $L \in \mathbf{N P}$ there is a polynomial algorithm that reads $v \in L$ and finds a witness for v.

We refer here to the definition of NP using witnesses:
NP contains languages of the form $\{v: \exists w . v \$ w \in R\}$, where R is a relation recognizable in polynomial time and such that $v \$ w \in R$ implies $|w| \leq p(|v|)$ for some polynomial p.

Search problems

Theorem

If $\mathbf{P}=\mathbf{N P}$, then for every language $L \in \mathbf{N P}$ there is a polynomial algorithm that reads $v \in L$ and finds a witness for v.

We refer here to the definition of NP using witnesses:
NP contains languages of the form $\{v: \exists w . v \$ w \in R\}$, where R is a relation recognizable in polynomial time and such that $v \$ w \in R$ implies $|w| \leq p(|v|)$ for some polynomial p.
Proof
Consider first the SAT problem - we assume that there is a poly-nomial-time algorithm A for SAT, we want to find a valuation:

- Using A we check whether the formula is satisfiable
- If yes, we set $x_{1}=1$ and we check whether it is still satisfiable
- Yes \Rightarrow keep $x_{1}=1$ and continue for a smaller formula
- No \Rightarrow set $x_{1}=0$ and continue for a smaller formula
- In this way we eliminate consecutive variables, and we obtain a whole valuation

Search problems

Theorem

If $\mathbf{P}=\mathbf{N P}$, then for every language $L \in \mathbf{N P}$ there is a polynomial algorithm that reads $v \in L$ and finds a witness for v.

We refer here to the definition of NP using witnesses:
NP contains languages of the form $\{v: \exists w . v \$ w \in R\}$, where R is a relation recognizable in polynomial time and such that $v \$ w \in R$ implies $|w| \leq p(|v|)$ for some polynomial p.
Proof

- For SAT we already know, consider now an arbitrary problem from NP
- It is enough to see that the reduction from the Cook-Levin theorem (NP-hardness of SAT) is actually a Levin reduction (i.e., it allows to recover witnesses)

Polynomial hierarchy

The following problem is in NP:
INDSET = \{(G,k) : in graph G there is an independent set of size $\geq k\}$
Consider now a slightly more difficult problem:
EXACT-INDSET $=\{(G, k)$: the largest independent set in G is of size $k\}$
We see no reason for this problem to be in NP... What would be a witness?

Polynomial hierarchy

EXACT-INDSET = $\{(G, k)$: the largest independent set in G is of size $k\}$
A similar problem:
MIN-DNF $=\{\phi: \phi$ is a formula in the DNF form, not equivalent to any smaller formula in the DNF form\}
$=\{\phi: \forall \psi,|\psi|<|\phi| \Rightarrow \exists$ valuation s such that $\phi(\mathrm{s}) \neq \psi(\mathrm{s})\}$
In order to describe these problems, it is not enough to use one „exists" quantifier (as in NP), neither one „for all" quantifier (as in coNP). We have here a combination of two quantifiers.

Polynomial hierarchy

EXACT-INDSET = $\{(G, k)$: the largest independent set in G is of size $k\}$
A similar problem:
MIN-DNF $=\{\phi: \phi$ is a formula in the DNF form, not equivalent to any smaller formula in the DNF form\}
$=\{\phi: \forall \psi,|\psi|<|\phi| \Rightarrow \exists$ valuation s such that $\phi(\mathrm{s}) \neq \psi(\mathrm{s})\}$
In order to describe these problems, it is not enough to use one "exists" quantifier (as in NP), neither one „for all" quantifier (as in coNP). We have here a combination of two quantifiers.
Class Σ_{2}^{p} contains languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \exists u \in\{0,1\} q(|x|) \forall v \in\{0,1\} q(|x|) M(x, u, v)=1
$$

The language EXACT-INDSET is of this form:
$\exists S \forall S^{\prime} . S$ is an independent set of size k and
S^{\prime} is not an independent set of size $>k$

Polynomial hierarchy

Class Σ_{2}^{p} contains languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \exists u \in\{0,1\} q(|x|) \forall v \in\{0,1\} q(|x|) M(x, u, v)=1
$$

The language EXACT-INDSET is of this form
Class Π_{2}^{p} contains complements of languages from $\boldsymbol{\Sigma}_{2}^{\mathrm{p}}$; it is easy to see that it contains languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \forall u \in\{0,1\} q(|x|) \exists v \in\{0,1\} q(|x|) M(x, u, v)=1
$$

The language EXACT-INDSET is of this form as well:
$\forall S^{\prime} \exists S . S$ is an independent set of size k and S^{\prime} is not an independent set of size $>k$
Also the language MIN-DNF is of this form:
$\forall \psi \exists s .|\psi|<|\phi| \Rightarrow \phi(s) \neq \psi(s)$
However, it is believed that MIN-DNF does not belong to $\boldsymbol{\Sigma}_{2}^{p}$

Polynomial hierarchy

Class Σ_{2}^{p} contains languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
\mathrm{x} \in L \Leftrightarrow \exists u \in\{0,1\} q(|x|) \forall v \in\{0,1\} q(|x|) \quad M(x, u, v)=1
$$

Fact
Class $\boldsymbol{\Sigma}_{2}^{\text {p }}$ contains precisely languages recognizable by nondeterministic Turing machines with an oracle for SAT (or with an oracle for an arbitrary language in NP).
For this reason, the class is sometimes denoted $\mathbf{N P}^{N P}$
Obviously $\boldsymbol{\Sigma}_{2}^{\mathrm{p}}$ contains all languages from NP and from coNP

Polynomial hierarchy

Class $\Sigma_{\mathrm{k}}^{\mathrm{p}}$ contains languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
\mathrm{x} \in L \Leftrightarrow \exists u_{1} \in\{0,1\} q(|x|) \forall u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1
$$

Class Π_{k}^{p} contains complements of languages from Σ_{k}^{p}, i.e., languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \forall u_{1} \in\{0,1\} q(|x|) \exists u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1
$$

We also define $\mathbf{P H}=\cup_{k} \Sigma_{k}^{p}$

Polynomial hierarchy

Class $\Sigma_{\mathrm{k}}^{\mathrm{p}}$ contains languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
\mathrm{x} \in L \Leftrightarrow \exists u_{1} \in\{0,1\} q(|x|) \forall u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1
$$

Class Π_{k}^{p} contains complements of languages from $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$, i.e., languages L for which there is a machine M working in polynomial time, and a polynomial q such that:

$$
x \in L \Leftrightarrow \forall u_{1} \in\{0,1\} q(|x|) \exists u_{2} \in\{0,1\} q(|x|) \ldots Q u_{k} \in\{0,1\} q(|x|) . M\left(x, u_{1}, \ldots, u_{k}\right)=1
$$

We also define $\mathbf{P H}=\cup_{k} \boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$
How are these classes related?
Fact 1: $\Sigma_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Sigma_{k}^{p} \subseteq \Pi_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Pi_{k+1}^{p}$

Polynomial hierarchy

Fact 1: $\Sigma_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Sigma_{k}^{p} \subseteq \Pi_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Pi_{k+1}^{p}$
Proof
For $L \in \Sigma_{\mathrm{k}}^{\mathrm{p}}$ we have a machine M working in polynomial time, and a polynomial bound q on the length of u_{1}, \ldots, u_{k}, such that:

$$
\mathrm{x} \in L \Leftrightarrow \exists u_{1} \forall u_{2} \ldots Q u_{k} M\left(x, u_{1}, \ldots, u_{k}\right)=1
$$

Consider M^{\prime} such that $M^{\prime}\left(x, u_{0}, u_{1}, \ldots, u_{k}\right)=M\left(x, u_{1}, \ldots, u_{k}\right)$. Then

$$
\mathrm{x} \in L \Leftrightarrow \forall u_{0} \exists u_{1} \forall u_{2} \ldots Q u_{k} M^{\prime}\left(x, u_{0}, u_{1}, \ldots, u_{k}\right)=1
$$

So $L \in \Pi_{k+1}^{p}$
Consider $M^{\prime \prime}$ such that $M^{\prime \prime}\left(x, u_{1}, \ldots, u_{k}, u_{k+1}\right)=M\left(x, u_{1}, \ldots, u_{k}\right)$. Then
$\mathrm{x} \in L \Leftrightarrow \exists u_{1} \forall u_{2} \ldots Q u_{k} \bar{Q} u_{k+1} M^{\prime \prime}\left(x, u_{1}, \ldots, u_{k}, u_{k+1}\right)=1$
So $L \in \boldsymbol{\Sigma}_{\mathrm{k}+1}^{\mathrm{p}}$
Similarly we proceed for $L \in \Pi_{\mathrm{k}}^{\mathrm{p}}$

Polynomial hierarchy

Fact 1: $\Sigma_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Sigma_{k}^{p} \subseteq \Pi_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Pi_{k+1}^{p}$

Are these inclusions strict? And how are $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$ and $\Pi_{\mathrm{k}}^{\mathrm{p}}$ related?

Polynomial hierarchy

Fact 1: $\Sigma_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Sigma_{k}^{p} \subseteq \Pi_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Pi_{k+1}^{p}$

Are these inclusions strict? And how are $\Sigma_{\mathrm{k}}^{\mathrm{p}}$ and $\Pi_{\mathrm{k}}^{\mathrm{p}}$ related?
We don't know (it is believed that all these classes are different).
But there are only two possibilities:

- either all the classes are different, or
- they are different to some point, and then they start to be equal

Fact 2:
If $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}}^{\mathrm{p}}$, then $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}=_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\boldsymbol{\Pi}_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\mathrm{PH}$.
If $\mathrm{P}=\mathrm{NP}$, then $\mathrm{P}=\Sigma_{1}^{\mathrm{p}}=\Sigma_{2}^{\mathrm{p}}=\ldots=\Pi_{1}^{\mathrm{p}}=\Pi_{2}^{\mathrm{p}}=\ldots=\mathrm{PH}$.

Polynomial hierarchy

Fact 2:
If $\Sigma_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}}^{\mathrm{p}}$, then $\Sigma_{\mathrm{k}}^{\mathrm{p}}=\Sigma_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\Pi_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\mathrm{PH}$.
If $\mathrm{P}=\mathrm{NP}$, then $\mathrm{P}=\Sigma_{1}^{\mathrm{p}}=\Sigma_{2}^{\mathrm{p}}=\ldots=\Pi_{1}^{\mathrm{p}}=\Pi_{2}^{\mathrm{p}}=\ldots=\mathrm{PH}$.
Proof (first part, the second part is analogous):
Consider a language L in PH. It is in some Σ_{n}^{p}, where $n>k$. There is a machine M working in polynomial time, and a polynomial bound on the length of u_{1}, \ldots, u_{n}, such that (suppose that n, k even):

$$
\mathrm{x} \in L \Leftrightarrow \exists u_{1} \forall u_{2} \ldots \exists u_{n-k-1} \forall u_{n-k} \exists u_{n-k+1} \forall u_{n-k+2} \ldots \exists u_{n-1} \forall u_{n} M\left(x, u_{1}, \ldots, u_{n}\right)=1
$$

Consider now the language

$$
L^{\prime}=\left\{\left(x, u_{1}, \ldots, u_{k}\right): \exists u_{n-k+1} \forall u_{n-k+2} \ldots \exists u_{n-1} \forall u_{n} M\left(x, u_{1}, \ldots, u_{n}\right)=1\right\}
$$

We have $L^{\prime} \in \Sigma_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}}^{\mathrm{p}}$, so L^{\prime} is of the form (for some M^{\prime}):

$$
L^{\prime}=\left\{\left(x, u_{1}, \ldots, u_{k}\right): \forall u_{n-k+1} \exists u_{n-k+2} \ldots \forall u_{n-1} \exists u_{n} M^{\prime}\left(x, u_{1}, \ldots, u_{n}\right)=1\right\}
$$

This means that

$$
\mathrm{x} \in L \Leftrightarrow \exists u_{1} \forall u_{2} \ldots \exists u_{n-k-1} \forall u_{n-k} \forall u_{n-k+1} \exists u_{n-k+2} \ldots \forall u_{n-1} \exists u_{n} M^{\prime}\left(x, u_{1}, \ldots, u_{n}\right)=1
$$

We can merge u_{n-k} and u_{n-k+1} to a single word (longer twice),
so $L \in \Sigma_{n-1}^{p}$

Polynomial hierarchy

$$
\mathbf{N P}=\Sigma_{1}^{\mathrm{p}} \subseteq \Sigma_{2}^{\mathrm{p}} \subseteq \Sigma_{3}^{\mathrm{p}} \subseteq \cdots
$$

There are only two possibilities:

- either all the classes are different, or
- they are different to some point, and then they start to be equal

Complete language in $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$?
Input: a sentence of the following form (with k blocks of quantifiers)

$$
\exists x_{11}, \ldots, x_{1 n} \forall x_{21}, \ldots, x_{2 n} \exists x_{21}, \ldots, x_{2 n} \ldots Q x_{k 1}, \ldots, x_{k n} \phi\left(x_{11}, \ldots, x_{k n}\right)
$$

Question: is the sentence true?

Polynomial hierarchy

There are only two possibilities:

- either all the classes are different, or
- they are different to some point, and then they start to be equal

Complete language in $\Sigma_{\mathrm{k}}^{\mathrm{p}}$?
Input: a sentence of the following form (with k blocks of quantifiers)

$$
\exists x_{11}, \ldots, x_{1 n} \forall x_{21}, \ldots, x_{2 n} \exists x_{21}, \ldots, x_{2 n} \ldots Q x_{k 1}, \ldots, x_{k n} \phi\left(x_{11}, \ldots, x_{k n}\right)
$$

Question: is the sentence true? (similarly for Π_{k}^{p})
Complete language in PH ?
Fact 3:
If there exists a $\mathbf{P H}$-complete language, then $\mathbf{P H}=\boldsymbol{\Sigma}_{k}^{p}$ for some k Proof - The PH-complete language belongs to some $\boldsymbol{\Sigma}_{\mathrm{k}^{\mathrm{p}}}^{\mathrm{p}}$, and $\Sigma_{\mathrm{k}}^{\mathrm{p}}$ is closed under reductions in polynomial time.

Polynomial hierarchy

Fact 1: $\Sigma_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Sigma_{k}^{p} \subseteq \Pi_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Pi_{k+1}^{p}$
Fact 2:
If $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}}^{\mathrm{p}}$, then $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}=\Sigma_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\Pi_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\mathrm{PH}$.
If $\mathbf{P}=\mathbf{N P}$, then $\mathbf{P}=\boldsymbol{\Sigma}_{1}^{\mathrm{p}}=\boldsymbol{\Sigma}_{2}^{\mathrm{p}}=\ldots=\Pi_{1}^{\mathrm{p}}=\boldsymbol{\Pi}_{2}^{\mathrm{p}}=\ldots=\mathrm{PH}$.

Fact 3:

If there exists a $\mathbf{P H}$-complete language, then $\mathbf{P H}=\Sigma_{k}^{p}$ for some k

Fact 4: $\mathbf{P H} \subseteq$ PSPACE

Proof: The $\Sigma_{\mathrm{k}}^{\mathrm{p}}$-complete language mentioned above is a special case of QBF, which belongs to PSPACE.

Polynomial hierarchy

Fact 1: $\Sigma_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Sigma_{k}^{p} \subseteq \Pi_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p}, \Pi_{k}^{p} \subseteq \Pi_{k+1}^{p}$
Fact 2:
If $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}}^{\mathrm{p}}$, then $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}=\Sigma_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\Pi_{\mathrm{k}}^{\mathrm{p}}=\Pi_{\mathrm{k}+1}^{\mathrm{p}}=\ldots=\mathrm{PH}$.
If $\mathbf{P}=\mathbf{N P}$, then $\mathbf{P}=\boldsymbol{\Sigma}_{1}^{\mathrm{p}}=\boldsymbol{\Sigma}_{2}^{\mathrm{p}}=\ldots=\boldsymbol{\Pi}_{1}^{\mathrm{p}}=\boldsymbol{\Pi}_{2}^{\mathrm{p}}=\ldots=\mathrm{PH}$.

Fact 3:

If there exists a $\mathbf{P H}$-complete language, then $\mathbf{P H}=\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$ for some k

Fact 4: PH \subseteq PSPACE

Fact 5: If the classes $\boldsymbol{\Sigma}_{\mathrm{k}}^{\mathrm{p}}$ are all different, then $\mathrm{PH} \neq \mathrm{PSPACE}$
Proof: Follows from Fact 3 - in PSPACE there is a complete language.

Alternating machines

- Alternating Turing machines (ATM) generalize nondeterministic ones (NTM)
- Both NTM and ATM are not a realistic model of computation (we cannot build such machines). But NTM help us to observe a very natural phenomenon: a difference between finding a solution and verifying a solution.
- ATMs have a similar role for some languages, for which there are no short witnesses, i.e., which cannot be characterized using nondeterminism.

Alternating machines

Definition of ATM:

- a configuration can have multiple successors (as in NTM)
- additionally states of the machine (and in effect its configurations) are divided to existential and universal ones

Alternating machines

Definition of ATM:

- a configuration can have multiple successors (as in NTM)
- additionally states of the machine (and in effect its configurations) are divided to existential and universal ones
The set of wining configurations is defined as the smallest set s.t.:
- accepting configurations are winning
- every existential configuration, whose some successor is winning, is also winning
- every universal configuration, whose all successors are winning, is also winning
We accept a word w, if the initial configuration for this word is winning.
M works in time $T(n) /$ in space $S(n)$, if every computation fits in this time / space.

Alternating machines

Definition of ATM:

- a configuration can have multiple successors (as in NTM)
- additionally states of the machine (and in effect its configurations) are divided to existential and universal ones
The set of wining configurations is defined as the smallest set s.t.:
- accepting configurations are winning
- every existential configuration, whose some successor is winning, is also winning
- every universal configuration, whose all successors are winning, is also winning
We accept a word w, if the initial configuration for this word is winning.
M works in time $T(n) /$ in space $S(n)$, if every computation fits in this time / space.
Observation:
NTM is a special case of an ATM - only existential states

Alternating machines

Equivalently: acceptance can be defined using a game:

- we consider the configuration graph (edges = possible transitions)
- players \exists and \forall alternatingly move a pawn (common to both player) around the graph
- in existential states player \exists decides, in universal states player \forall decides (player \exists wants to accept, player \forall wants to reject)
- we accept a word, if player \exists has a winning strategy - he can reach an accepting configuration regardless moves of player \forall

