

Computational complexity

lecture 8

Theorem (Berman 1978)
If P≠NP, then no language over a single-letter alphabet is NP-hard.

In consequence there are difficult (and even undecidable)
languages that are not NP-hard.

Berman's theorem (*)

Theorem (Berman 1978)
If P≠NP, then no language over a single-letter alphabet is NP-hard.

Proof
Let L be an NP-hard language over a single-letter alphabet. We will
give a polynomial-time algorithm for SAT, contradicting P≠NP.

Berman's theorem (*)

Theorem (Berman 1978)
If P≠NP, then no language over a single-letter alphabet is NP-hard.

Proof
Let L be an NP-hard language over a single-letter alphabet. We will
give a polynomial-time algorithm for SAT, contradicting P≠NP.
By assumption there is a reduction g from SAT to L.

The algorithm is as follows:
● We are given a formula f
● We will keep a list of formulas y1,...,yk such that: f is satisfiable iff

some of y1,...,yk is satisfiable. Initially the list contains f.

Berman's theorem (*)

Theorem (Berman 1978)
If P≠NP, then no language over a single-letter alphabet is NP-hard.

Proof
Let L be an NP-hard language over a single-letter alphabet. We will
give a polynomial-time algorithm for SAT, contradicting P≠NP.
By assumption there is a reduction g from SAT to L.

The algorithm is as follows:
● We are given a formula f
● We will keep a list of formulas y1,...,yk such that: f is satisfiable iff

some of y1,...,yk is satisfiable. Initially the list contains f.
● We alternatingly repeat two kinds of steps:
1) Replace every yi by two formulas: yi[true/x] and yi[false/x],

 obtained by substituting true/false for one of variables.
 (clearly yi is satisfiable iff some of yi[true/x], yi[false/x] is satisfiable)

Berman's theorem (*)

Theorem (Berman 1978)
If P≠NP, then no language over a single-letter alphabet is NP-hard.

Proof
Let L be an NP-hard language over a single-letter alphabet. We will
give a polynomial-time algorithm for SAT, contradicting P≠NP.
By assumption there is a reduction g from SAT to L.

The algorithm is as follows:
● We are given a formula f
● We will keep a list of formulas y1,...,yk such that: f is satisfiable iff

some of y1,...,yk is satisfiable. Initially the list contains f.
● We alternatingly repeat two kinds of steps:
1) Replace every yi by two formulas: yi[true/x] and yi[false/x],

 obtained by substituting true/false for one of variables.
 (clearly yi is satisfiable iff some of yi[true/x], yi[false/x] is satisfiable)

2) For every pair yi,yj such that g(yi)=g(yj), remove yi from the list,

 leave only yj (notice that yi is satisfiable iff some of yj is satisfiable)

Berman's theorem (*)

We alternatingly repeat two kinds of steps:
1) Replace every yi by two formulas: yi[true/x] and yi[false/x],

 obtained by substituting true/false for one of variables.
 (clearly yi is satisfiable iff some of yi[true/x], yi[false/x] is satisfiable)

2) For every pair yi,yj such that g(yi)=g(yj), remove yi from the list,

 leave only yj (notice that yi is satisfiable iff some of yj is satisfiable)

The algorithm is correct. Why does it work in polynomial time?
● Recall that g is a polynomial-time reduction to a single-letter

language. Thus |g(yi)|<p(|yi|) for some polynomial p.

Since there is only one single-letter word of every length, there
are only p(|yi|)≤p(|f|) possibilities for g(yi).

● In effect, the list has length ≤p(|f|) after every execution of step 2,
and ≤2.p(|f|) after every execution of step 1.

● Moreover, every step can be performed in polynomial time.

This finishes the proof.

Berman's theorem (*)

Many proofs in the complexity theory uses Turing machines as
“black-boxes” – the proofs are of the form:
● assume that there is a machine M working in time ... recognizing ...
● Out of it, we create M', which executes M many times in a loop...
● ... then it negates the results, executes itself on every machine ...
● at the end we obtain a machine M'''''', about which we know that

it cannot exist, thus M could not exist.

Such proofs relativize, i.e., they work also when every machine
in the world has access to some fixed oracle (that is, it can ask
whether a word belongs to a language L, and immediately obtain
an answer)

Relativisation

Many proofs in the complexity theory uses Turing machines as
“black-boxes” – the proofs are of the form:
● assume that there is a machine M working in time ... recognizing ...
● Out of it, we create M', which executes M many times in a loop...
● ...

Such proofs relativize, i.e., they work also when every machine
in the world has access to some fixed oracle.

Examples of relativizing proofs: Turing theorem about undecidability,
hierarchy theorems, gap theorems, Ladner's theorem,
Immerman-Szelepcseny theorem, Savitch theorem, ...

On the other hand, proofs based on circuits do not relativize
(it is not at all clear what is an oracle for a circuit)

The next theorem shows that using relativizing arguments we
cannot solve the P vs. NP problem.

Relativisation

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that PA=NPA and PB≠NPB

Baker-Gill-Solovay theorem

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that PA=NPA and PB≠NPB

Proof
As A we can take QBF – we have:

NPQBF⊆NPSPACE=PSPACE=PQBF

Steps from the left:
● instead of asking the QBF oracle about a word, a machine can

itself compute the answer (questions are of polynomial length,
and QBF can be solved in polynomial space)

● Savitch theorem
● PSPACE-completeness of the QBF problem

Baker-Gill-Solovay theorem

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that PA=NPA and PB≠NPB

Proof
As A we can take QBF – we have:

NPQBF⊆NPSPACE=PSPACE=PQBF

Steps from the left:
● instead of asking the QBF oracle about a word, a machine can

itself compute the answer (questions are of polynomial length,
and QBF can be solved in polynomial space)

● Savitch theorem
● PSPACE-completeness of the QBF problem

Does A=SAT work as well? – NPSAT⊆NP⊆PSAT

Baker-Gill-Solovay theorem

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that PA=NPA and PB≠NPB

Proof
As A we can take QBF – we have:

NPQBF⊆NPSPACE=PSPACE=PQBF

Steps from the left:
● instead of asking the QBF oracle about a word, a machine can

itself compute the answer (questions are of polynomial length,
and QBF can be solved in polynomial space)

● Savitch theorem
● PSPACE-completeness of the QBF problem

Does A=SAT work as well? – NPSAT⊆NP⊆PSAT

NO – an NP algorithm for SAT doesn't give the inclusion NPSAT⊆NP
(maybe the external algorithm „prefers” to obtain that a formula is
not satisfiable, and it will incorrectly compute its satisfiability)
It is important that QBF can be solved in deterministic PSPACE

Baker-Gill-Solovay theorem

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that PA=NPA and PB≠NPB

Proof
We now construct an oracle B, and we consider the language

L={1n : some word w of length n belongs to B}
● Clearly L∈NPB – nondeterministic machine can guess some w∈B
● A deterministic machine recognizing L has a problem: it can only

ask the oracle for consecutive words, but it has not enough time
to check all of them. We only need to choose B so that indeed
it is impossible to do anything better.

Baker-Gill-Solovay theorem (*)

Theorem (Baker-Gill-Solovay, 1975)
There exist languages A and B such that PA=NPA and PB≠NPB

Proof
L={1n : some word w of length n belongs to B}

We now choose B:
● Fix a list M1,M2,M3,... of all Turing machines with oracle working

in polynomial time
➔ an oracle is not a part of the definition of the machine,
➔ for every Mi there should exist a polynomial pi such that for every

oracle the machine Mi works in time pi(n)
➔ if some M with oracle C recognizes a language L in polynomial

time, then some Mi with oracle C also recognizes L
➔ such a list M1,M2,M3,... is created as in the proof of Ladner's theo.
➔ this time, we do not use the fact that the list is computable

(conversely to the proof of the Ladner's theorem)
● We construct B gradually, cheating consecutive machines

Baker-Gill-Solovay theorem (*)

L={1n : some word w of length n belongs to B}

We create B=∪iℕBi and a sequence ni such that:

● Mi
Bi incorrectly recognizes the word 1ni

● Mi
B agrees with Mi

Bi on the word 1ni

We start with B0=∅; then for consecutive i:

● we take ni so large that for all j<i, machine Mj for on the word 1nj
produces only queries shorter than ni (thanks to this the machines
that were cheated earlier remain cheated), and such that Mi on

the word 1ni works in less than 2ni steps

Baker-Gill-Solovay theorem (*)

L={1n : some word w of length n belongs to B}

We create B=∪iℕBi and a sequence ni such that:

● Mi
Bi incorrectly recognizes the word 1ni

● Mi
B agrees with Mi

Bi on the word 1ni

We start with B0=∅; then for consecutive i:

● we take ni so large that for all j<i, machine Mj for on the word 1nj
produces only queries shorter than ni (thanks to this the machines
that were cheated earlier remain cheated), and such that Mi on

the word 1ni works in less than 2ni steps
● run Mi

Bi-1 on the word 1ni

● if it accepts, take Bi=Bi-1 – then 1ni∉L, we have cheated Mi

● if it rejects, find a word w of length ni about which Mi haven't asked

(it exists, since Mi has made <2ni step) and define Bi=Bi-1∪{w}

Then 1ni∈L, and we have cheated Mi

Baker-Gill-Solovay theorem (*)

L={1n : some word w of length n belongs to B}

We create B=∪iℕBi and a sequence ni such that:

● Mi
Bi incorrectly recognizes the word 1ni

● Mi
B agrees with Mi

Bi on the word 1ni

We start with B0=∅; then for consecutive i:

● we take ni so large that for all j<i, machine Mj for on the word 1nj
produces only queries shorter than ni (thanks to this the machines
that were cheated earlier remain cheated), and such that Mi on

the word 1ni works in less than 2ni steps
● run Mi

Bi-1 on the word 1ni

● if it accepts, take Bi=Bi-1 – then 1ni∉L, we have cheated Mi

● if it rejects, find a word w of length ni about which Mi haven't asked

(it exists, since Mi has made <2ni step) and define Bi=Bi-1∪{w}

Then 1ni∈L, and we have cheated Mi

The language B is computable, but
in this theorem this is meaningless

Baker-Gill-Solovay theorem (*)

The NP class was defined for decision problems („yes/no”),
e.g., does there exist a valuation satisfying a formula,
 does there exist a Hamiltonian cycle, ...
We can also consider search problems,
e.g., find a valuation satisfying a formula,
 find a Hamiltonian cycle, ...
● Of course search problems are not easier than decision problems.

Thus if P≠NP, then search problems cannot be solved in polyno-
mial time as well.

● And what if P=NP? Maybe it is possible to decide quickly whether
there is a Hamiltonian cycle, but it is impossible to quickly find it?

Search problems

The NP class was defined for decision problems („yes/no”),
e.g., does there exist a valuation satisfying a formula,
 does there exist a Hamiltonian cycle, ...
We can also consider search problems,
e.g., find a valuation satisfying a formula,
 find a Hamiltonian cycle, ...
● Of course search problems are not easier than decision problems.

Thus if P≠NP, then search problems cannot be solved in polyno-
mial time as well.

● And what if P=NP? Maybe it is possible to decide quickly whether
there is a Hamiltonian cycle, but it is impossible to quickly find it?

● Then it possible to solve also search problems in polynomial time.

Search problems

Theorem
If P=NP, then for every language LNP there is a polynomial
algorithm that reads vL and finds a witness for v.

We refer here to the definition of NP using witnesses:
NP contains languages of the form {v : ∃w. v$w∈R}, where R is a relation
recognizable in polynomial time and such that v$w∈R implies |w|≤p(|v|) for some
polynomial p.

Search problems

Theorem
If P=NP, then for every language LNP there is a polynomial
algorithm that reads vL and finds a witness for v.

We refer here to the definition of NP using witnesses:
NP contains languages of the form {v : ∃w. v$w∈R}, where R is a relation
recognizable in polynomial time and such that v$w∈R implies |w|≤p(|v|) for some
polynomial p.

Proof
Consider first the SAT problem – we assume that there is a poly-
nomial-time algorithm A for SAT, we want to find a valuation:
● Using A we check whether the formula is satisfiable
● If yes, we set x1=1 and we check whether it is still satisfiable
● Yes keep ⇒ x1=1 and continue for a smaller formula
● No set ⇒ x1=0 and continue for a smaller formula
● In this way we eliminate consecutive variables, and we obtain

a whole valuation

Search problems

Theorem
If P=NP, then for every language LNP there is a polynomial
algorithm that reads vL and finds a witness for v.

We refer here to the definition of NP using witnesses:
NP contains languages of the form {v : ∃w. v$w∈R}, where R is a relation
recognizable in polynomial time and such that v$w∈R implies |w|≤p(|v|) for some
polynomial p.

Proof
● For SAT we already know, consider now an arbitrary problem

from NP
● It is enough to see that the reduction from the Cook-Levin

theorem (NP-hardness of SAT) is actually a Levin reduction
(i.e., it allows to recover witnesses)

Search problems

The following problem is in NP:
INDSET = {(G,k) : in graph G there is an independent set of size ≥k}

Consider now a slightly more difficult problem:
EXACT-INDSET = {(G,k) : the largest independent set in G is

 of size k}
We see no reason for this problem to be in NP...
What would be a witness?

Polynomial hierarchy

EXACT-INDSET = {(G,k) : the largest independent set in G is
 of size k}

A similar problem:
MIN−DNF = { : is a formula in the DNF form, not equivalent toϕ ϕ

 any smaller formula in the DNF form}
 = { : ϕ ∀ ψ, |ψ| < | | ϕ ⇒ ∃ valuation s such that (s)≠ψ(s)}ϕ

In order to describe these problems, it is not enough to use one
„exists” quantifier (as in NP), neither one „for all” quantifier (as in
coNP). We have here a combination of two quantifiers.

Polynomial hierarchy

EXACT-INDSET = {(G,k) : the largest independent set in G is
 of size k}

A similar problem:
MIN−DNF = { : is a formula in the DNF form, not equivalent toϕ ϕ

 any smaller formula in the DNF form}
 = { : ϕ ∀ ψ, |ψ| < | | ϕ ⇒ ∃ valuation s such that (s)≠ψ(s)}ϕ

In order to describe these problems, it is not enough to use one
„exists” quantifier (as in NP), neither one „for all” quantifier (as in
coNP). We have here a combination of two quantifiers.

Class S
2
 contains languages L for which there is a machine M

working in polynomial time, and a polynomial q such that:
xL  ∃ u{0,1}q(|x|) ∀ v{0,1}q(|x|) M(x,u,v)=1

The language EXACT-INDSET is of this form:
∃S ∀S' . S is an independent set of size k and

 S' is not an independent set of size >k

p

Polynomial hierarchy

Class S
2
 contains languages L for which there is a machine M

working in polynomial time, and a polynomial q such that:
xL  ∃ u{0,1}q(|x|) ∀ v{0,1}q(|x|) M(x,u,v)=1

The language EXACT-INDSET is of this form

Class P
2
 contains complements of languages from S

2
; it is easy to

see that it contains languages L for which there is a machine M
working in polynomial time, and a polynomial q such that:

xL  ∀ u{0,1}q(|x|) ∃ v{0,1}q(|x|) M(x,u,v)=1

The language EXACT-INDSET is of this form as well:
∀S' ∃S . S is an independent set of size k and

 S' is not an independent set of size >k

Also the language MIN−DNF is of this form:
∀ ψ ∃s . |ψ| < | | ϕ ⇒ (ϕ s)≠ψ(s)
However, it is believed that MIN-DNF does not belong to S

2

p p

p

p
Polynomial hierarchy

Class S
2
 contains languages L for which there is a machine M

working in polynomial time, and a polynomial q such that:
xL  ∃ u{0,1}q(|x|) ∀ v{0,1}q(|x|) M(x,u,v)=1

Fact
Class S

2
 contains precisely languages recognizable by nondetermi-

nistic Turing machines with an oracle for SAT (or with an oracle for
an arbitrary language in NP).

For this reason, the class is sometimes denoted NPNP

Obviously S
2
 contains all languages from NP and from coNP

p

p

p

Polynomial hierarchy

Class S
k
 contains languages L for which there is a machine M

working in polynomial time, and a polynomial q such that:
 xL  ∃u

1
{0,1}q(|x|) ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

Class P
k
 contains complements of languages from S

k
, i.e.,

languages L for which there is a machine M working in polynomial
time, and a polynomial q such that:
 xL  ∀u

1
{0,1}q(|x|) ∃u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

We also define PH=∪
k
S

k

p

p p

p

Polynomial hierarchy

Class S
k
 contains languages L for which there is a machine M

working in polynomial time, and a polynomial q such that:
 xL  ∃u

1
{0,1}q(|x|) ∀u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

Class P
k
 contains complements of languages from S

k
, i.e.,

languages L for which there is a machine M working in polynomial
time, and a polynomial q such that:
 xL  ∀u

1
{0,1}q(|x|) ∃u

2
{0,1}q(|x|) … Qu

k
{0,1}q(|x|) . M(x,u

1
,...,u

k
)=1

We also define PH=∪
k
S

k

How are these classes related?

Fact 1: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

p

p p

p

Polynomial hierarchy

p p p p p p p p

Fact 1: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Proof
For LS

k
 we have a machine M working in polynomial time, and a

polynomial bound q on the length of u
1
,...,u

k
, such that:

 xL  ∃u
1
 ∀u

2
 … Qu

k
 M(x,u

1
,...,u

k
)=1

Consider M' such that M'(x,u
0
,u

1
,...,u

k
)=M(x,u

1
,...,u

k
). Then

 xL  ∀u
0
 ∃u

1
 ∀u

2
 … Qu

k
 M'(x,u

0
,u

1
,...,u

k
)=1

So LP
k+1

Consider M'' such that M''(x,u
1
,...,u

k
,u

k+1
)=M(x,u

1
,...,u

k
). Then

 xL  ∃u
1
 ∀u

2
 … Qu

k
 Qu

k+1
 M''(x,u

1
,...,u

k
,u

k+1
)=1

So LS
k+1

Similarly we proceed for LP
k

Polynomial hierarchy
p p p p p p p p

p

p

p

p

Fact 1: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Are these inclusions strict? And how are S
k
 and P

k
 related?

Polynomial hierarchy
p p p p p p p p

pS
1

pS
2

⊆ pS
3

⊆ ⊆

pP
1
⊆ ⊆ ⊆pP

2
pP
3

P

coNP=

 NP=

...

...

⊆
⊆
⊆

⊆
⊆
⊆

⊆
⊆

p p

Fact 1: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Are these inclusions strict? And how are S
k
 and P

k
 related?

We don't know (it is believed that all these classes are different).

But there are only two possibilities:
● either all the classes are different, or
● they are different to some point, and then they start to be equal

Fact 2:
If S

k
=P

k
, then S

k
=S

k+1
=...=P

k
=P

k+1
=...=PH.

If P=NP, then P=S
1
=S

2
=...=P

1
=P

2
=...=PH.

Polynomial hierarchy
p p p p p p p p

pS
1

pS
2

⊆ pS
3

⊆ ⊆

pP
1
⊆ ⊆ ⊆pP

2
pP
3

P

coNP=

 NP=

...

...

⊆
⊆
⊆

⊆
⊆
⊆

⊆
⊆

p p

pp p p p p

p p p p

Fact 2:
If S

k
=P

k
, then S

k
=S

k+1
=...=P

k
=P

k+1
=...=PH.

If P=NP, then P=S
1
=S

2
=...=P

1
=P

2
=...=PH.

Proof (first part, the second part is analogous):
Consider a language L in PH. It is in some S

n
, where n>k. There is

a machine M working in polynomial time, and a polynomial bound
on the length of u

1
,...,u

n
, such that (suppose that n,k even):

 xL  ∃u
1
∀u

2
 …∃u

n-k-1
∀u

n-k
∃u

n-k+1
∀u

n-k+2
…∃u

n-1
∀u

n
 M(x,u

1
,...,u

n
)=1

Consider now the language
 L'={(x,u

1
,...,u

k
) : ∃u

n-k+1
∀u

n-k+2
…∃u

n-1
∀u

n
 M(x,u

1
,...,u

n
)=1}

We have L'S
k
=P

k
, so L' is of the form (for some M'):

 L'={(x,u
1
,...,u

k
) : ∀u

n-k+1
∃u

n-k+2
…∀u

n-1
∃u

n
 M'(x,u

1
,...,u

n
)=1}

This means that
 xL  ∃u

1
∀u

2
 …∃u

n-k-1
∀u

n-k
∀u

n-k+1
∃u

n-k+2
…∀u

n-1
∃u

n
 M'(x,u

1
,...,u

n
)=1

We can merge u
n-k

 and u
n-k+1

 to a single word (longer twice),
so LS

n-1

Polynomial hierarchy

pp p p p p

p p p p

p p

p

p

There are only two possibilities:
● either all the classes are different, or
● they are different to some point, and then they start to be equal

Complete language in S
k
?

Input: a sentence of the following form (with k blocks of quantifiers)
∃x11,...,x1n∀x21,...,x2n∃x21,...,x2n ...Qxk1,...,xkn f(x11,...,xkn)

Question: is the sentence true?

Polynomial hierarchy
pS
1

pS
2

⊆ pS
3

⊆ ⊆

pP
1
⊆ ⊆ ⊆pP

2
pP
3

P

coNP=

 NP=

...

...

⊆
⊆
⊆

⊆
⊆
⊆

⊆
⊆

p

There are only two possibilities:
● either all the classes are different, or
● they are different to some point, and then they start to be equal

Complete language in S
k
?

Input: a sentence of the following form (with k blocks of quantifiers)
∃x11,...,x1n∀x21,...,x2n∃x21,...,x2n ...Qxk1,...,xkn f(x11,...,xkn)

Question: is the sentence true? (similarly for P
k
)

Complete language in PH?
Fact 3:
If there exists a PH-complete language, then PH=S

k
 for some k

Proof – The PH-complete language belongs to some S
k
, and

S
k
 is closed under reductions in polynomial time.

Polynomial hierarchy
pS
1

pS
2

⊆ pS
3

⊆ ⊆

pP
1
⊆ ⊆ ⊆pP

2
pP
3

P

coNP=

 NP=

...

...

⊆
⊆
⊆

⊆
⊆
⊆

⊆
⊆

p

p

p

p

p

Fact 1: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Fact 2:
If S

k
=P

k
, then S

k
=S

k+1
=...=P

k
=P

k+1
=...=PH.

If P=NP, then P=S
1
=S

2
=...=P

1
=P

2
=...=PH.

Fact 3:
If there exists a PH-complete language, then PH=S

k
 for some k

Fact 4: PH⊆PSPACE

Proof: The S
k
-complete language mentioned above is a special

case of QBF, which belongs to PSPACE.

p p p p p p p p

pp p p p p

p p p p

p

p

Polynomial hierarchy

Fact 1: S
k
⊆S

k+1
, S

k
⊆P

k+1
, P

k
⊆S

k+1
, P

k
⊆P

k+1

Fact 2:
If S

k
=P

k
, then S

k
=S

k+1
=...=P

k
=P

k+1
=...=PH.

If P=NP, then P=S
1
=S

2
=...=P

1
=P

2
=...=PH.

Fact 3:
If there exists a PH-complete language, then PH=S

k
 for some k

Fact 4: PH⊆PSPACE

Fact 5: If the classes S
k
 are all different, then PH≠PSPACE

Proof: Follows from Fact 3 – in PSPACE there is a complete
language.

p p p p p p p p

pp p p p p

p p p p

p

p

Polynomial hierarchy

● Alternating Turing machines (ATM) generalize nondeterministic
ones (NTM)

● Both NTM and ATM are not a realistic model of computation
(we cannot build such machines). But NTM help us to observe
a very natural phenomenon: a difference between finding
a solution and verifying a solution.

● ATMs have a similar role for some languages, for which there are
no short witnesses, i.e., which cannot be characterized using
nondeterminism.

Alternating machines

Definition of ATM:
● a configuration can have multiple successors (as in NTM)
● additionally states of the machine (and in effect its configurations)

are divided to existential and universal ones

Alternating machines

Definition of ATM:
● a configuration can have multiple successors (as in NTM)
● additionally states of the machine (and in effect its configurations)

are divided to existential and universal ones
The set of wining configurations is defined as the smallest set s.t.:
● accepting configurations are winning
● every existential configuration, whose some successor is winning,

is also winning
● every universal configuration, whose all successors are winning,

is also winning
We accept a word w, if the initial configuration for this word is
winning.
M works in time T(n) / in space S(n), if every computation fits in
this time / space.

Alternating machines

Definition of ATM:
● a configuration can have multiple successors (as in NTM)
● additionally states of the machine (and in effect its configurations)

are divided to existential and universal ones
The set of wining configurations is defined as the smallest set s.t.:
● accepting configurations are winning
● every existential configuration, whose some successor is winning,

is also winning
● every universal configuration, whose all successors are winning,

is also winning
We accept a word w, if the initial configuration for this word is
winning.
M works in time T(n) / in space S(n), if every computation fits in
this time / space.

Observation:
NTM is a special case of an ATM – only existential states

Alternating machines

Equivalently: acceptance can be defined using a game:
● we consider the configuration graph (edges = possible transitions)
● players ∃ and ∀ alternatingly move a pawn (common to both

player) around the graph
● in existential states player ∃ decides, in universal states player ∀

decides (player ∃ wants to accept, player ∀ wants to reject)
● we accept a word, if player ∃ has a winning strategy – he can

reach an accepting configuration regardless moves of player ∀

Alternating machines

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43

