

Computational complexity

lecture 7

Previous lecture
NP – SAT, Hamiltonian cycle, clique, subset sum, dominating set, ...

P – HORNSAT
polyL – no complete problems
L – almost every language is complete
NL – reachability in directed graphs

Now
PSPACE - QBF

Complete problems

QBF problem
input: boolean formula f(x1,...,xn) with variables x1,...,xn

question: is the following sentence true:
∃x1∀x2∃x3∀x4 ...f(x1,...,xn)

Theorem
The QBF problem is PSPACE-complete.
(the problem remains PSPACE-complete even if we require that f is in the CNF)

PSPACE-completeness of QBF

QBF problem
input: boolean formula f(x1,...,xn) with variables x1,...,xn

question: is the following sentence true:
∃x1∀x2∃x3∀x4 ...f(x1,...,xn)

Theorem
The QBF problem is PSPACE-complete.
(the problem remains PSPACE-complete even if we require that f is in the CNF)

Proof
QBF is in PSPACE: we browse all possible valuations in lexico-
graphic order... (backtracking)
for a fixed valuation, obviously we can compute the value of f
in PSPACE

PSPACE-completeness of QBF

Theorem
The QBF problem (∃x1∀x2∃x3∀x4 ...f(x1,...,xn)) is PSPACE-complete.

Proof (PSPACE-hardness)
● A similar trick as in the Savitch theorem.
● Let L be a language recognized by a machine M working in

polynomial space
● having an input word w of length n, we want to construct a formula

PSPACE-completeness of QBF

Theorem
The QBF problem (∃x1∀x2∃x3∀x4 ...f(x1,...,xn)) is PSPACE-complete.

Proof (PSPACE-hardness)
● A similar trick as in the Savitch theorem.
● Let L be a language recognized by a machine M working in

polynomial space
● having an input word w of length n, we want to construct a formula
● configurations of M can be encoded in p(n) bits, for some

polynomial p
● for every i we will write a formula yi(x1,...,xp(n),y1,...,yp(n)) saying that

from the configuration x1,...,xp(n) it is possible to reach the configu-
ration y1,...,yp(n) in at most 2i steps of M

● at the very end, it is enough to check whether the formula
yp(n)(x1,...,xp(n),y1,...,yp(n)) is true, where x1,...,xp(n) encodes the initial
configuration, and y1,...,yp(n) encodes the accepting configuration
(we can assume that it is fixed, or we can add some existential quantification)

PSPACE-completeness of QBF

Theorem
The QBF problem (∃x1∀x2∃x3∀x4 ...f(x1,...,xn)) is PSPACE-complete.

Proof (PSPACE-hardness)
● for every i we want to write a formula yi(x1,...,xp(n),y1,...,yp(n)) saying

that from the configuration x1,...,xp(n) it is possible to reach
the configuration y1,...,yp(n) in at most 2i steps of M

● For i=0, either the configurations are equal, or M performs a single
step between them – this can be easily written using a formula
(as while proving that SAT is NP-hard)

● The formula can be easily generated in logarithmic space

PSPACE-completeness of QBF

Theorem
The QBF problem (∃x1∀x2∃x3∀x4 ...f(x1,...,xn)) is PSPACE-complete.

Proof (PSPACE-hardness)
● for every i we want to write a formula yi(x1,...,xp(n),y1,...,yp(n)) saying

that from the configuration x1,...,xp(n) it is possible to reach
the configuration y1,...,yp(n) in at most 2i steps of M

● For i=0, either the configurations are equal, or M performs a single
step between them – this can be easily written using a formula
(as while proving that SAT is NP-hard)

● The formula can be easily generated in logarithmic space
● A naive idea for i>0: yi+1(x,y)=∃z.(yi(x,z)∧yi(z,y))
● This does not work, since the formula grows exponentially

PSPACE-completeness of QBF

Theorem
The QBF problem (∃x1∀x2∃x3∀x4 ...f(x1,...,xn)) is PSPACE-complete.

Proof (PSPACE-hardness)
● for every i we want to write a formula yi(x1,...,xp(n),y1,...,yp(n)) saying

that from the configuration x1,...,xp(n) it is possible to reach
the configuration y1,...,yp(n) in at most 2i steps of M

● For i=0, either the configurations are equal, or M performs a single
step between them – this can be easily written using a formula
(as while proving that SAT is NP-hard)

● The formula can be easily generated in logarithmic space
● A naive idea for i>0: yi+1(x,y)=∃z.(yi(x,z)∧yi(z,y))
● This does not work, since the formula grows exponentially
● One has to use yi only once:

yi+1(x,y)=∃z.∀r.∀t.((r=x∧t=z)∨(r=z∧t=y)→yi(r,t))
● This is not in QBF, but quantifiers from yi can be moved to the

front of the formula (assuming that variable names are unique)

PSPACE-completeness of QBF

The QBF problem (∃x1∀x2∃x3∀x4 ...f(x1,...,xn)) is PSPACE-complete.

Proof (PSPACE-hardness)
● for every i we want to write a formula yi(x1,...,xp(n),y1,...,yp(n)) saying

that from the configuration x1,...,xp(n) it is possible to reach
the configuration y1,...,yp(n) in at most 2i steps of M

● For i=0, either the configurations are equal, or M performs a single
step between them – this can be easily written using a formula
(as while proving that SAT is NP-hard)

● The formula can be easily generated in logarithmic space
● One has to use yi only once:

yi+1(x,y)=∃z.∀r.∀t.((r=x∧t=z)∨(r=z∧t=y)→yi(r,t))
● This is not in QBF, but quantifiers from yi can be moved to the

front of the formula (assuming that variable names are unique)
● Again, this can be easily created in logarithmic space: first compa-

risons of appropriate variables, then y0
● Remark: for PSPACE one usually relaxes the definition of hard-

ness, and allows for reductions in P (instead of “in L”)

PSPACE-completeness of QBF

● NL=coNL
● existence of NP-intermediate problems
● difficult problems that are not NP-hard
● relativisation and the Baker-Gill-Solovay theorem
● decision problems vs search problems
● polynomial hierarchy
● alternating machines
● probabilistic machines

Plan for the nearest future

Fact
If a C-complete problem is in class D (and D is closed under
composition with functions computable in L), then C⊆D
Proof – obvious

Corollary:
If reachability in directed graphs is in coNL, then NL=coNL
If SAT is in P, then P=NP
etc.

It is enough to solve a complete problem

Theorem Immerman-Szelepcseny (1987)
Unreachability in directed graphs is in NL.

Thus NL=coNL, since reachability in directed graphs
is NL-complete.

Remark
Reachability in undirected graphs is in L (Reingold, 2004)
(this is a rather difficult theorem)

NL=coNL

Theorem Immerman-Szelepcseny (1987)
Unreachability in directed graphs is in NL.
Proof
● Idea: in NL we can not only check reachability, but also count

reachable nodes

NL=coNL

Theorem Immerman-Szelepcseny (1987)
Unreachability in directed graphs is in NL.
Proof
● Idea: in NL we can not only check reachability, but also count

reachable nodes
● First consider such an algorithm in NL: given two numbers

k and q, output q different nodes reachable from node s in ≤k steps,
and accept (if there are less such nodes, reject)

● Solution: a loop – set a counter to 0, then for every node v in the
graph, nondeterministically: either ignore v, or guess a path of
length ≤k from s to v, output v, and increase the counter

NL=coNL (*)

Theorem Immerman-Szelepcseny (1987)
Unreachability in directed graphs is in NL.
Proof
● We can: given k and q, output q different nodes reachable from s

in ≤k steps, and accept (if there are less such nodes, reject)
● Main trick: using this algorithm, we will compute (by induction)

qk – a number of nodes reachable from s in ≤k steps
● q0=1
● Given qk we compute qk+1 as follows:

➔ set qk+1 to 1 (we include s)
➔ for every other node v, output qk nodes reachable in ≤k steps

from s; if among them there is a node u such that (u,v) is an edge,
then increase qk+1 (we do not store the whole list of qk nodes; we rather
check the condition on-the-fly)

● It is now easy to finish: compute qn, output all qn nodes reachable
in ≤n steps, and check that the target node does not appear

NL=coNL (*)

Question: why cannot we prove in a similar way that NP=coNP?
E.g., that SAT is in coNP?

NL=coNL

Question: why cannot we prove in a similar way that NP=coNP?
E.g., that SAT is in coNP?

● The proof is based on counting: in NL we can not only check
reachability, but also count (and enumerate) reachable nodes.

● However, in polynomial time, even nondeterministically, we cannot
count all valuations satisfying a given formula – there are
exponentially many of them, so if we would like to count them
“one-by-one”, polynomial time is not enough.

NL=coNL

Corollary from the Immerman-Szelepcseny theorem:
for every space-constructible function S(n)≥log(n)
NSPACE(S(n))=coNSPACE(S(n))

Proof: on tutorials
We use a technique called padding

NL=coNL

Theorem (Ladner, 1975) – existence of NP-intermediate problems:
If P≠NP, then there is a problem, which is in NP\P, but is not
NP-hard with respect to polynomial-time reductions (so even more
with respect to logarithmic-space reductions).

Ladner's theorem

Theorem (Ladner, 1975) – existence of NP-intermediate problems:
If P≠NP, then there is a problem, which is in NP\P, but is not
NP-hard with respect to polynomial-time reductions (so even more
with respect to logarithmic-space reductions).
Proof:
Supposing that SAT∉P we will give a language L∈NP such that:
● L is not in P, and
● SAT does not reduce to L in polynomial time

Ladner's theorem

Theorem (Ladner, 1975) – existence of NP-intermediate problems:
If P≠NP, then there is a problem, which is in NP\P, but is not
NP-hard with respect to polynomial-time reductions (so even more
with respect to logarithmic-space reductions).
Proof:
Supposing that SAT∉P we will give a language L∈NP such that:
● L is not in P, and
● SAT does not reduce to L in polynomial time
We create L as a variant of SAT with an appropriate amount of
padding. In general, with padding we can change a problem into
a simpler one. We want to add enough padding so that the SAT
problem stops to be NP-complete, but not too much, so that still
it is not in P.
The definition will be:

L={w01f(|w|) : w∈SAT}
for an appropriate function f

Ladner's theorem

L={w01f(|w|) : w∈SAT} for an appropriate function f.
We now define f
● Fix a computable enumeration M1,M2,M3,... of Turing machines,

such that Mi works in time O(ni), and every language in P is
recognized by some Mi

● To this end, we take a list M'1,M'2,M'3,... on which every Turing
machine appears infinitely often. To M'i we add a counter, which
stops the machine after ni steps – this results in Mi

Ladner's theorem (*)

L={w01f(|w|) : w∈SAT} for an appropriate function f.
We now define f
● Fix a computable enumeration M1,M2,M3,... of Turing machines,

such that Mi works in time O(ni), and every language in P is
recognized by some Mi

The function f is defined by the following algorithm:
(a) take i=1, n=1
(b) put f(n)=ni

(c) if there is a word v of length ≤log(n) such that Mi incorrectly
 recognizes whether v belongs to L, then increase i by 1

(d) increase n by 1, go back to (b)

Ladner's theorem (*)

Mi works in time O(ni), every lang. in P is recognized by some Mi

L={w01f(|w|) : w∈SAT} for f defined by:
(a) take i=1, n=1
(b) put f(n)=ni

(c) if there is a word v of length ≤log(n) such that Mi incorrectly
 recognizes whether v belongs to L, then increase i by 1

(d) increase n by 1, go back to (b)
Fact 1: It can be checked in polynomial time whether a word is of
the proper form (i.e., if the number of ones is appropriate).
● In order to compute f(n) we repeat the loop n times, in every repe-

tition we check polynomially many words v (of logarithmic length)
● On every word v we run Mi, which works in time O(login)
● We can spend this time, as the input should have length ≥f(n)≥ni

(we interrupt the loop as soon as there are not enough ones)
● Remark: i is not a constant (time O(login) by itself is not polynomial)
● Remark 2: the simulation time depends on |Mi|, but |Mi|=|i|=log(i)≤log(n),

so this is OK

Ladner's theorem (*)

Mi works in time O(ni), every lang. in P is recognized by some Mi

L={w01f(|w|) : w∈SAT} for f defined by:
(a) take i=1, n=1
(b) put f(n)=ni

(c) if there is a word v of length ≤log(n) such that Mi incorrectly
 recognizes whether v belongs to L, then increase i by 1

(d) increase n by 1, go back to (b)
Fact 1: It can be checked in polynomial time whether a word is of
the proper form (i.e., if the number of ones is appropriate).
● In order to compute f(n) we repeat the loop n times, in every repe-

tition we check polynomially many words v (of logarithmic length)
● On every word v we run Mi, which works in time O(login)
● We can spend this time, as the input should have length ≥f(n)≥ni

(we interrupt the loop as soon as there are not enough ones)
● We also need to check whether vL (where |v|≤log n)

➔ we check the number of ones in v by the induction assumption
➔ we check whether prefixSAT in time exponential in log(n)

Ladner's theorem (*)

Mi works in time O(ni), every lang. in P is recognized by some Mi

L={w01f(|w|) : w∈SAT} for f defined by:
(a) take i=1, n=1
(b) put f(n)=ni

(c) if there is a word v of length ≤log(n) such that Mi incorrectly
 recognizes whether v belongs to L, then increase i by 1

(d) increase n by 1, go back to (b)
Fact 1: It can be checked in polynomial time whether a word is of
the proper form (i.e., if the number of ones is appropriate).
Corollary: L∈NP

Ladner's theorem (*)

Mi works in time O(ni), every lang. in P is recognized by some Mi

L={w01f(|w|) : w∈SAT} for f defined by:
(a) take i=1, n=1
(b) put f(n)=ni

(c) if there is a word v of length ≤log(n) such that Mi incorrectly
 recognizes whether v belongs to L, then increase i by 1

(d) increase n by 1, go back to (b)
Fact 2: if SATP then LP
● If LP, then some Mi recognizes L, so from some moment on

(i.e. for n≥n0 for some n0) we have that f(n)=ni

● Then it is easy to solve SAT in P (a contradiction):
➔ if |w|≥n0 we append |w|i ones at the end, and we start Mi
➔ for w shorter than n0 the results can be hardcoded

● BTW, we have shown that f is unbounded (it is also nondecreasing)

Ladner's theorem (*)

Mi works in time O(ni), every lang. in P is recognized by some Mi

L={w01f(|w|) : w∈SAT} for an appropriate f.
Fact 3: if SATP then L is not NP-hard
● Suppose that SAT reduces to L through a function g computable

in time nk. We will show a polynomial algorithm for SAT.

Ladner's theorem (*)

Mi works in time O(ni), every lang. in P is recognized by some Mi

L={w01f(|w|) : w∈SAT} for an appropriate f.
Fact 3: if SATP then L is not NP-hard
● Suppose that SAT reduces to L through a function g computable

in time nk. We will show a polynomial algorithm for SAT.
● We know that there is n0 such that for n≥n0 it holds that f(n)>nk

● For formulas w shorter than n0 the results can be hardcoded

Ladner's theorem (*)

Mi works in time O(ni), every lang. in P is recognized by some Mi

L={w01f(|w|) : w∈SAT} for an appropriate f.
Fact 3: if SATP then L is not NP-hard
● Suppose that SAT reduces to L through a function g computable

in time nk. We will show a polynomial algorithm for SAT.
● We know that there is n0 such that for n≥n0 it holds that f(n)>nk

● For formulas w shorter than n0 the results can be hardcoded
● For |w|≥n0 we consider the word g(w); it has length ≤|w|k.

If g(w) is not of the form w'01f(|w'|), then it is not in L, we reject
(by fact 1, this can be checked in P). Otherwise w∈SAT ⇔ w'∈SAT

Ladner's theorem (*)

Mi works in time O(ni), every lang. in P is recognized by some Mi

L={w01f(|w|) : w∈SAT} for an appropriate f.
Fact 3: if SATP then L is not NP-hard
● Suppose that SAT reduces to L through a function g computable

in time nk. We will show a polynomial algorithm for SAT.
● We know that there is n0 such that for n≥n0 it holds that f(n)>nk

● For formulas w shorter than n0 the results can be hardcoded
● For |w|≥n0 we consider the word g(w); it has length ≤|w|k.

If g(w) is not of the form w'01f(|w'|), then it is not in L, we reject
(by fact 1, this can be checked in P). Otherwise w∈SAT ⇔ w'∈SAT

Moreover, either |w'|<n0, or we have that |w|k≥|g(w)|>f(|w'|)>|w'|k,
thus the new formula is shorter at least by 1.

● We repeat this in a loop; after a linear number of steps the input
length decreases below n0, and we obtain a result.

Ladner's theorem (*)

We have thus proved:
Theorem (Ladner 1975)
If P≠NP, then there is a problem, which is in NP\P, but is not
NP-hard with respect to polynomial-time reductions (so even more
with respect to logarithmic-space reductions).

Ladner's theorem

The CSP problem
Input: variables x1,...,xn, domains D1,...,Dn, constraints C1,...,Cm of the
form (t,R), where t is a tuple of k variables, and R is a k-ary relation
Question: are there x1∈D1,...,xn∈Dn satisfying C1,...,Cm?
(a constraint (t,R) is satisfied if the tuple of variables t belong to the relation R)

Clearly CSP∈NP

Most natural NP-complete problems can be easily reduced to CSP
(written as CSP).

CSP problems and the dichotomy conjecture

The CSP problem
Input: variables x1,...,xn, domains D1,...,Dn, constraints C1,...,Cm of the
form (t,R), where t is a tuple of k variables, and R is a k-ary relation
Question: are there x1∈D1,...,xn∈Dn satisfying C1,...,Cm?
(a constraint (t,R) is satisfied if the tuple of variables t belong to the relation R)

Clearly CSP∈NP

Most natural NP-complete problems can be easily reduced to CSP
(written as CSP).

Problem CSP(G) – like CSP, but only relations from a set G can be
used
Conjecture: for every set G we either have CSP(G)∈P,
or CSP(G) is NP-complete

CSP problems and the dichotomy conjecture

Is it the case that every problem not in NP is NP-hard?

Intuitively, NP-hard means hardest in NP, or even harder
(so problems harder than NP should be NP-hard).

Berman's theorem

Is it the case that every problem not in NP is NP-hard?

Intuitively, NP-hard means hardest in NP, or even harder
(so problems harder than NP should be NP-hard).

But the definition is: L is NP-hard if we can reduce every problem
from NP to L.
So: can we reduce every problem from NP, to every (more difficult)
problem not in NP?

Berman's theorem

Is it the case that every problem not in NP is NP-hard?

Intuitively, NP-hard means hardest in NP, or even harder
(so problems harder than NP should be NP-hard).

But the definition is: L is NP-hard if we can reduce every problem
from NP to L.
So: can we reduce every problem from NP, to every (more difficult)
problem not in NP?

The answer is no – we have the following theorem:

Theorem (Berman 1978)
If P≠NP, then no language over a single-letter alphabet is NP-hard
wrt. polynomial-time reductions (so even more wrt. logarithmic-space reductions).

Berman's theorem

Is it the case that every problem not in NP is NP-hard?

No – we have the following theorem:

Theorem (Berman 1978)
If P≠NP, then no language over a single-letter alphabet is NP-hard.

Notice that there is a language language over a single-letter alpha-
bet that requires doubly-exponential running time (i.e., surely is not
in NP): take any language L over {0,1} requiring triple-exponential
running time, and take {1|1w|2 : w∈L}, where |1w|2 is the number

encoded in binary as 1w.

There is also an undecidable language over a single-letter alpha-
bet: {1k : Mk halts on empty input}

These languages are not NP-hard, and not in NP (assuming P≠NP).

Berman's theorem

Theorem (Berman 1978)
If P≠NP, then no language over a single-letter alphabet is NP-hard.

Proof
Next week...

Berman's theorem (*)

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40

