
  

Computational complexity

lecture 6



  

Homework: 
available on the webpage,

deadline: 27.11.2017



  

Theorem (previous lecture)
NTIME(f(n))⊆DSPACE(f(n))

Theorem (now)

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Determinization



  

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
● We have a nondeterm. machine M working in space g(n)=O(f(n)).

W.l.o.g. we assume that M has only one working tape.

Determinization



  

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
● We have a nondeterm. machine M working in space g(n)=O(f(n)).

W.l.o.g. we assume that M has only one working tape.
● A configuration of M on a fixed input of length n can be 

represented as:
➔ contents of the working tape, with a marker over the position 

of the head – (2|G|)g(n) possibilities
➔ a position of the head on the input tape – n+2 possibilities
➔ a state (a constant number of possibilities)

● Altogether, there are dg(n)+log(n) configurations (for some constant d)

Determinization



  

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
● We have a nondeterm. machine M working in space g(n)=O(f(n)).

W.l.o.g. we assume that M has only one working tape.
● A configuration of M on a fixed input of length n can be 

represented as:
➔ contents of the working tape, with a marker over the position 

of the head – (2|G|)g(n) possibilities
➔ a position of the head on the input tape – n+2 possibilities
➔ a state (a constant number of possibilities)

● Altogether, there are dg(n)+log(n) configurations (for some constant d)
● Checking that there is an accepting run amount to checking

reachability in the (directed) configuration graph.
● Reachability can be solved in time polynomial in the size of the

graph (i.e., in the number of configurations).

Determinization



  

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
Remark 1 – If we want to generate all configurations using space 
g(n), we have to assume that g(n) is space constructible (or at least
constructible in time O(cf(n)+log(n))). But we do not need to do this – 
we can construct the configuration graph “on the fly”: we only need
to be able to generate configurations reachable from a given 
configuration in a single step (to this end, we space-constructibility
of f(n) is not needed).

Determinization



  

Theorem

NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Proof
Remark 1 – If we want to generate all configurations using space 
g(n), we have to assume that g(n) is space constructible (or at least
constructible in time O(cf(n)+log(n))). But we do not need to do this – 
we can construct the configuration graph “on the fly”: we only need
to be able to generate configurations reachable from a given 
configuration in a single step (to this end, we space-constructibility
of f(n) is not needed).
Remark 2 – the input is not treated as a part of a configuration; 
thus in order to generate configurations reachable from a given 
configuration in a single step we have to inspect the input word.

Determinization



  

Corollaries
L⊆NL⊆P⊆NP⊆PSPACE

Supposedly, all the inclusions are strict, but we only know that 
some of them has to be strict (space hierarchy theorem).

Determinization



  

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Fact: the reachability problem is in NL.

Proof: the machine remembers the current node, and guesses the
next node (alternatively: a path in the graph can be taken as a witness)

Reachability in a directed graph



  

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Theorem: the reachability problem is in DSPACE((log n)2).

Reachability in a directed graph



  

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Theorem: the reachability problem is in DSPACE((log n)2).

Proof: 
● consider a more general problem PATH(x,y,k): is there a path from

x to y of length at most 2k?

Reachability in a directed graph



  

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Theorem: the reachability problem is in DSPACE((log n)2).

Proof: 
● consider a more general problem PATH(x,y,k): is there a path from

x to y of length at most 2k?
● can be easily solved for k=0
● in order to solve this for some k>0, we browse all nodes z, and for

each of them we ask whether PATH(x,z,k-1) and PATH(z,y,k-1)

Reachability in a directed graph



  

Input: directed graph (as a list of edges, or as an incidence matrix, does not
matter), nodes x, y
Question: it is possible to reach y from x?

Theorem: the reachability problem is in DSPACE((log n)2).

Proof: 
● consider a more general problem PATH(x,y,k): is there a path from

x to y of length at most 2k?
● can be easily solved for k=0
● in order to solve this for some k>0, we browse all nodes z, and for

each of them we ask whether PATH(x,z,k-1) and PATH(z,y,k-1)
● recursion – we need a stack, on which we store triples (x,y,k)
● every triple has size log(n), and there are log(n) of them (it is 

enough to consider k≤log(n)) – thus memory usage is O((log n)2)

Reachability in a directed graph



  

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

(earlier, we have shown that NSPACE(f(n))⊆cℕDTIME(cf(n)+log(n))

Determinization



  

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Proof
● We have a nondet. machine M working in space g(n)=O(f(n)).
● Consider the graph of configurations fitting in space ≤g(n) – there 

is dg(n) of them, for some d, because g(n)=W(log n) 
● Every such configuration can be stored in space O(f(n))
● We are interested in reachability in this graph (to every accepting

configuration) – using the previous theorem, we obtain a solution
working in space O((log dg(n))2)=O(f(n)2)

Determinization



  

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Proof
● We have a nondet. machine M working in space g(n)=O(f(n)).
● Consider the graph of configurations fitting in space ≤g(n) – there 

is dg(n) of them, for some d, because g(n)=W(log n) 
● Every such configuration can be stored in space O(f(n))
● We are interested in reachability in this graph (to every accepting

configuration) – using the previous theorem, we obtain a solution
working in space O((log dg(n))2)=O(f(n)2)

● Remark 1: we do not compute and remember the whole graph;
we only check single edges at the very bottom of the recursion
(can y be reached from x in a single step)

Determinization



  

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Proof – Remark 2: 
● It would be useful to assume that g(n) is space constructible: 

we need to browse all accepting configurations / configurations z, 
fitting in space ≤g(n); we need to start with appropriate k=log(dg(n)) 

Determinization



  

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Proof – Remark 2: 
● It would be useful to assume that g(n) is space constructible: 

we need to browse all accepting configurations / configurations z, 
fitting in space ≤g(n); we need to start with appropriate k=log(dg(n)) 

● However, we can succeed without this assumption: 
for consecutive values of S we check whether M accepts in space
S, and whether M reaches a configuration in which it wants to
increase the memory usage over S (if so, we increase S by 1,
and we repeat)
 

Determinization



  

Theorem (Savitch, 1970)
NSPACE(f(n))⊆DSPACE(f(n)2) whenever f(n)=W(log n)

Corollaries: 

NPSPACE=PSPACE=coNPSPACE

Next time, we will also prove that NL=coNL.

It seems that nondeterminism has smaller impact on space 
complexity than on time complexity (since probably P≠NP≠coNP)
(but we do not know whether L=NL; it's quite possible that they differ)

Determinization



  

Idea: 
● problem A reduces to problem B if while knowing how to solve B 

it is easy to solve A as well
● if B is easy, then A is easy as well
● if A is difficult, then B is difficult as well

There are multiple kinds of reductions...

Reductions



  

An oracle machine, with an oracle for a language K:
● a deterministic Turing machine
● a separate “query tape” used for writing queries to the oracle 

(write only, i.e., the head mover only right; its length is not included
in the space complexity)

● special states q?, qyes, qno for calling the oracle
● after entering state q?, the state changes to qyes if the word on the

query tape is in K / to qno if it is not in K; the query tape becomes
empty and the head returns to its first cell (all this happens 
in a single step)

➔ A language L is Turing-reducible to K if there exist a machine with
an oracle for K, which recognizes L 

Turing reductions / Cook reductions



  

An oracle machine, with an oracle for a language K:
● a deterministic Turing machine
● a separate “query tape” used for writing queries to the oracle 

(write only, i.e., the head mover only right; its length is not included
in the space complexity)

● special states q?, qyes, qno for calling the oracle
● after entering state q?, the state changes to qyes if the word on the

query tape is in K / to qno if it is not in K; the query tape becomes
empty and the head returns to its first cell (all this happens 
in a single step)

➔ A language L is Turing-reducible to K if there exist a machine with
an oracle for K, which recognizes L 

➔ By limiting the resources of M, one can talk about polynomial-time
Turing reductions (often called Cook reductions), 
logarithmic-space Turing reductions, etc.

Turing reductions / Cook reductions



  

➔ A language L is Turing-reducible to K if there exist a machine with
an oracle for K, which recognizes L 

➔ By limiting the resources of M, one can talk about polynomial-time
Turing reductions (often called Cook reductions), 
logarithmic-space Turing reductions, etc.

Observe that every language L∈NP can be reduced to L∈coNP: 
it is enough to call the oracle for L, and negate the answer. 
But we don't know whether NP is contained in coNP.
This is rather inconvenient: we prefer not to have reductions 
between independent classes.
Thus Cook reductions are not so popular.
We prefer Karp reductions (next slide), having better properties.

Turing reductions / Cook reductions



  

Idea: we can make only a single query to the language K, and we
cannot negate the answer.

Karp reductions



  

Idea: we can make only a single query to the language K, and we
cannot negate the answer.

A language L⊆S* is Karp-reducible to K⊆G* if there exists a function
f:S*→G* computable in logarithmic space (sometimes: in polynomial 

time), such that w∈L⇔f(w)∈K for every word w∈S*.

Karp reductions



  

Idea: we can make only a single query to the language K, and we
cannot negate the answer.

A language L⊆S* is Karp-reducible to K⊆G* if there exists a function
f:S*→G* computable in logarithmic space (sometimes: in polynomial 

time), such that w∈L⇔f(w)∈K for every word w∈S*.

Fact: If L is Karp-reducible to K, then it is also Turing-reducible to K
(with the same restrictions on resources)

Proof
● We have a machine computing f.
● We treat is a machine with oracle for K, which at the very end asks

a single question.

Karp reductions



  

● Turing reductions and Karp reductions are for decision problems
(i.e., languages – does there exist …)

● For problems in NP we often want to find a solution / a witness
(e.g., a Hamiltonian cycle), not only decide that it exists.

● The idea of Levin reductions: additionally a witness for the first 
problem allows to recover a witness for the second problem.

Levin reductions



  

● Turing reductions and Karp reductions are for decision problems
(i.e., languages – does there exist …)

● For problems in NP we often want to find a solution / a witness
(e.g., a Hamiltonian cycle), not only decide that it exists.

● The idea of Levin reductions: additionally a witness for the first 
problem allows to recover a witness for the second problem.

Definition:
● It is a reduction between relations R1,R2⊆S*×S*

● R1 is Levin-reducible to R2 if there are functions f:S*→S*, 
g,h:S*×S*→S* (computable in logarithmic space / polynomial time)
such that:
R1(x,y)  R2(f(x),g(x,y))
R2(f(x),z)  R1(x,h(x,z))                   (for all x,y,z∈S*)

Levin reductions



  

● Turing reductions and Karp reductions are for decision problems
(i.e., languages – does there exist …)

● For problems in NP we often want to find a solution / a witness
(e.g., a Hamiltonian cycle), not only decide that it exists.

● The idea of Levin reductions: additionally a witness for the first 
problem allows to recover a witness for the second problem.

Definition:
● It is a reduction between relations R1,R2⊆S*×S*

● R1 is Levin-reducible to R2 if there are functions f:S*→S*, 
g,h:S*×S*→S* (computable in logarithmic space / polynomial time)
such that:
R1(x,y)  R2(f(x),g(x,y))
R2(f(x),z)  R1(x,h(x,z))                   (for all x,y,z∈S*)

Fact
The function f itself gives a Karp-reduction from R1 to R2 

Levin reductions



  

Which reductions are better?
● Turing-reductions are closer to intuitions (e.g. if we can search for

a Hamiltonian cycle in a single graph, then we can also search for
Hamiltonian cycles in two graphs – but how to show a Karp
reduction)

● but Turing reductions are too easy to find, e.g., every language
can be reduced to its complement, which blurs differences
between NP and coNP

● in practice, it usually possible to show a Karp reduction, thus since
this notion is stronger, we use it

● for the same reason, we prefer reductions in logarithmic space 
over reductions in polynomial time

● in practice, we usually can even show a Levin reduction, but these
are reductions between relations, not between languages, so
they are not so popular

Reductions



  

Let C be a complexity class.
A language L is C-complete (with respect to logarithmic-space Karp
reductions) if 
● L∈C, and 
● L is C-hard, i.e., every language from C Karp-reduces to L in

logarithmic space

lt is surprising that complete problems exist at all!

Completeness



  

Theorem
The following language is NP-complete

TMSAT={(M,1t,w) : M accepts w in at most t steps}
 (where M is a nondeterministic Turing machine)

NP-completeness



  

Theorem
The following language is NP-complete

TMSAT={(M,1t,w) : M accepts w in at most t steps}
 (where M is a nondeterministic Turing machine)

Proof
Clearly TMSAT∈NP: we simulate the run of M on w for at most t 
steps (this is polynomial in |M|+t+|w|).
NP-hardness: Consider a language L∈NP, recognized by a nondet.
machine M working in polynomial time T(n). Then for every w,
w∈L⇔(M,1T(|w|),w)∈TMSAT, and the word (M,1T(|w|),w) can be 
computed in logarithmic space.

NP-completeness



  

Theorem
The following language is NP-complete

TMSAT={(M,1t,w) : M accepts w in at most t steps}
 (where M is a nondeterministic Turing machine)

Proof
Clearly TMSAT∈NP: we simulate the run of M on w for at most t 
steps (this is polynomial in |M|+t+|w|).
NP-hardness: Consider a language L∈NP, recognized by a nondet.
machine M working in polynomial time T(n). Then for every w,
w∈L⇔(M,1T(|w|),w)∈TMSAT, and the word (M,1T(|w|),w) can be 
computed in logarithmic space.

TMSAT is not a very useful problem.
Are there natural problems that are NP-complete?

NP-completeness



  

SAT problem: for a given boolean formula with variables (written in
the infix notation, with full bracketing, variables written as numbers)
decide whether it is satisfiable (i.e., whether there is a valuation of
variables under which the formula evaluates to true)
e.g., ((x1∨x2)∧((¬x1)∨(¬x2))) is true for x1=1,x2=0

Theorem (Cook, 1971)
The SAT problem is NP-complete.

NP-completeness of the SAT problem



  

SAT problem: for a given boolean formula with variables (written in
the infix notation, with full bracketing, variables written as numbers)
decide whether it is satisfiable (i.e., whether there is a valuation of
variables under which the formula evaluates to true)
e.g., ((x1∨x2)∧((¬x1)∨(¬x2))) is true for x1=1,x2=0

Theorem (Cook, 1971)
The SAT problem is NP-complete.
Proof
● It is easy to see that SAT∈NP – we guess a valuation which 

makes the formula true
● It remains to prove NP-hardness

NP-completeness of the SAT problem



  

● Fix a language L recognized by a nondeterministic machine M 
in time bounded by a polynomial p(n)

● Basing on the input word w, we need to construct (in logarithmic 
space) a formula f such that w∈L ⇔ f is satisfiable

● Idea: variables store a run of M on the word w, 
the formula ensures correctness of the run.
[somehow similarly as when converting a machine into a circuit]

NP-completeness of the SAT problem



  

● Fix a language L recognized by a nondeterministic machine M 
in time bounded by a polynomial p(n)

● Basing on the input word w, we need to construct (in logarithmic 
space) a formula f such that w∈L ⇔ f is satisfiable

● Idea: variables store a run of M on the word w, 
the formula ensures correctness of the run.
[somehow similarly as when converting a machine into a circuit]

● Three kinds of variables:
➔ tick – in step k, the letter in the i-th cell of the tape is c
➔ sqk – in step k the machine is in state q
➔ hik – in step k the head is on position i

● we have polynomially many variables –  O((p(n))2)

NP-completeness of the SAT problem



  

Variables:
➔ tick – in step k, the letter in the i-th cell of the tape is c
➔ sqk – in step k the machine is in state q
➔ hik – in step k the head is on position i

The formula – a conjunctions of things to check (of polynomial size):
● the initial tape contents, head position, and state are as expected:

sq01
∧h01∧t0▹1∧t1w11

∧...∧tnwn1
∧t(n+1)⟂1∧...∧tp(n)⟂1

NP-completeness of the SAT problem



  

Variables:
➔ tick – in step k, the letter in the i-th cell of the tape is c
➔ sqk – in step k the machine is in state q
➔ hik – in step k the head is on position i

The formula – a conjunctions of things to check (of polynomial size):
● the initial tape contents, head position, and state are as expected:

sq01
∧h01∧t0▹1∧t1w11

∧...∧tnwn1
∧t(n+1)⟂1∧...∧tp(n)⟂1

● at most one state at a moment
¬sqk∨¬sq'k   when 1≤k≤p(n), q≠q'

NP-completeness of the SAT problem



  

Variables:
➔ tick – in step k, the letter in the i-th cell of the tape is c
➔ sqk – in step k the machine is in state q
➔ hik – in step k the head is on position i

The formula – a conjunctions of things to check (of polynomial size):
● the initial tape contents, head position, and state are as expected:

sq01
∧h01∧t0▹1∧t1w11

∧...∧tnwn1
∧t(n+1)⟂1∧...∧tp(n)⟂1

● at most one state at a moment
¬sqk∨¬sq'k   when 1≤k≤p(n), q≠q'

● at most one head position at a moment
● at most one symbol in a cell at a moment
● symbols not under the head remain unchanged

hjk∧tick→tic(k+1)   when 1≤k≤p(n), q≠q', i≠j'

NP-completeness of the SAT problem



  

Variables:
➔ tick – in step k, the letter in the i-th cell of the tape is c
➔ sqk – in step k the machine is in state q
➔ hik – in step k the head is on position i

The formula – a conjunctions of things to check (of polynomial size):
● the initial tape contents, head position, and state are as expected:

sq01
∧h01∧t0▹1∧t1w11

∧...∧tnwn1
∧t(n+1)⟂1∧...∧tp(n)⟂1

● at most one state at a moment
¬sqk∨¬sq'k   when 1≤k≤p(n), q≠q'

● at most one head position at a moment
● at most one symbol in a cell at a moment
● symbols not under the head remain unchanged

hjk∧tick→tic(k+1)   when 1≤k≤p(n), q≠q', i≠j'
● a transition is performed (an alternative over possible transitions):

tick∧sqk∧hik→∨(tic'(k+1)∧sq'(k+1)∧h(i1)(k+1))

NP-completeness of the SAT problem



  

The formula – a conjunctions of things to check (of polynomial size):
● the initial tape contents, head position, and state are as expected:

sq01
∧h01∧t0▹1∧t1w11

∧...∧tnwn1
∧t(n+1)⟂1∧...∧tp(n)⟂1

● at most one state at a moment
¬sqk∨¬sq'k   when 1≤k≤p(n), q≠q'

● at most one head position at a moment
● at most one symbol in a cell at a moment
● symbols not under the head remain unchanged

hjk∧tick→tic(k+1)   when 1≤k≤p(n), q≠q', i≠j'
● a transition is performed (an alternative over possible transitions):

tick∧sqk∧hik→∨(tic'(k+1)∧sq'(k+1)∧h(i1)(k+1))
● acceptance:

∨sqk

This formula can be easily generated in logarithmic space.

NP-completeness of the SAT problem



  

There is a long list of NP-complete problems:
● Hamiltonian path problem
● Traveling salesman problem
● Clique problem
● Knapsack problem
● Subgraph isomorphism problem
● Subset sum problem
● Vertex cover problem
● Independent set problem
● Dominating set problem
● Graph coloring problem
NP-hardness shown by reduction from some other NP-complete
problem (e.g., from SAT).
Theorem
If L1 reduces to L2, and L2 reduces to L3, then L1 reduces to L3.

Proof
Functions computable in logarithmic space can be composed.

NP-completeness



  

HORNSAT problem: satisfiability of CNF formulas in which every 
clause has at most 1 positive literal
e.g., (x1∨¬x2∨¬x3)∧x2∧(¬x1∨¬x2) is of this form

formulas of this form can be seen as implications (without alterna-
tives on the right): (x2∧x3→x1)∧(⊤→x2)∧(x1∧x2→⊥)

e.g., (x1∨x2)∧(¬x1∨¬x2) is not of this form
(there is an alternative on the right of an implication) 

Theorem
The HORNSAT problem is P-complete.

P-completeness of HORNSAT



  

HORNSAT problem: satisfiability of CNF formulas in which every 
clause has at most 1 positive literal
e.g., (x1∨¬x2∨¬x3)∧x2∧(¬x1∨¬x2) is of this form

formulas of this form can be seen as implications (without alterna-
tives on the right): (x2∧x3→x1)∧(⊤→x2)∧(x1∧x2→⊥)

e.g., (x1∨x2)∧(¬x1∨¬x2) is not of this form
(there is an alternative on the right of an implication) 

Theorem
The HORNSAT problem is P-complete.
Proof
HORNSAT is in P: saturation (as in Prolog) – initially, we suppose
that all variables are false; then we change false to true according
implications in the formula

P-completeness of HORNSAT



  

HORNSAT problem: satisfiability of CNF formulas in which every 
clause has at most 1 positive literal
e.g., (x1∨¬x2∨¬x3)∧x2∧(¬x1∨¬x2) is of this form

formulas of this form can be seen as implications (without alterna-
tives on the right): (x2∧x3→x1)∧(⊤→x2)∧(x1∧x2→⊥)

e.g., (x1∨x2)∧(¬x1∨¬x2) is not of this form
(there is an alternative on the right of an implication) 

Theorem
The HORNSAT problem is P-complete.
Proof
HORNSAT is in P: saturation (as in Prolog) – initially, we suppose
that all variables are false; then we change false to true according
implications in the formula
P-hardness: if a machine is deterministic, the formula from the
previous proof is (almost) in the HORN-CNF form
(an alternative of positive literals was appearing only while choosing
a transition) 

P-completeness of HORNSAT



  

Tutorials: the class polyL has no complete problems.

Corollary: P≠polyL
● however, we don't know any specific problem on which they differ
● we do don't even know whether they are incomparable, 

or whether some of them is contained in the other

polyL-completeness



  

Almost every language in L is complete
(except the empty language, and the language containing all words)

L-completeness



  

Theorem
Reachability in a directed graph is NL-complete

NL-completeness



  

Theorem
Reachability in a directed graph is NL-complete
Proof
It belongs to NL: we just walk in the graph
Hardness:
● Let L be recognized by a nondeterministic machine M working in

logarithmic space
● we can assume that at the end M erases the contents of the tape,

so that there is only one accepting configuration
● we get a word w of length n, we want to construct a graph
● as nodes we take configurations (there are polynomially many, 

as they are of logarithmic size)
● for every configuration, it is easy to write (in L) its successors,
● it is also easy to enumerate (in L) all configurations
● question to REACHABILITY: is there a path from the initial

configuration (for word w) to the accepting configuration?

NL-completeness


	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52

