Computational complexity

lecture 6

Homework: available on the webpage, deadline: 27.11.2017

Determinization

Theorem (previous lecture)
$\operatorname{NTIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n))$
Theorem (now)
$\left.\operatorname{NSPACE}(f(n)) \subseteq \cup_{c \in \mathbb{N}} \operatorname{DTIME}\left(c^{(n)}\right)+\log (n)\right)$

Determinization

Theorem

$\operatorname{NSPACE}(f(n)) \subseteq \cup_{c \in \mathbb{N}} \operatorname{DTIME}\left(c^{f(n)+\log (n)}\right)$
Proof

- We have a nondeterm. machine M working in space $g(n)=O(f(n))$. W.l.o.g. we assume that M has only one working tape.

Determinization

Theorem

$\operatorname{NSPACE}(f(n)) \subseteq \cup_{c \in \mathbb{N}} \operatorname{DTIME}(c f(n)+\log (n))$
Proof

- We have a nondeterm. machine M working in space $g(n)=O(f(n))$. W.l.o.g. we assume that M has only one working tape.
- A configuration of M on a fixed input of length n can be represented as:
\rightarrow contents of the working tape, with a marker over the position of the head - $(2|\Gamma|)^{g(n)}$ possibilities
\rightarrow a position of the head on the input tape $-n+2$ possibilities
\rightarrow a state (a constant number of possibilities)
- Altogether, there are $d^{g(n)+\log (n)}$ configurations (for some constant d)

Determinization

Theorem

$\operatorname{NSPACE}(f(n)) \subseteq \cup_{c \in \mathbb{N}} \operatorname{DTIME}\left(c^{f(n)+\log (n)}\right)$
Proof

- We have a nondeterm. machine M working in space $g(n)=O(f(n))$. W.I.o.g. we assume that M has only one working tape.
- A configuration of M on a fixed input of length n can be represented as:
\rightarrow contents of the working tape, with a marker over the position of the head - $(2|\Gamma|)^{g(n)}$ possibilities
\rightarrow a position of the head on the input tape $-n+2$ possibilities
\rightarrow a state (a constant number of possibilities)
- Altogether, there are $d g(n)+\log (n)$ configurations (for some constant d)
- Checking that there is an accepting run amount to checking reachability in the (directed) configuration graph.
- Reachability can be solved in time polynomial in the size of the graph (i.e., in the number of configurations).

Determinization

Theorem

$\operatorname{NSPACE}(f(n)) \subseteq \bigcup_{c \in \mathbb{N}} \operatorname{DTIME}\left(c^{f(n)+\log (n)}\right)$
Proof
Remark 1 - If we want to generate all configurations using space $g(n)$, we have to assume that $g(n)$ is space constructible (or at least constructible in time $\left.\left.O\left(c^{(n)}\right)+\log (n)\right)\right)$. But we do not need to do this we can construct the configuration graph "on the fly": we only need to be able to generate configurations reachable from a given configuration in a single step (to this end, we space-constructibility of $f(n)$ is not needed).

Determinization

Theorem

$\operatorname{NSPACE}(f(n)) \subseteq \bigcup_{c \in \mathbb{N}} \operatorname{DTIME}\left(c^{f(n)+\log (n)}\right)$
Proof
Remark 1 - If we want to generate all configurations using space $g(n)$, we have to assume that $g(n)$ is space constructible (or at least constructible in time $O(c f(n)+\log (n)))$. But we do not need to do this we can construct the configuration graph "on the fly": we only need to be able to generate configurations reachable from a given configuration in a single step (to this end, we space-constructibility of $f(n)$ is not needed).
Remark 2 - the input is not treated as a part of a configuration; thus in order to generate configurations reachable from a given configuration in a single step we have to inspect the input word.

Determinization

Corollaries

$\mathbf{L} \subseteq \mathbf{N L} \subseteq \mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S P A C E}$

Supposedly, all the inclusions are strict, but we only know that some of them has to be strict (space hierarchy theorem).

Reachability in a directed graph

Input: directed graph (as a list of edges, or as an incidence matrix, does not matter), nodes x, y
Question: it is possible to reach y from x ?
Fact: the reachability problem is in NL.
Proof: the machine remembers the current node, and guesses the next node (alternatively: a path in the graph can be taken as a witness)

Reachability in a directed graph

Input: directed graph (as a list of edges, or as an incidence matrix, does not matter), nodes x, y
Question: it is possible to reach y from x ?
Theorem: the reachability problem is in DSPACE $\left((\log n)^{2}\right)$.

Reachability in a directed graph

Input: directed graph (as a list of edges, or as an incidence matrix, does not matter), nodes x, y
Question: it is possible to reach y from x ?
Theorem: the reachability problem is in DSPACE $\left((\log n)^{2}\right)$.
Proof:

- consider a more general problem $\operatorname{PATH}(x, y, k)$: is there a path from x to y of length at most 2^{k} ?

Reachability in a directed graph

Input: directed graph (as a list of edges, or as an incidence matrix, does not matter), nodes x, y
Question: it is possible to reach y from x ?
Theorem: the reachability problem is in DSPACE $\left((\log n)^{2}\right)$.
Proof:

- consider a more general problem $\operatorname{PATH}(x, y, k)$: is there a path from x to y of length at most 2^{k} ?
- can be easily solved for $k=0$
- in order to solve this for some $k>0$, we browse all nodes z, and for each of them we ask whether PATH ($x, z, k-1$) and $\operatorname{PATH}(z, y, k-1)$

Reachability in a directed graph

Input: directed graph (as a list of edges, or as an incidence matrix, does not matter), nodes x, y
Question: it is possible to reach y from x ?
Theorem: the reachability problem is in DSPACE $\left((\log n)^{2}\right)$.
Proof:

- consider a more general problem $\operatorname{PATH}(x, y, k)$: is there a path from x to y of length at most 2^{k} ?
- can be easily solved for $k=0$
- in order to solve this for some $k>0$, we browse all nodes z, and for each of them we ask whether PATH ($x, z, k-1$) and PATH(z,y,k-1)
- recursion - we need a stack, on which we store triples (x, y, k)
- every triple has size $\log (n)$, and there are $\log (n)$ of them (it is enough to consider $k \leq \log (n)$) - thus memory usage is $O\left((\log n)^{2}\right)$

Determinization

Theorem (Savitch, 1970)

NSPACE $(f(n)) \subseteq \operatorname{DSPACE}\left(f(n)^{2}\right)$ whenever $f(n)=\Omega(\log n)$
(earlier, we have shown that $\left.\operatorname{NSPACE}(f(n)) \subseteq \cup_{c \in \mathbb{N}} \operatorname{DTIME}\left(c^{f(n)}\right)+\log (n)\right)$

Determinization

Theorem (Savitch, 1970)
$\operatorname{NSPACE}(f(n)) \subseteq \operatorname{DSPACE}\left(f(n)^{2}\right)$ whenever $f(n)=\Omega(\log n)$
Proof

- We have a nondet. machine M working in space $g(n)=O(f(n))$.
- Consider the graph of configurations fitting in space $\leq g(n)$ - there is $d g(n)$ of them, for some d, because $g(n)=\Omega(\log n)$
- Every such configuration can be stored in space $O(f(n))$
- We are interested in reachability in this graph (to every accepting configuration) - using the previous theorem, we obtain a solution working in space $O\left((\log d g(n))^{2}\right)=O\left(f(n)^{2}\right)$

Determinization

Theorem (Savitch, 1970)

$\operatorname{NSPACE}(f(n)) \subseteq \operatorname{DSPACE}\left(f(n)^{2}\right)$ whenever $f(n)=\Omega(\log n)$
Proof

- We have a nondet. machine M working in space $g(n)=O(f(n))$.
- Consider the graph of configurations fitting in space $\leq g(n)$ - there is $d g(n)$ of them, for some d, because $g(n)=\Omega(\log n)$
- Every such configuration can be stored in space $O(f(n))$
- We are interested in reachability in this graph (to every accepting configuration) - using the previous theorem, we obtain a solution working in space $O\left((\log d g(n))^{2}\right)=O\left(f(n)^{2}\right)$
- Remark 1: we do not compute and remember the whole graph; we only check single edges at the very bottom of the recursion (can y be reached from x in a single step)

Determinization

Theorem (Savitch, 1970)

$\operatorname{NSPACE}(f(n)) \subseteq \operatorname{DSPACE}\left(f(n)^{2}\right)$ whenever $f(n)=\Omega(\log n)$
Proof - Remark 2:

- It would be useful to assume that $g(n)$ is space constructible: we need to browse all accepting configurations / configurations z, fitting in space $\leq g(n)$; we need to start with appropriate $k=\log (d g(n))$

Determinization

Theorem (Savitch, 1970)
$\operatorname{NSPACE}(f(n)) \subseteq \operatorname{DSPACE}\left(f(n)^{2}\right)$ whenever $f(n)=\Omega(\log n)$
Proof - Remark 2:

- It would be useful to assume that $g(n)$ is space constructible: we need to browse all accepting configurations / configurations z, fitting in space $\leq g(n)$; we need to start with appropriate $k=\log (d g(n))$
- However, we can succeed without this assumption: for consecutive values of S we check whether M accepts in space S, and whether M reaches a configuration in which it wants to increase the memory usage over S (if so, we increase S by 1 , and we repeat)

Determinization

Theorem (Savitch, 1970) $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{DSPACE}\left(f(n)^{2}\right)$ whenever $f(n)=\Omega(\log n)$

Corollaries:

NPSPACE=PSPACE=coNPSPACE

Next time, we will also prove that NL=coNL.
It seems that nondeterminism has smaller impact on space complexity than on time complexity (since probably $\mathbf{P} \neq \mathbf{N P} \neq \mathbf{c o N P}$)
(but we do not know whether $\mathbf{L}=\mathbf{N L}$; it's quite possible that they differ)

Reductions

Idea:

- problem A reduces to problem B if while knowing how to solve B it is easy to solve A as well
- if B is easy, then A is easy as well
- if A is difficult, then B is difficult as well

There are multiple kinds of reductions...

Turing reductions / Cook reductions

An oracle machine, with an oracle for a language K :

- a deterministic Turing machine
- a separate "query tape" used for writing queries to the oracle (write only, i.e., the head mover only right; its length is not included in the space complexity)
- special states $q_{?}, q_{\text {yes }}, q_{\text {no }}$ for calling the oracle
- after entering state $q_{?}$, the state changes to $q_{y e s}$ if the word on the query tape is in $K /$ to $q_{n o}$ if it is not in K; the query tape becomes empty and the head returns to its first cell (all this happens in a single step)
\rightarrow A language L is Turing-reducible to K if there exist a machine with an oracle for K, which recognizes L

Turing reductions / Cook reductions

An oracle machine, with an oracle for a language K :

- a deterministic Turing machine
- a separate "query tape" used for writing queries to the oracle (write only, i.e., the head mover only right; its length is not included in the space complexity)
- special states $q_{?}, q_{\text {yes }}, q_{n o}$ for calling the oracle
- after entering state $q_{?}$, the state changes to $q_{y e s}$ if the word on the query tape is in $K /$ to $q_{n o}$ if it is not in K; the query tape becomes empty and the head returns to its first cell (all this happens in a single step)
\rightarrow A language L is Turing-reducible to K if there exist a machine with an oracle for K, which recognizes L
\rightarrow By limiting the resources of M, one can talk about polynomial-time Turing reductions (often called Cook reductions), logarithmic-space Turing reductions, etc.

Turing reductions / Cook reductions

\rightarrow A language L is Turing-reducible to K if there exist a machine with an oracle for K, which recognizes L
\rightarrow By limiting the resources of M, one can talk about polynomial-time Turing reductions (often called Cook reductions), logarithmic-space Turing reductions, etc.

Observe that every language $L \in \mathbf{N P}$ can be reduced to $\bar{L} \in \mathbf{c o N P}$: it is enough to call the oracle for \bar{L}, and negate the answer. But we don't know whether NP is contained in coNP.
This is rather inconvenient: we prefer not to have reductions between independent classes.
Thus Cook reductions are not so popular.
We prefer Karp reductions (next slide), having better properties.

Karp reductions

Idea: we can make only a single query to the language K, and we cannot negate the answer.

Karp reductions

Idea: we can make only a single query to the language K, and we cannot negate the answer.
A language $L \subseteq \Sigma^{*}$ is Karp-reducible to $K \subseteq \Gamma^{*}$ if there exists a function $f: \Sigma^{*} \rightarrow \Gamma^{*}$ computable in logarithmic space (sometimes: in polynomial time), such that $w \in L \Leftrightarrow f(w) \in K$ for every word $w \in \Sigma^{*}$.

Karp reductions

Idea: we can make only a single query to the language K, and we cannot negate the answer.
A language $L \subseteq \Sigma^{*}$ is Karp-reducible to $K \subseteq \Gamma^{*}$ if there exists a function $f: \Sigma^{*} \rightarrow \Gamma^{*}$ computable in logarithmic space (sometimes: in polynomial time), such that $w \in L \Leftrightarrow f(w) \in K$ for every word $w \in \Sigma^{*}$.

Fact: If L is Karp-reducible to K, then it is also Turing-reducible to K (with the same restrictions on resources)

Proof

- We have a machine computing f.
- We treat is a machine with oracle for K, which at the very end asks a single question.

Levin reductions

- Turing reductions and Karp reductions are for decision problems (i.e., languages - does there exist ...)
- For problems in NP we often want to find a solution / a witness (e.g., a Hamiltonian cycle), not only decide that it exists.
- The idea of Levin reductions: additionally a witness for the first problem allows to recover a witness for the second problem.

Levin reductions

- Turing reductions and Karp reductions are for decision problems (i.e., languages - does there exist ...)
- For problems in NP we often want to find a solution / a witness (e.g., a Hamiltonian cycle), not only decide that it exists.
- The idea of Levin reductions: additionally a witness for the first problem allows to recover a witness for the second problem.

Definition:

- It is a reduction between relations $R_{1}, R_{2} \subseteq \Sigma^{*} \times \Sigma^{*}$
- R_{1} is Levin-reducible to R_{2} if there are functions $f: \Sigma^{*} \rightarrow \Sigma^{*}$,
$g, h: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$ (computable in logarithmic space / polynomial time) such that:

$$
\begin{aligned}
& R_{1}(x, y) \Rightarrow R_{2}(f(x), g(x, y)) \\
& \left.R_{2}(f(x), z) \Rightarrow R_{1}(x, h(x, z)) \quad \text { (for all } x, y, z \in \Sigma^{*}\right)
\end{aligned}
$$

Levin reductions

- Turing reductions and Karp reductions are for decision problems (i.e., languages - does there exist ...)
- For problems in NP we often want to find a solution / a witness (e.g., a Hamiltonian cycle), not only decide that it exists.
- The idea of Levin reductions: additionally a witness for the first problem allows to recover a witness for the second problem.

Definition:

- It is a reduction between relations $R_{1}, R_{2} \subseteq \Sigma^{*} \times \Sigma^{*}$
- R_{1} is Levin-reducible to R_{2} if there are functions $f: \Sigma^{*} \rightarrow \Sigma^{*}$,
$g, h: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$ (computable in logarithmic space / polynomial time) such that:

```
R1(x,y)=> R (f(x),g(x,y))
R2(f(x),z)=>\mp@subsup{R}{1}{}(x,h(x,z)) (for all }x,y,z\in\mp@subsup{\Sigma}{}{*}
```

Fact
The function f itself gives a Karp-reduction from $\exists R_{1}$ to $\exists R_{2}$

Reductions

Which reductions are better?

- Turing-reductions are closer to intuitions (e.g. if we can search for a Hamiltonian cycle in a single graph, then we can also search for Hamiltonian cycles in two graphs - but how to show a Karp reduction)
- but Turing reductions are too easy to find, e.g., every language can be reduced to its complement, which blurs differences between NP and coNP
- in practice, it usually possible to show a Karp reduction, thus since this notion is stronger, we use it
- for the same reason, we prefer reductions in logarithmic space over reductions in polynomial time
- in practice, we usually can even show a Levin reduction, but these are reductions between relations, not between languages, so they are not so popular

Completeness

Let C be a complexity class.
A language L is C-complete (with respect to logarithmic-space Karp reductions) if

- $L \in C$, and
- L is $\underline{C \text {-hard, i.e., every language from } C \text { Karp-reduces to } L \text { in }, ~}$ logarithmic space

It is surprising that complete problems exist at all!

NP-completeness

Theorem
The following language is NP-complete
$T M S A T=\left\{\left(M, 1^{t}, w\right): M\right.$ accepts w in at most t steps $\}$ (where M is a nondeterministic Turing machine)

NP-completeness

Theorem

The following language is NP-complete
$T M S A T=\left\{\left(M, 1^{t}, w\right): M\right.$ accepts w in at most t steps $\}$ (where M is a nondeterministic Turing machine)

Proof

Clearly TMSAT NP: we simulate the run of M on w for at most t steps (this is polynomial in $|M|+t+|w|$).
NP-hardness: Consider a language $L \in \mathbf{N P}$, recognized by a nondet. machine M working in polynomial time $T(n)$. Then for every w, $w \in L \Leftrightarrow\left(M, 1^{T(|w|)}, w\right) \in T M S A T$, and the word $\left(M, 1^{T(|w|)}, w\right)$ can be computed in logarithmic space.

NP-completeness

Theorem

The following language is NP-complete
TMSAT $=\left\{\left(M, 1^{t}, w\right): M\right.$ accepts w in at most t steps $\}$ (where M is a nondeterministic Turing machine)

Proof

Clearly TMSAT NP: we simulate the run of M on w for at most t steps (this is polynomial in $|M|+t+|w|$).
NP-hardness: Consider a language $L \in \mathbf{N P}$, recognized by a nondet. machine M working in polynomial time $T(n)$. Then for every w, $w \in L \Leftrightarrow\left(M, 1^{T(|w|)}, w\right) \in T M S A T$, and the word $\left(M, 1^{T(|w|)}, w\right)$ can be computed in logarithmic space.

TMSAT is not a very useful problem.
Are there natural problems that are NP-complete?

NP-completeness of the SAT problem

SAT problem: for a given boolean formula with variables (written in the infix notation, with full bracketing, variables written as numbers) decide whether it is satisfiable (i.e., whether there is a valuation of variables under which the formula evaluates to true) e.g., $\left(\left(x_{1} \vee x_{2}\right) \wedge\left(\left(\neg x_{1}\right) \vee\left(\neg x_{2}\right)\right)\right)$ is true for $x_{1}=1, x_{2}=0$

Theorem (Cook, 1971)
The SAT problem is NP-complete.

NP-completeness of the SAT problem

SAT problem: for a given boolean formula with variables (written in the infix notation, with full bracketing, variables written as numbers) decide whether it is satisfiable (i.e., whether there is a valuation of variables under which the formula evaluates to true)
e.g., $\left(\left(x_{1} \vee x_{2}\right) \wedge\left(\left(\neg x_{1}\right) \vee\left(\neg x_{2}\right)\right)\right)$ is true for $x_{1}=1, x_{2}=0$

Theorem (Cook, 1971)
The SAT problem is NP-complete.
Proof

- It is easy to see that $S A T \in \mathbf{N P}$ - we guess a valuation which makes the formula true
- It remains to prove NP-hardness

NP-completeness of the SAT problem

- Fix a language L recognized by a nondeterministic machine M in time bounded by a polynomial $p(n)$
- Basing on the input word w, we need to construct (in logarithmic space) a formula ϕ such that $w \in L \Leftrightarrow \phi$ is satisfiable
- Idea: variables store a run of M on the word w, the formula ensures correctness of the run. [somehow similarly as when converting a machine into a circuit]

NP-completeness of the SAT problem

- Fix a language L recognized by a nondeterministic machine M in time bounded by a polynomial $p(n)$
- Basing on the input word w, we need to construct (in logarithmic space) a formula ϕ such that $w \in L \Leftrightarrow \phi$ is satisfiable
- Idea: variables store a run of M on the word w, the formula ensures correctness of the run.
[somehow similarly as when converting a machine into a circuit]
- Three kinds of variables:
$\rightarrow t_{i c k}$ - in step k, the letter in the i-th cell of the tape is c
$\rightarrow s_{q k}-$ in step k the machine is in state q
$\rightarrow h_{i k}$ - in step k the head is on position i
- we have polynomially many variables - $O\left((p(n))^{2}\right)$

NP-completeness of the SAT problem

Variables:
$\rightarrow t_{\text {ick }}$ - in step k, the letter in the i-th cell of the tape is c
$\rightarrow s_{q k}-$ in step k the machine is in state q
$\rightarrow h_{i k}$ - in step k the head is on position i
The formula - a conjunctions of things to check (of polynomial size):

- the initial tape contents, head position, and state are as expected:

$$
s_{q_{0} 1} \wedge h_{01} \wedge t_{0 \triangleright 1} \wedge t_{1 w_{1} 1} \wedge \ldots \wedge t_{n w_{n}} 1 t_{(n+1) \perp 1} \wedge \ldots \wedge t_{p(n) \perp 1}
$$

NP-completeness of the SAT problem

Variables:
$\rightarrow t_{\text {ick }}$ - in step k, the letter in the i-th cell of the tape is c
$\rightarrow s_{q k}-$ in step k the machine is in state q
$\rightarrow h_{i k}$ - in step k the head is on position i
The formula - a conjunctions of things to check (of polynomial size):

- the initial tape contents, head position, and state are as expected:

$$
s_{q_{0} 1} \wedge h_{01} \wedge t_{0 \triangleright 1} \wedge t_{1 w_{1} 1} \wedge \ldots \wedge t_{n w_{n}} \wedge t_{(n+1) \perp 1} \wedge \ldots \wedge t_{p(n) \perp 1}
$$

- at most one state at a moment

$$
\neg s_{q k} \vee \neg s_{q^{\prime} k} \text { when } 1 \leq k \leq p(n), q \neq q^{\prime}
$$

NP-completeness of the SAT problem

Variables:
$\rightarrow t_{\text {ick }}$ - in step k, the letter in the i-th cell of the tape is c
$\rightarrow s_{q k}-$ in step k the machine is in state q
$\rightarrow h_{i k}$ - in step k the head is on position i
The formula - a conjunctions of things to check (of polynomial size):

- the initial tape contents, head position, and state are as expected:

$$
s_{q_{0} 1} \wedge h_{01} \wedge t_{0 \triangleright 1} \wedge t_{1 w_{1} 1} \wedge \ldots \wedge t_{n w_{n}} 1 t_{(n+1) \perp 1} \wedge \ldots \wedge t_{p(n) \perp 1}
$$

- at most one state at a moment

$$
\neg s_{q k} \vee \neg s_{q^{\prime} k} \quad \text { when } 1 \leq k \leq p(n), q \neq q^{\prime}
$$

- at most one head position at a moment
- at most one symbol in a cell at a moment
- symbols not under the head remain unchanged

$$
h_{j k} \wedge t_{i c k} \rightarrow t_{i c(k+1)} \text { when } 1 \leq k \leq p(n), q \neq q^{\prime}, i \neq j^{\prime}
$$

NP-completeness of the SAT problem

Variables:
$\rightarrow t_{\text {ick }}$ - in step k, the letter in the i-th cell of the tape is c
$\rightarrow s_{q k}-$ in step k the machine is in state q
$\rightarrow h_{i k}$ - in step k the head is on position i
The formula - a conjunctions of things to check (of polynomial size):

- the initial tape contents, head position, and state are as expected:

$$
s_{q_{0} 1} \wedge h_{01} \wedge t_{0 \triangleright 1} \wedge t_{1 w_{1} 1} \wedge \ldots \wedge t_{n w_{n}} 1 t_{(n+1) \perp 1} \wedge \ldots \wedge t_{p(n) \perp 1}
$$

- at most one state at a moment

$$
\neg s_{q k} \vee \neg s_{q^{\prime} k} \text { when } 1 \leq k \leq p(n), q \neq q^{\prime}
$$

- at most one head position at a moment
- at most one symbol in a cell at a moment
- symbols not under the head remain unchanged

$$
h_{j k} \wedge t_{i c k} \rightarrow t_{i c(k+1)} \text { when } 1 \leq k \leq p(n), q \neq q^{\prime}, i \neq j^{\prime}
$$

- a transition is performed (an alternative over possible transitions):

$$
t_{i c k} \wedge s_{q k} \wedge h_{i k} \rightarrow V_{\left(t_{i c^{\prime}(k+1)} \wedge s_{q^{\prime}(k+1)} \wedge h_{(i \pm 1)(k+1)}\right)}
$$

NP-completeness of the SAT problem

The formula - a conjunctions of things to check (of polynomial size): - the initial tape contents, head position, and state are as expected:

$$
s_{q_{0} 1} \wedge h_{01} \wedge t_{0 \triangleright 1} \wedge t_{1 w_{1} 1} \wedge \ldots \wedge t_{n w_{n}} \wedge t_{(n+1) \perp 1} \wedge \ldots \wedge t_{p(n) \perp 1}
$$

- at most one state at a moment

$$
\neg s_{q k} \vee \neg s_{q^{\prime} k} \quad \text { when } 1 \leq k \leq p(n), q \neq q^{\prime}
$$

- at most one head position at a moment
- at most one symbol in a cell at a moment
- symbols not under the head remain unchanged

$$
h_{j k} \wedge t_{i c k} \rightarrow t_{i c(k+1)} \text { when } 1 \leq k \leq p(n), q \neq q^{\prime}, i \neq j^{\prime}
$$

- a transition is performed (an alternative over possible transitions):

$$
t_{i c k} \wedge s_{q k} \wedge h_{i k} \rightarrow \bigvee_{\left(t_{i c^{\prime}(k+1)} \wedge s_{q^{\prime}(k+1)} \wedge h_{(i \pm 1)(k+1)}\right)}
$$

- acceptance:
$V_{s_{q k}}$
This formula can be easily generated in logarithmic space.

NP-completeness

There is a long list of NP-complete problems:

- Hamiltonian path problem
- Traveling salesman problem
- Clique problem
- Knapsack problem
- Subgraph isomorphism problem
- Subset sum problem
- Vertex cover problem
- Independent set problem
- Dominating set problem
- Graph coloring problem

NP-hardness shown by reduction from some other NP-complete problem (e.g., from SAT).
Theorem
If L_{1} reduces to L_{2}, and L_{2} reduces to L_{3}, then L_{1} reduces to L_{3}. Proof
Functions computable in logarithmic space can be composed.

P-completeness of HORNSAT
HORNSAT problem: satisfiability of CNF formulas in which every clause has at most 1 positive literal
e.g., $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge x_{2} \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$ is of this form formulas of this form can be seen as implications (without alternatives on the right): $\left(x_{2} \wedge x_{3} \rightarrow x_{1}\right) \wedge\left(T \rightarrow x_{2}\right) \wedge\left(x_{1} \wedge x_{2} \rightarrow \perp\right)$
e.g., $\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$ is not of this form
(there is an alternative on the right of an implication)
Theorem
The HORNSAT problem is \mathbf{P}-complete.

P-completeness of HORNSAT

HORNSAT problem: satisfiability of CNF formulas in which every clause has at most 1 positive literal
e.g., $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge x_{2} \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$ is of this form
formulas of this form can be seen as implications (without alternatives on the right): $\left(x_{2} \wedge x_{3} \rightarrow x_{1}\right) \wedge\left(T \rightarrow x_{2}\right) \wedge\left(x_{1} \wedge x_{2} \rightarrow \perp\right)$

e.g., $\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$ is not of this form

(there is an alternative on the right of an implication)
Theorem
The HORNSAT problem is P-complete.
Proof
HORNSAT is in P: saturation (as in Prolog) - initially, we suppose that all variables are false; then we change false to true according implications in the formula

P-completeness of HORNSAT

HORNSAT problem: satisfiability of CNF formulas in which every clause has at most 1 positive literal
e.g., $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge x_{2} \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$ is of this form
formulas of this form can be seen as implications (without alternatives on the right): $\left(x_{2} \wedge x_{3} \rightarrow x_{1}\right) \wedge\left(\top \rightarrow x_{2}\right) \wedge\left(x_{1} \wedge x_{2} \rightarrow \perp\right)$
e.g., $\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$ is not of this form
(there is an alternative on the right of an implication)

Theorem

The HORNSAT problem is \mathbf{P}-complete.
Proof
HORNSAT is in P: saturation (as in Prolog) - initially, we suppose that all variables are false; then we change false to true according implications in the formula
P-hardness: if a machine is deterministic, the formula from the previous proof is (almost) in the HORN-CNF form (an alternative of positive literals was appearing only while choosing a transition)

polyL-completeness

Tutorials: the class polyL has no complete problems.
Corollary: P=polyL

- however, we don't know any specific problem on which they differ
- we do don't even know whether they are incomparable, or whether some of them is contained in the other

L-completeness

Almost every language in L is complete
(except the empty language, and the language containing all words)

NL-completeness

Theorem Reachability in a directed graph is NL-complete

NL-completeness

Theorem

Reachability in a directed graph is NL-complete
Proof
It belongs to NL: we just walk in the graph Hardness:

- Let L be recognized by a nondeterministic machine M working in logarithmic space
- we can assume that at the end M erases the contents of the tape, so that there is only one accepting configuration
- we get a word w of length n, we want to construct a graph
- as nodes we take configurations (there are polynomially many, as they are of logarithmic size)
- for every configuration, it is easy to write (in \mathbf{L}) its successors,
- it is also easy to enumerate (in L) all configurations
- question to REACHABILITY: is there a path from the initial configuration (for word w) to the accepting configuration?

