Computational complexity

lecture 5

The parity language
PARITY - the language of those words $\{0,1\}$ in which the number of ones is even

Fact: PARITY $\in \mathbf{u}-\mathbf{N C}^{1}$

We count ones modulo 2 - circuit of tree-like shape.
Theorem (1986): PARITY \notin AC 0
AC ${ }^{0}=$ circuits of polynomial size and constant depth (arbitrary fan-in)

- It is one of quite rare nontrivial proofs saying that some problem cannot be solved in some complexity class.
- (Mostly hardness theorems are relative - is a problem A is hard, then a problem B is hard, e.g. NP-completeness)

PARITY $\notin \mathbf{A C}^{0}$

General idea:

- Every circuit of small depth can be approximated by a proper polynomial of low degree (Lemma 1 - previous lecture)
- The parity function cannot be approximated by a polynomial of low degree (Lemma 2 - now)

Proof of Lemma 2 (*)

Lemma 2. For large enough n every polynomial of n variables and total degree $\leq \sqrt{n}$ differs from the parity function on at least $\frac{1}{100} 2^{n}$ inputs.

A general idea:

- We assume that there exists a polynomial of low degree which agrees with the parity function on a large set S of inputs.
- Using this polynomial, for every function we will construct a polynomial of low degree which agrees with this function on the same set S.
- There are many functions, but significantly less polynomials.
- Thus the set S cannot be too large.

Proof of Lemma 2 (*)

Lemma 2. For large enough n every polynomial of n variables and total degree $\leq \sqrt{n}$ differs from the parity function on at least $\frac{1}{100} 2^{n}$ inputs.

- Let $\operatorname{PAR}\left(x_{1}, \ldots, x_{n}\right)$ denote the parity function
- Consider the „shifted" parity function PAR':\{-1,1\}n $\rightarrow\{-1,1\}$ $\operatorname{PAR}^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{PAR}\left(x_{1}-1, \ldots, x_{n}-1\right)+1=x_{1} \cdot x_{2} \cdot \ldots x_{n}$

Proof of Lemma 2 (*)

Lemma 2. For large enough n every polynomial of n variables and total degree $\leq \sqrt{n}$ differs from the parity function on at least $\frac{1}{100} 2^{n}$ inputs.

- Let $\operatorname{PAR}\left(x_{1}, \ldots, x_{n}\right)$ denote the parity function
- Consider the „shifted" parity function PAR':\{-1,1\}n $\rightarrow\{-1,1\}$ $\operatorname{PAR}^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{PAR}\left(x_{1}-1, \ldots, x_{n}-1\right)+1=x_{1} \cdot x_{2} \ldots \cdot x_{n}$
- If there exists a polynomial which agrees with PAR on some set of inputs, then there exists a polynomial of the same degree, which agrees with $P A R^{\prime}$ on the same set
- Thus take a polynomial p of degree $\leq \sqrt{n}$ approximating $P A R^{\prime}$ Let $S \subseteq\{-1,1\}^{n}$ be the set of those inputs in which p agrees with $P A R^{\prime}$.

Proof of Lemma 2 (*)

- A polynomial p of degree $\leq \sqrt{n}$ agrees with $P A R^{\prime}$ on a set $S \subseteq\{-1,1\}^{n}$.
- Take any function $f: S \rightarrow \mathbb{Z}_{3}$
- We can always represent f as a polynomial:

$$
p_{f}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(y_{1}, \ldots, y_{n}\right) \in S} f\left(y_{1}, \ldots, y_{n}\right) \cdot\left(2-x_{1} y_{1}\right) \cdot \ldots \cdot\left(2-x_{n} y_{n}\right)
$$

- This polynomial has degree n, too large for us
- We will correct it so that the degree will be $\leq n / 2+\sqrt{n}$

Proof of Lemma 2 (*)

- A polynomial p of degree $\leq \sqrt{n}$ agrees with $P A R^{\prime}$ on a set $S \subseteq\{-1,1\}^{n}$.
- Take any function $f: S \rightarrow \mathbb{Z}_{3}$
- We can always represent f as a polynomial:

$$
p_{f}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(y_{1}, \ldots, y_{n}\right) \in S} f\left(y_{1}, \ldots, y_{n}\right) \cdot\left(2-x_{1} y_{1}\right) \cdot \ldots \cdot\left(2-x_{n} y_{n}\right)
$$

- This polynomial has degree n, too large for us
- We will correct it so that the degree will be $\leq n / 2+\sqrt{n}$
- To this end, in p_{f} we replace every monomial $\prod_{i \in T} x_{i}$ of degree $|T|>n / 2$ by $p\left(x_{1}, \ldots, x_{n}\right) \cdot \prod_{i \notin T} x_{i}$

Proof of Lemma 2 (*)

- A polynomial p of degree $\leq \sqrt{n}$ agrees with $P A R^{\prime}$ on a set $S \subseteq\{-1,1\}^{n}$.
- Take any function $f: S \rightarrow \mathbb{Z}_{3}$
- We can always represent f as a polynomial:

$$
p_{f}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(y_{1}, \ldots, y_{n}\right) \in S} f\left(y_{1}, \ldots, y_{n}\right) \cdot\left(2-x_{1} y_{1}\right) \cdot \ldots \cdot\left(2-x_{n} y_{n}\right)
$$

- This polynomial has degree n, too large for us
- We will correct it so that the degree will be $\leq n / 2+\sqrt{n}$
- To this end, in p_{f} we replace every monomial $\prod_{i \in T} x_{i}$ of degree $|T|>n / 2$ by $p\left(x_{1}, \ldots, x_{n}\right) \cdot \prod_{i \notin T} x_{i}$
- This modification does not change the result, as for $\left(x_{1}, \ldots, x_{n}\right) \in S$ we have $p\left(x_{1}, \ldots, x_{n}\right)=x_{1} \ldots x_{n}$ and $\left(x_{1}\right)^{2}=1$
- Now the degree is indeed $\leq n / 2+\sqrt{n}$

Proof of Lemma 2 (*)

- A polynomial p of degree $\leq \sqrt{n}$ agrees with $P A R^{\prime}$ on a set $S \subseteq\{-1,1\}^{n}$.
- Take any function $f: S \rightarrow \mathbb{Z}_{3}$
- We can always represent f as a polynomial:

$$
p_{f}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(y_{1}, \ldots, y_{n}\right) \in S} f\left(y_{1}, \ldots, y_{n}\right) \cdot\left(2-x_{1} y_{1}\right) \cdot \ldots \cdot\left(2-x_{n} y_{n}\right)
$$

- This polynomial has degree n, too large for us
- We will correct it so that the degree will be $\leq n / 2+\sqrt{n}$
- To this end, in p_{f} we replace every monomial $\prod_{i \in T^{x_{i}}}$ of degree $|T|>n / 2$ by $p\left(x_{1}, \ldots, x_{n}\right) \cdot \prod_{i \notin T} x_{i}$
- This modification does not change the result, as for $\left(x_{1}, \ldots, x_{n}\right) \in S$ we have $p\left(x_{1}, \ldots, x_{n}\right)=x_{1} \ldots x_{n}$ and $\left(x_{1}\right)^{2}=1$
- Now the degree is indeed $\leq n / 2+\sqrt{n}$
- Thus (using the hypothetical polynomial p) for every function $f: S \rightarrow \mathbb{Z}_{3}$ we have constructed a polynomial of degree $\leq n / 2+\sqrt{n}$, which on S gives the same values as f

Proof of Lemma 2 (*)

- A polynomial p of degree $\leq \sqrt{n}$ agrees with $P A R^{\prime}$ on a set $S \subseteq\{-1,1\}^{n}$.
- For every function $f: S \rightarrow \mathbb{Z}_{3}$ we have constructed a polynomial of degree $\leq n / 2+\sqrt{n}$, which on S gives the same values as f
- For inputs in $\{-1,1\}^{n}$ we have that $x^{2}=1$, so we can assume that in f there are no exponents greater than 1 .

Proof of Lemma 2 (*)

- A polynomial p of degree $\leq \sqrt{n}$ agrees with $P A R^{\prime}$ on a set $S \subseteq\{-1,1\}^{n}$.
- For every function $f: S \rightarrow \mathbb{Z}_{3}$ we have constructed a polynomial of degree $\leq n / 2+\sqrt{n}$, which on S gives the same values as f
- For inputs in $\{-1,1\}^{n}$ we have that $x^{2}=1$, so we can assume that in the polynomial there are no exponents greater than 1.
Let us compute the number of such polynomials:
- For large enough n, there are $\leq 0.99 \cdot 2^{n}$ monomials of n variables and degree $\leq n / 2+\sqrt{n}$, using every variable at most once (next slide)
- Thus the number of polynomials is $\leq 30.99 \cdot 2^{n}$
- The number of functions $f: S \rightarrow \mathbb{Z}_{3}$ is $3^{|S|}$, to each of them we have assigned a different polynomial
- Thus $|S| \leq 0.99 \cdot 2^{n}$

Proof of Lemma 2 (*)

Why the number of monomials (using variables x_{1}, \ldots, x_{n}, each of them either with exponent 0 or 1) of degree $\leq n / 2+\sqrt{n}$ is $\leq 0.99 \cdot 2^{n}$, for large enough n ?

- Choose a monomial in random
- Let $X_{i}=$ (does x_{i} appear in the monomial)
- Random variables X_{i} are independent and $P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=0.5$
- Central limit theorem: for every $z \in \mathbb{R}, P\left(Z_{n} \leq z\right){ }_{n} \rightarrow_{\infty} \Phi(z)$
where $Z_{n}=\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)}{\sqrt{n} \sigma}$
and $\mu=E X_{i}=0.5, \sigma=s d\left(X_{i}\right)=0.5$, and Φ is the cumulative distribution function of the normal distribution $N(0,1)$
- Notice that $X_{1}+\ldots+X_{n} \leq n / 2+\sqrt{n} \Leftrightarrow Z_{n} \leq 2$, and $\Phi(2) \approx 0,97725$
- Thus for large enough n, the probability that the degree is $\leq n / 2+\sqrt{n}$ i.e., $P\left(Z_{n} \leq 2\right)$ is at most 0,99
[THE END OF THE PROOF OF LEMMA 2]

Extensions of AC^{0}

Consider circuits like in $\mathbf{A C}^{0}$, where additionally we can use the XOR gate. Then we can recognize PARITY. Is it enough to recognize, e.g., all regular languages?

Extensions of AC^{0}

Consider circuits like in $\mathbf{A C}^{0}$, where additionally we can use the XOR gate. Then we can recognize PARITY.
Is it enough to recognize, e.g., all regular languages?

- Class $\mathbf{A C}^{0}[m]$ - like $\mathbf{A C}^{0}$, but where we can additionally use gates counting the number of ones modulo m
- It is known that: if p, q are different prime numbers, then $\mathbf{A C}^{0}[p]$ cannot count modulo q
- An open problem: we cannot show any language, even from NP, which cannot be recognized in $\mathrm{AC}^{0}[6]$ (gates „mod 6" \Leftrightarrow gates „mod 2" i gates „mod 3")

Overview

Already finished:

- Deterministic Turing machines - basic facts
- Boolean circuits

Next topic:

- Nondeterministic Turing machines, reductions

Later:

- Probabilistic computations
- Fixed parameter tractability (FPT)
- Interactive proofs
- Alternating Turing machines
- Probabilistically checkable proofs (PCP)

Nondeterministic Turing machines
We introduce the following changes to the definition of Turing machines:

- a transition relation instead of a transition function:
$\delta \subseteq Q \times \Gamma^{k} \times Q \times \Gamma^{k} \times\{L, R, Z\}^{k}$
- there is no rejecting state (it is useless)

Nondeterministic Turing machines

We introduce the following changes to the definition of Turing machines:

- a transition relation instead of a transition function:

$$
\delta \subseteq Q \times \Gamma^{k} \times Q \times \Gamma^{k} \times\{L, R, Z\}^{k}
$$

- there is no rejecting state (it is useless)
- \Rightarrow a transition relation on configurations
- a run of a machine: any sequence of configuration which respects the transition relation
- a machine accepts a word w if there exists an accepting run over this word

Nondeterministic Turing machines

We introduce the following changes to the definition of Turing machines:

- a transition relation instead of a transition function:

$$
\delta \subseteq Q \times \Gamma^{k} \times Q \times \Gamma^{k} \times\{L, R, Z\}^{k}
$$

- there is no rejecting state (it is useless)
- \Rightarrow a transition relation on configurations
- a run of a machine: any sequence of configuration which respects the transition relation
- a machine accepts a word w if there exists an accepting run over this word
- A machine works in time $T(n)$ if every run (not only the accepting one) halts after at most $T(n)$ steps
- A machine works in space $S(n)$ if every run (not only the accepting one) uses at most $S(n)$ tape cells and halts

Nondeterministic Turing machines

A machine works in space $S(n)$ if every run (not only the accepting one) uses at most $S(n)$ tape cells and halts

- for a deterministic machine there was Sipser's theorem, saying that the halting property can be introduced without increasing memory usage (\Rightarrow we could remove the condition "and halts" from the above definition)
- for a nondeterministic machine the Sipser's construction (simulating the computation backwards) does not work

Nondeterministic Turing machines

A machine works in space $S(n)$ if every run (not only the accepting one) uses at most $S(n)$ tape cells and halts

- for a deterministic machine there was Sipser's theorem, saying that the halting property can be introduced without increasing memory usage (\Rightarrow we could remove the condition "and halts" from the above definition)
- for a nondeterministic machine the Sipser's construction (simulating the computation backwards) does not work
- but the construction with a counter of steps does work (if the number of steps has exceeded the maximal number of configurations for the current memory usage, then the machine entered a loop)
- this construction does not increase memery usage as soon as $S(n) \geq \log (n)$
- thus the condition "and halts" is not so important

Nondeterministic Turing machines

- A machine works in time $T(n)$ if every run (not only the accepting one) halts after at most $T(n)$ steps
- A machine works in space $S(n)$ if every run (not only the accepting one) uses at most $S(n)$ tape cells and halts
- $\operatorname{NTIME}(T(n))$ - languages recognizable in time $O(T(n))$ on a nondeterministic machine
- $\operatorname{NSPACE}(S(n))$ - languages recognizable in space $O(S(n))$ on a nondeterministic machine

Nondeterministic Turing machines

- A machine works in time $T(n)$ if every run (not only the accepting one) halts after at most $T(n)$ steps
- A machine works in space $S(n)$ if every run (not only the accepting one) uses at most $S(n)$ tape cells and halts
 nondeterministic machine
- $\operatorname{NSPACE}(S(n))$ - languages recognizable in space $O(S(n))$ on a nondeterministic machine
- NL=NSPACE $(\log n)$
- $\mathbf{N P}=\cup_{\text {k } \in \mathbb{N}}$ NTIME $\left(n^{k}\right)$
- $\operatorname{NPSPACE}=\cup_{k \in \mathbb{N}} \operatorname{NSPACE}\left(n^{k}\right)$
- itp.

Nondeterministic Turing machines

An example of a language in NP - the language of (codes of) these graphs in which there exists a Hamiltonian cycle How do we recognize it?

- walk in the graph, arbitrarily choosing the next node to visit remember visited nodes, and ensure that every node is visited at most once;
- if every node was visited (exactly once), and there is an edge to the starting node, then accept

A model with witnesses

An alternative definition of NP - using witnesses:

- A relation R is defined as the language of words of the form $v \$ w$ (where $v, w \in \Sigma^{*}$ and $\$ \notin \Sigma$)
- A relation R is called polynomial if:
$\rightarrow R \in \mathbf{P}$ and
\rightarrow there exists a polynomial p such that $v \$ w \in R$ implies $|w| \leq p(|v|)$
- The projection of a relation R is defined as $\exists R=\{v: \exists w . v \$ w \in R\}$

A model with witnesses

An alternative definition of NP - using witnesses:

- A relation R is defined as the language of words of the form $v \$ w$ (where $v, w \in \Sigma^{*}$ and $\$ \notin \Sigma$)
- A relation R is called polynomial if:
$\rightarrow R \in \mathbf{P}$ and
\rightarrow there exists a polynomial p such that $v \$ w \in R$ implies $|w| \leq p(|v|)$
- The projection of a relation R is defined as $\exists R=\{v: \exists w . v \$ w \in R\}$

An example of a language in NP - the language of (codes of) these graphs in which there exists a Hamiltonian cycle

- it is of the form $\exists R$ for
$R=\{$ graph $\$$ consecutive nodes on a Hamiltonian cycle in this graph
- it is easy to recognize R in polynomial time
- the second part (a cycle) is no longer than the first one (a graph)

A model with witnesses

Theorem
$L \in \mathbf{N P} \Leftrightarrow$ there exists a polynomial relation R such that $L=\exists R$

A model with witnesses

Theorem

$L \in \mathbf{N P} \Leftrightarrow$ there exists a polynomial relation R such that $L=\exists R$
Proof
\Leftarrow By definition, the length of witnesses is bounded by some polynomial p. We create a machine M, which after the input word (nondeterministically) writes an arbitrary word of length $\leq p(n)$ (in particular M counts the length of the word that it writes, and finishes writing it, if it gets longer than $p(n)$); then M executes the (deterministic) machine recognizing R.

A model with witnesses

Theorem

$L \in \mathbf{N P} \Leftrightarrow$ there exists a polynomial relation R such that $L=\exists R$
Proof
\Leftarrow By definition, the length of witnesses is bounded by some polynomial p. We create a machine M, which after the input word (nondeterministically) writes an arbitrary word of length $\leq p(n)$ (in particular M counts the length of the word that it writes, and finishes writing it, if it gets longer than $p(n)$); then M executes the (deterministic) machine recognizing R.
$\Rightarrow L$ is recognized by a nondeterministic machine M in time $p(n)$. Then on every accepted word v there exists a sequence of transitions of M performed in consecutive steps of an accepting run; this sequence has length $\leq p(|v|)$. To R we take input words together with codes of accepting runs. This relation is polynomial; in particular, it can be recognized by a deterministic machine in polynomial time (remark: notice that a "transition" comes from a set of constant size)

A model with witnesses

Theorem
$L \in \mathbf{N P} \Leftrightarrow$ there exists a polynomial relation R such that $L=\exists R$ Similarily we can define another time-complexity classes, e.g., languages from NEXPTIME are projections of relations such that:
\rightarrow can be recognized in P
\rightarrow there exists an exponential function f such that $v \$ w \in R$ implies $|w| \leq f(|v|)$

A model with witnesses

Theorem
$L \in \mathbf{N P} \Leftrightarrow$ there exists a polynomial relation R such that $L=\exists R$ Similarily we can define another time-complexity classes, e.g., languages from NEXPTIME are projections of relations such that:
\rightarrow can be recognized in P
\rightarrow there exists an exponential function f such that $v \$ w \in R$ implies $|w| \leq f(|v|)$

What about space-complexity classes, e.g., NL?

A model with witnesses

Theorem

$L \in \mathbf{N P} \Leftrightarrow$ there exists a polynomial relation R such that $L=\exists R$
Similarily we can define another time-complexity classes, e.g., languages from NEXPTIME are projections of relations such that:
\rightarrow can be recognized in P
\rightarrow there exists an exponential function f such that $v \$ w \in R$ implies $|w| \leq f(|v|)$

What about space-complexity classes, e.g., NL?

- a witness of logarithmic length?

A model with witnesses

Theorem

$L \in \mathbf{N P} \Leftrightarrow$ there exists a polynomial relation R such that $L=\exists R$
Similarily we can define another time-complexity classes, e.g., languages from NEXPTIME are projections of relations such that:
\rightarrow can be recognized in P
\rightarrow there exists an exponential function f such that $v \$ w \in R$ implies $|w| \leq f(|v|)$

What about space-complexity classes, e.g., NL?

- a witness of logarithmic length? - too short
- a witness of polynomial length, recognizing in L?

A model with witnesses

Theorem

$L \in \mathbf{N P} \Leftrightarrow$ there exists a polynomial relation R such that $L=\exists R$
Similarily we can define another time-complexity classes, e.g., languages from NEXPTIME are projections of relations such that:
\rightarrow can be recognized in \mathbf{P}
\rightarrow there exists an exponential function f such that $v \$ w \in R$ implies $|w| \leq f(|v|)$

What about space-complexity classes, e.g., NL?

- a witness of logarithmic length? - too short
- a witness of polynomial length, recognizing in L?
- too much: gives the whole NP
- a witness of polynomial length, which can be read only once (the head does not move left), recognizing in L-OK

Classes of complements

For every class C, the class co C consists of complements of languages from C.

- for trivial reasons, deterministic classes are equal to its co-classes, e.g., $\mathbf{P}=\mathbf{c o P}$
- for nondeterministic classes this is not clear
- e.g., the language of graph, in which there DOES NOT exist an Hamiltonian cycle
\rightarrow belongs to coNP
\rightarrow but is it in NP? - what can be taken as a witness?

Classes of complements

For every class C, the class co C consists of complements of languages from C.

- for trivial reasons, deterministic classes are equal to its co-classes, e.g., $\mathbf{P}=\mathbf{c o P}$
- for nondeterministic classes this is not clear
- e.g., the language of graph, in which there DOES NOT exist an Hamiltonian cycle
\rightarrow belongs to coNP
\rightarrow but is it in NP? - what can be taken as a witness?
- An open problem: does NP \neq coNP? (if $\mathbf{N P} \neq \mathbf{c o N P}$ then also $\mathbf{N P} \neq \mathbf{P}$)
- Another open problem: does $\mathbf{N P} \cap \mathbf{c o N P}=\mathbf{P}$?

We don't have too many problems, for which we know that they are in $\mathbf{N P} \cap \mathbf{c o N P}$, but we do not know whether they are in \mathbf{P}.

NP $\cap c o N P$

We don't have too many problems, for which we know that they are in NP $\cap \mathbf{c o N P}$, but we do not know whether they are in P:
\rightarrow For a long time checking that a number is prime was a problem with this property, but now we know that it is in \mathbf{P}
\rightarrow Example: factoring $\in \mathbf{N P} \cap \mathbf{c o N P}$ (decision variant of factoring: does n have a prime factor <k?) - prime factorization is a witness in both directions.
This suggests that $\mathbf{N P} \cap \mathbf{c o N P} \neq \mathbf{P}$, as we believe that factoring cannot be done in polynomial time.
\rightarrow Another example: some game problems, e.g. parity_games $\in \mathbf{N P} \cap$ coNP (next slide)

Parity games

- We are given a directed graph, with nodes labeled by numbers
- Players alternatingly move (one, common) pawn along edges of the graph - ad infinitum
- We look for the greatest number appearing infinitely often - if it is odd, then player 1 wins; if it is even, player 2 wins

Parity games

- We are given a directed graph, with nodes labeled by numbers
- Players alternatingly move (one, common) pawn along edges of the graph - ad infinitum
- We look for the greatest number appearing infinitely often - if it is odd, then player 1 wins; if it is even, player 2 wins
- Alternatively: we play only to the first repetition of a pair (node, player_number) and we look for the greatest number on the created cycle
- Question: does player 1 wins (has a wining strategy)?
- It is in NP: a strategy of player 1 is a polynomial size witness, which can be verified in polynomial time
- It is in coNP as well - a strategy of player 2 is ...
- not known to be in \mathbf{P}
- can be solved in $O\left(n^{c+\log n}\right)$

Determinization

Theorem
$\operatorname{DTIME}(f(n)) \subseteq \mathbf{N T I M E}(f(n)), \operatorname{DSPACE}(f(n)) \subseteq \operatorname{NSPACE}(f(n))$
Proof
Trivial, since a deterministic machine is a special case of a nondeterministic machine.

Determinization

Theorem
NTIME $(f(n)) \subseteq$ DSPACE $(f(n))$
Proof

- We have a nondetermin. machine M working in time $g(n)=O(f(n))$. We want to check whether it has an accepting run on a given input.

Determinization

Theorem

NTIME $(f(n)) \subseteq$ DSPACE $(f(n))$

Proof

- We have a nondetermin. machine M working in time $g(n)=O(f(n))$. We want to check whether it has an accepting run on a given input.
- Allocate space $g(n)$ and generate there all possible words w of this length, one after another (assume for a moment that $g(n)$ is space constructible)
- For every generated word w simulate M on the input word, treating w is a sequence of consecutive choices of M (the input word should not be destroyed)

Determinization

Theorem

NTIME $(f(n)) \subseteq \operatorname{DSPACE}(f(n))$

Proof

- We have a nondetermin. machine M working in time $g(n)=O(f(n))$. We want to check whether it has an accepting run on a given input.
- Allocate space $g(n)$ and generate there all possible words w of this length, one after another (assume for a moment that $g(n)$ is space constructible)
- For every generated word w simulate M on the input word, treating w is a sequence of consecutive choices of M (the input word should not be destroyed)
- We need space $g(n)$ for the sequences of choices, and at most $g(n)$ for the memory of M
- We can succeed also without assuming that $g(n)$ is space constructible: we start from short sequences of choices; if during the simulation of M we see that the sequence is too short, we make it longer.

