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The parity language
PARITY – the language of those words {0,1} in which the number
of ones is even

Fact: PARITYu-NC1

We count ones modulo 2 – circuit of tree-like shape.

Theorem (1986): PARITYAC0

AC0 = circuits of polynomial size and constant depth (arbitrary fan-in)

● It is one of quite rare nontrivial proofs saying that some problem
cannot be solved in some complexity class.

● (Mostly hardness theorems are relative – is a problem A is hard,
then a problem B is hard, e.g. NP-completeness)



  

PARITYAC0

General idea:
● Every circuit of small depth can be approximated by a proper

polynomial of low degree (Lemma 1 – previous lecture)
● The parity function cannot be approximated by a polynomial of

low degree (Lemma 2 – now)



  

Lemma 2. For large enough n every polynomial of n variables and
total degree ≤√n differs from the parity function on at least
inputs.

A general idea: 
● We assume that there exists a polynomial of low degree which

agrees with the parity function on a large set S of inputs.
● Using this polynomial, for every function we will construct a

polynomial of low degree which agrees with this function on the
same set S.

● There are many functions, but significantly less polynomials.
● Thus the set S cannot be too large.

100––2n1

Proof of Lemma 2 (*)



  

Lemma 2. For large enough n every polynomial of n variables and
total degree ≤√n differs from the parity function on at least
inputs.

● Let PAR(x1,...,xn) denote the parity function
● Consider the „shifted” parity function PAR':{-1,1}n→{-1,1}

PAR'(x1,...,xn)=PAR(x1-1,...,xn-1)+1=x1
.x2

.....xn
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Lemma 2. For large enough n every polynomial of n variables and
total degree ≤√n differs from the parity function on at least
inputs.

● Let PAR(x1,...,xn) denote the parity function
● Consider the „shifted” parity function PAR':{-1,1}n→{-1,1}

PAR'(x1,...,xn)=PAR(x1-1,...,xn-1)+1=x1
.x2

.....xn
● If there exists a polynomial which agrees with PAR on some set

of inputs, then there exists a polynomial of the same degree, 
which agrees with PAR' on the same set

● Thus take a polynomial p of degree ≤√n approximating PAR'  
Let S⊆{-1,1}n be the set of those inputs in which p agrees 
with PAR'. 

100––2n1

Proof of Lemma 2 (*)



  

● A polynomial p of degree ≤√n agrees with PAR' on a set S⊆{-1,1}n.
● Take any function f:S→ℤ3
● We can always represent f as a polynomial:

pf(x1,...,xn)=∑(y1,...,yn)S 
f(y1,...,yn) 

.(2-x1y1) 
.
 ....(2-xnyn)

● This polynomial has degree n, too large for us
● We will correct it so that the degree will be ≤n/2+√n

Proof of Lemma 2 (*)
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f(y1,...,yn) 

.(2-x1y1) 
.
 ....(2-xnyn)

● This polynomial has degree n, too large for us
● We will correct it so that the degree will be ≤n/2+√n
● To this end, in pf we replace every monomial ∏iT xi of degree

|T|>n/2 by p(x1,...,xn) 
.∏i∉T xi

● This modification does not change the result, as for (x1,...,xn)S 
we have p(x1,...,xn)=x1

.....xn and (x1)2=1
● Now the degree is indeed ≤n/2+√n
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● A polynomial p of degree ≤√n agrees with PAR' on a set S⊆{-1,1}n.
● Take any function f:S→ℤ3
● We can always represent f as a polynomial:

pf(x1,...,xn)=∑(y1,...,yn)S 
f(y1,...,yn) 

.(2-x1y1) 
.
 ....(2-xnyn)

● This polynomial has degree n, too large for us
● We will correct it so that the degree will be ≤n/2+√n
● To this end, in pf we replace every monomial ∏iT xi of degree

|T|>n/2 by p(x1,...,xn) 
.∏i∉T xi

● This modification does not change the result, as for (x1,...,xn)S 
we have p(x1,...,xn)=x1

.....xn and (x1)2=1
● Now the degree is indeed ≤n/2+√n
● Thus (using the hypothetical polynomial p) for every function

f:S→ℤ3 we have constructed a polynomial of degree ≤n/2+√n,

which on S gives the same values as f

Proof of Lemma 2 (*)



  

● A polynomial p of degree ≤√n agrees with PAR' on a set S⊆{-1,1}n.
● For every function f:S→ℤ3 we have constructed a polynomial 

of degree ≤n/2+√n, which on S gives the same values as f
● For inputs in {-1,1}n we have that  x2=1, so we can assume that 

in f there are no exponents greater than 1.

Proof of Lemma 2 (*)



  

● A polynomial p of degree ≤√n agrees with PAR' on a set S⊆{-1,1}n.
● For every function f:S→ℤ3 we have constructed a polynomial 

of degree ≤n/2+√n, which on S gives the same values as f
● For inputs in {-1,1}n we have that  x2=1, so we can assume that 

in the polynomial there are no exponents greater than 1.

Let us compute the number of such polynomials:
● For large enough n, there are ≤0.99 

.2n monomials of n variables 
and degree ≤n/2+√n, using every variable at most once (next slide)

● Thus the number of polynomials is ≤30.99 
.2n

● The number of functions f:S→ℤ3 is 3|S|, to each of them we have

assigned a different polynomial
● Thus |S|≤0.99 

.2n

Proof of Lemma 2 (*)



  

Why the number of monomials (using variables x1,...,xn, each of 
them either with exponent 0 or 1) of degree ≤n/2+√n is  ≤0.99 

.2n,
for large enough n?
● Choose a monomial in random
● Let Xi=(does xi appear in the monomial)
● Random variables Xi are independent and P(Xi=0)=P(Xi=1)=0.5

● Central limit theorem: for every z∈ℝ, P(Zn≤z) → F(z)
where

and m=EXi=0.5, s =sd(Xi)=0.5, and F is the cumulative distribution 
function of the normal distribution N(0,1)

● Notice that X1+...+Xn≤n/2+√n ⇔ Zn≤2, and F(2)≈0,97725   
● Thus for large enough n, the probability that the degree is ≤n/2+√n

i.e., P(Zn≤2) is at most 0,99

[THE END OF THE PROOF OF LEMMA 2]

n→∞

Zn =
∑i=1 

(Xi-m)n

√ns

Proof of Lemma 2 (*)



  

Consider circuits like in AC0, where additionally we can use the 
XOR gate. Then we can recognize PARITY. 
Is it enough to recognize, e.g., all regular languages?

Extensions of AC0



  

Consider circuits like in AC0, where additionally we can use the 
XOR gate. Then we can recognize PARITY. 
Is it enough to recognize, e.g., all regular languages?
● Class AC0[m] – like AC0, but where we can additionally use gates 

counting the number of ones modulo m
● It is known that: if p,q are different prime numbers, then AC0[p] 

cannot count modulo q
● An open problem: we cannot show any language, even from NP, 

which cannot be recognized in AC0[6] 
(gates „mod 6”  gates „mod 2” i gates „mod 3”)

Extensions of AC0



  

Already finished:
● Deterministic Turing machines – basic facts
● Boolean circuits

Next topic:
● Nondeterministic Turing machines, reductions

Later:
● Probabilistic computations
● Fixed parameter tractability (FPT)
● Interactive proofs
● Alternating Turing machines
● Probabilistically checkable proofs (PCP)
● ...

Overview



  

We introduce the following changes to the definition of Turing machines:
● a transition relation instead of a transition function:

dQGkQGk{L,R,Z}k 
● there is no rejecting state (it is useless)

Nondeterministic Turing machines
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● there is no rejecting state (it is useless)
●  a transition relation on configurations
● a run of a machine: any sequence of configuration which respects

the transition relation
● a machine accepts a word w if there exists an accepting run over

this word
● A machine works in time T(n) if every run (not only the accepting

one) halts after at most T(n) steps
● A machine works in space S(n) if every run (not only the accepting

one) uses at most S(n) tape cells and halts
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A machine works in space S(n) if every run (not only the accepting
one) uses at most S(n) tape cells and halts
● for a deterministic machine there was Sipser's theorem, saying

that the halting property can be introduced without increasing
memory usage ( we could remove the condition “and halts”
from the above definition)

● for a nondeterministic machine the Sipser's construction 
(simulating the computation backwards) does not work

Nondeterministic Turing machines



  

A machine works in space S(n) if every run (not only the accepting
one) uses at most S(n) tape cells and halts
● for a deterministic machine there was Sipser's theorem, saying

that the halting property can be introduced without increasing
memory usage ( we could remove the condition “and halts”
from the above definition)

● for a nondeterministic machine the Sipser's construction 
(simulating the computation backwards) does not work

● but the construction with a counter of steps does work 
(if the number of steps has exceeded the maximal number of 
configurations for the current memory usage, then the machine
entered a loop)

● this construction does not increase memery usage as soon as
S(n)≥log(n)

● thus the condition “and halts” is not so important

Nondeterministic Turing machines



  

● A machine works in time T(n) if every run (not only the accepting
one) halts after at most T(n) steps

● A machine works in space S(n) if every run (not only the accepting
one) uses at most S(n) tape cells and halts

● NTIME(T(n)) – languages recognizable in time O(T(n)) on a 
nondeterministic machine

● NSPACE(S(n)) – languages recognizable in space O(S(n)) on a 
nondeterministic machine
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● A machine works in time T(n) if every run (not only the accepting
one) halts after at most T(n) steps

● A machine works in space S(n) if every run (not only the accepting
one) uses at most S(n) tape cells and halts

● NTIME(T(n)) – languages recognizable in time O(T(n)) on a 
nondeterministic machine

● NSPACE(S(n)) – languages recognizable in space O(S(n)) on a 
nondeterministic machine

● NL=NSPACE(log n) 
● NP=k∈ℕNTIME(nk)

● NPSPACE=k∈ℕNSPACE(nk)
● itp.

Nondeterministic Turing machines



  

An example of a language in NP – the language of (codes of) these
graphs in which there exists a Hamiltonian cycle

How do we recognize it? 
● walk in the graph, arbitrarily choosing the next node to visit – 

remember visited nodes, and ensure that every node is visited
at most once; 

● if every node was visited (exactly once), and there is an edge to
the starting node, then accept

Nondeterministic Turing machines



  

An alternative definition of NP – using witnesses:
● A relation R is defined as the language of words of the form v$w 

(where v,w∈S* and $∉S)
● A relation R is called polynomial if:

➔ R∈P  and
➔ there exists a polynomial p such that v$w∈R implies |w|≤p(|v|)

● The projection of a relation R is defined as ∃R={v : ∃w. v$w∈R}

A model with witnesses



  

An alternative definition of NP – using witnesses:
● A relation R is defined as the language of words of the form v$w 

(where v,w∈S* and $∉S)
● A relation R is called polynomial if:

➔ R∈P  and
➔ there exists a polynomial p such that v$w∈R implies |w|≤p(|v|)

● The projection of a relation R is defined as ∃R={v : ∃w. v$w∈R}

An example of a language in NP – the language of (codes of) these
graphs in which there exists a Hamiltonian cycle
● it is of the form ∃R for 

R={graph $ consecutive nodes on a Hamiltonian cycle in this graph}
● it is easy to recognize R in polynomial time
● the second part (a cycle) is no longer than the first one (a graph)

A model with witnesses



  

Theorem
L∈NP  there exists a polynomial relation R such that L=∃R

A model with witnesses



  

Theorem
L∈NP  there exists a polynomial relation R such that L=∃R
Proof
 By definition, the length of witnesses is bounded by some
polynomial p. We create a machine M, which after the input word 
(nondeterministically) writes an arbitrary word of length ≤p(n) 
(in particular M counts the length of the word that it writes, and 
finishes writing it, if it gets longer than p(n)); then M executes the
(deterministic) machine recognizing R.

A model with witnesses



  

Theorem
L∈NP  there exists a polynomial relation R such that L=∃R
Proof
 By definition, the length of witnesses is bounded by some
polynomial p. We create a machine M, which after the input word 
(nondeterministically) writes an arbitrary word of length ≤p(n) 
(in particular M counts the length of the word that it writes, and 
finishes writing it, if it gets longer than p(n)); then M executes the
(deterministic) machine recognizing R.
 L is recognized by a nondeterministic machine M in time p(n). 
Then on every accepted word v there exists a sequence of 
transitions of M performed in consecutive steps of an accepting run;
this sequence has length ≤p(|v|). To R we take input words together
with codes of accepting runs. This relation is polynomial; in 
particular, it can be recognized by a deterministic machine in 
polynomial time (remark: notice that a “transition” comes from a set of 
constant size)

A model with witnesses



  

Theorem
L∈NP  there exists a polynomial relation R such that L=∃R
Similarily we can define another time-complexity classes, e.g., 
languages from NEXPTIME are projections of relations such that:

➔ can be recognized in P
➔ there exists an exponential function f such that 

v$w∈R implies |w|≤f(|v|)

A model with witnesses
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languages from NEXPTIME are projections of relations such that:
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➔ there exists an exponential function f such that 
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What about space-complexity classes, e.g., NL?
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Similarily we can define another time-complexity classes, e.g., 
languages from NEXPTIME are projections of relations such that:

➔ can be recognized in P
➔ there exists an exponential function f such that 

v$w∈R implies |w|≤f(|v|)

What about space-complexity classes, e.g., NL?
● a witness of logarithmic length?
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Theorem
L∈NP  there exists a polynomial relation R such that L=∃R
Similarily we can define another time-complexity classes, e.g., 
languages from NEXPTIME are projections of relations such that:

➔ can be recognized in P
➔ there exists an exponential function f such that 

v$w∈R implies |w|≤f(|v|)

What about space-complexity classes, e.g., NL?
● a witness of logarithmic length? – too short
● a witness of polynomial length, recognizing in L?
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Theorem
L∈NP  there exists a polynomial relation R such that L=∃R
Similarily we can define another time-complexity classes, e.g., 
languages from NEXPTIME are projections of relations such that:

➔ can be recognized in P
➔ there exists an exponential function f such that 

v$w∈R implies |w|≤f(|v|)

What about space-complexity classes, e.g., NL?
● a witness of logarithmic length? – too short
● a witness of polynomial length, recognizing in L?

 – too much: gives the whole NP
● a witness of polynomial length, which can be read only once

(the head does not move left), recognizing in L – OK

A model with witnesses



  

For every class C, the class coC consists of complements of
languages from C.
● for trivial reasons, deterministic classes are equal to its co-classes,

e.g., P=coP
● for nondeterministic classes this is not clear
● e.g., the language of graph, in which there DOES NOT exist an

Hamiltonian cycle
➔ belongs to coNP
➔ but is it in NP? – what can be taken as a witness?

Classes of complements



  

For every class C, the class coC consists of complements of
languages from C.
● for trivial reasons, deterministic classes are equal to its co-classes,

e.g., P=coP
● for nondeterministic classes this is not clear
● e.g., the language of graph, in which there DOES NOT exist an

Hamiltonian cycle
➔ belongs to coNP
➔ but is it in NP? – what can be taken as a witness?

● An open problem: does NP≠coNP?
(if NP≠coNP then also NP≠P)

● Another open problem: does NP∩coNP=P?
We don't have too many problems, for which we know that they 
are in NP∩coNP, but we do not know whether they are in P.

Classes of complements



  

We don't have too many problems, for which we know that they 
are in NP∩coNP, but we do not know whether they are in P:
➔ For a long time checking that a number is prime was a problem

with this property, but now we know that it is in P
➔ Example: factoring ∈ NP∩coNP (decision variant of factoring: 

does n have a prime factor <k?) – prime factorization is a witness 
in both directions.
This suggests that NP∩coNP≠P, as we believe that factoring 
cannot be done in polynomial time.

➔ Another example: some game problems, e.g.
parity_games ∈ NP∩coNP (next slide)

NP∩coNP



  

● We are given a directed graph, with nodes labeled by numbers
● Players alternatingly move (one, common) pawn along edges

of the graph – ad infinitum
● We look for the greatest number appearing infinitely often – if it is

odd, then player 1 wins; if it is even, player 2 wins

Parity games

1 2 3 43 5



  

● We are given a directed graph, with nodes labeled by numbers
● Players alternatingly move (one, common) pawn along edges

of the graph – ad infinitum
● We look for the greatest number appearing infinitely often – if it is

odd, then player 1 wins; if it is even, player 2 wins
● Alternatively: we play only to the first repetition of a pair (node, player_number)

and we look for the greatest number on the created cycle
● Question: does player 1 wins (has a wining strategy)?
● It is in NP: a strategy of player 1 is a polynomial size witness, 

which can be verified in polynomial time
● It is in coNP as well – a strategy of player 2 is ...
● not known to be in P
● can be solved in O(nc+log n)

   
1 2 3 43 5

Parity games



  

Theorem
DTIME(f(n))⊆NTIME(f(n)), DSPACE(f(n))⊆NSPACE(f(n))

Proof
Trivial, since a deterministic machine is a special case of a 
nondeterministic machine.

Determinization



  

Theorem
NTIME(f(n))⊆DSPACE(f(n))

Proof
● We have a nondetermin. machine M working in time g(n)=O(f(n)).

We want to check whether it has an accepting run on a given input.

Determinization



  

Theorem
NTIME(f(n))⊆DSPACE(f(n))

Proof
● We have a nondetermin. machine M working in time g(n)=O(f(n)).

We want to check whether it has an accepting run on a given input.
● Allocate space g(n) and generate there all possible words w of this

length, one after another (assume for a moment that g(n) is
space constructible)

● For every generated word w simulate M on the input word,
treating w is a sequence of consecutive choices of M
(the input word should not be destroyed)
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Theorem
NTIME(f(n))⊆DSPACE(f(n))

Proof
● We have a nondetermin. machine M working in time g(n)=O(f(n)).

We want to check whether it has an accepting run on a given input.
● Allocate space g(n) and generate there all possible words w of this

length, one after another (assume for a moment that g(n) is
space constructible)

● For every generated word w simulate M on the input word,
treating w is a sequence of consecutive choices of M
(the input word should not be destroyed)

● We need space g(n) for the sequences of choices, and at most g(n)
for the memory of M

● We can succeed also without assuming that g(n) is space 
constructible: we start from short sequences of choices; 
if during the simulation of M we see that the sequence is too short, 
we make it longer.

Determinization


	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43

