

Computational complexity

lecture 4

Last lecture: boolean circuits
● directed acyclic graph
● OR gates, AND gates, input gates X1,...,Xn, negated input gates
X1,...,Xn

● typical usage: a single output gate; result 1 when the input word
belongs to a language

● a sequence of circuits – one circuit for every input length n

X1 X1

∧

∨

X3X2 X3X2

∨∨∨

∨

∧

1

0

11

111 0 0

0

01

1

Boolean circuits

Simulating machines by circuits
Theorem

Every language recognizable in time T(n) on a single-tape machine
can be recognized by a sequence of circuits (Cn)n∈ℕ of depth

O(T(n)) and number of gates O((T(n))2).
(actually, a stronger variant can be proven: depth O(T(n)) and
O(T(n) .log(T(n))) gates, even for a multi-tape machine)

Additionally, the circuit Cn can be generated in logarithmic space

(thus: in polynomial time) in n. (i.e., there exists a TM
working in logarithmic space, which on input 1n outputs a representation
of the circuit Cn)

Theorem
Every language recognizable in time T(n) on a single-tape machine
can be recognized by a sequence of circuits (Cn)n∈ℕ of depth

O(T(n)) and number of gates O((T(n))2).

Proof
● Fix some M recognizing our language in time T(n); fix also some n.
● We can assume that runs of M on words of length n have length

precisely T(n) (if M stops earlier, we repeat the last configuration).
● M uses at most T(n) tape cells.
● A computation of M can be written in a square T(n)T(n)

Simulating machines by circuits

A computation of M can be written in a square T(n)T(n):
● Every row consists of a tape contents in some step
● In the cell, over which the head is located, we additionally write

the state.

▹1 a b a b c a  

▹ a5 b a b c a  

▹ b3 b a b c a  

▹4 b b a b c a  

▹ b2 b a b c a  

▹ b b5 a b c a  

▹ b c a1 b c a  

▹ b c a b4 c a  

▹ b c a b6 c a  

Simulating machines by circuits

A computation of M can be written in a square T(n)T(n):
● Every row consists of a tape contents in some step
● In the cell, over which the head is located, we additionally write

the state.
● The content of a cell depends only on the three cells located

directly over it.
▹1 a b a b c a  

▹ a5 b a b c a  

▹ b3 b a b c a  

▹4 b b a b c a  

▹ b2 b a b c a  

▹ b b5 a b c a  

▹ b c a1 b c a  

▹ b c a b4 c a  

▹ b c a b6 c a  

Simulating machines by circuits

A computation of M can be written in a square T(n)T(n):
● Every row consists of a tape contents in some step
● In the cell, over which the head is located, we additionally write

the state.
● The content of a cell depends only on the three cells located

directly over it.
● Gate (i,j,z) – in the cell having coordinates i,j there is z
● The value of a gate (i,j,z) is a function of gates (i-1,j-1,z'), (i-1,j,z'),

(i-1,j+1,z') for all z' – it can be realized by a circuit of a constant
size (the number of possible z,z' is fixed – independent on n)

● Output gate: in the last row there is an accepting state
● Details in notes of D.Niwiński

Simulating machines by circuits

Is it the case that every language recognizable by a sequence of
circuits can be recognized by a Turing machine?

Simulating machines by circuits

Is it the case that every language recognizable by a sequence of
circuits can be recognized by a Turing machine?

NO! – circuits need not to be uniform
(a sequence of circuits can recognize an arbitrary language,
a Turing machine cannot)

Simulating machines by circuits

Is it the case that every language recognizable by a sequence of
circuits can be recognized by a Turing machine?

NO! – circuits need not to be uniform
(a sequence of circuits can recognize an arbitrary language,
a Turing machine cannot)

A theorem which is true:
There is a Turing machine (working in quadratic time), which

inputs a representation of a circuit Cn and a word of w of length n,

and computes the value of Cn on word w.

Simulating machines by circuits

Turing machines with advice
A Turing machine with advice – a model that is non-uniform,
but sequential.

Definition: A machine M together with a sequence of words
k0,k1,k2,... recognizes a language L iff

w∈L  k|w|$w∈L(M)

A Turing machine with advice – a model that is non-uniform,
but sequential.

Definition: A machine M together with a sequence of words
k0,k1,k2,... recognizes a language L iff

w∈L  k|w|$w∈L(M)

We consider the running time with respect to |w|, not with respect
to the whole word.

E.g. an exponential advice enforces exponential running time
(it is necessary to read it).

Turing machines with advice

A Turing machine with advice – a model that is non-uniform,
but sequential.

Definition: A machine M together with a sequence of words
k0,k1,k2,... recognizes a language L iff

w∈L  k|w|$w∈L(M)

We consider the running time with respect to |w|, not with respect
to the whole word.

E.g. an exponential advice enforces exponential running time
(it is necessary to read it).

class P/poly – languages recognizable in polynomial time by
a machine with advice (of polynomial size)

Turing machines with advice

class P/poly – languages recognizable in polynomial time by
a machine with advice (of polynomial size)

Theorem
A language belongs to P/poly iff it is recognizable by a sequence
of circuits of polynomial size.
Proof

Turing machines with advice

class P/poly – languages recognizable in polynomial time by
a machine with advice (of polynomial size)

Theorem
A language belongs to P/poly iff it is recognizable by a sequence
of circuits of polynomial size.
Proof

⇒ We convert the machine to a circuit.
 The advice can be hard-coded in the circuit.

Turing machines with advice

class P/poly – languages recognizable in polynomial time by
a machine with advice (of polynomial size)

Theorem
A language belongs to P/poly iff it is recognizable by a sequence
of circuits of polynomial size.
Proof

⇒ We convert the machine to a circuit.
 The advice can be hard-coded in the circuit.

⇐ kn consists of a representation of Cn;

 we evaluate Cn using a Turing machine

Turing machines with advice

The P/poly class is non-uniform – it contains undecidable
languages.

For example:

 L={1n : the n-th Turing machine halts on every input}

Turing machines with advice

The P/poly class is non-uniform – it contains undecidable
languages.

For example:

 L={1n : the n-th Turing machine halts on every input}

The P/poly class is useful for modeling languages (problems),
which can be solved quickly after a (probably very costly)
preprocessing.
E.g., in cryptography one sometimes assumes that an intruder
has computing power in P/poly.

Turing machines with advice

The P/poly class is non-uniform – it contains undecidable
languages.

For example:

 L={1n : the n-th Turing machine halts on every input}

The P/poly class is useful for modeling languages (problems),
which can be solved quickly after a (probably very costly)
preprocessing.
E.g., in cryptography one sometimes assumes that an intruder
has computing power in P/poly.

Open problem: does NP⊈P/poly?
(this is a stronger statement than P≠NP, because obviously P⊆P/poly)

Turing machines with advice

Uniform sequences of circuits
A sequence of circuits C0,C1,C2,... is uniform if it is computable in

logarithmic space, i.e., there exists a TM working in logarithmic
space, which on input 1n outputs the representation of circuit Cn

A sequence of circuits C0,C1,C2,... is uniform if it is computable in

logarithmic space, i.e., there exists a TM working in logarithmic
space, which on input 1n outputs the representation of circuit Cn

Let us recall the definition – functions computable in logarithmic space:
● a read-only input tape
● working tapes of logarithmic length
● an output tape, over which the head may only move right

Notice that in logarithmic space one can compute an output which is
much longer than logarithmic (but necessarily is polynomial)

Corollary: such a procedure can only generate circuits Cn which

are of size polynomial in n.

Uniform sequences of circuits

A sequence of circuits C0,C1,C2,... is uniform if it is computable in

logarithmic space, i.e., there exists a TM working in logarithmic
space, which on input 1n outputs the representation of circuit Cn

Let us recall the definition – functions computable in logarithmic space:
● a read-only input tape
● working tapes of logarithmic length
● an output tape, over which the head may only move right

Notice that in logarithmic space one can compute an output which is
much longer than logarithmic (but necessarily is polynomial)

Theorem
Functions computable in logarithmic space are closed under composition.

Proof
When the second TM wants to read the k-th bit of the output of the first
machine, then we run the first TM, and we only check the value of the
k-th bit of its output, ignoring the rest of the output.

Uniform sequences of circuits

Theorem
A language is recognizable by a uniform sequence of circuits iff
it is in P.

Proof
⇒ obvious: having an input word of length n generate the n-th
 circuit, and compute its value

⇐ the algorithm given previously, which constructs a circuit basing
 on a Turing machine and on the input length n, works in
 logarithmic space (it only has to remember for which cell of the
 square it currently outputs gates; this fits in a logarithmic space)

Uniform sequences of circuits

Circuits of small depth
● class ACk – languages recognizable by a sequence of circuits of

depth O((log(n))k), and of polynomial size
● most interesting cases: AC0 (constant depth),

AC1 (logarithmic depth)

● AC=∪kℕACk

● class ACk – languages recognizable by a sequence of circuits of
depth O((log(n))k), and of polynomial size

● most interesting cases: AC0 (constant depth),
AC1 (logarithmic depth)

● AC=∪kℕACk

● class NCk – languages recognizable by a sequence of circuits of
depth O((log(n))k), of polynomial size, and of fan-in 2
(i.e., every gate has at most 2 predecessors)

● class NC0 is not interesting (only a constant number of bits is checked)

● NC=∪kℕNCk

Circuits of small depth

Circuits of small depth
Uniform variant:
● class u-ACk – languages recognizable by a uniform

(i.e., computable in logarithmic space) sequence of circuits
of depth O((log(n))k)

● u-AC=∪kℕu-ACk

● class u-NCk – languages recognizable by a uniform
sequence of circuits of depth O((log(n))k) and of fan-in 2

● u-NC=∪kℕu-NCk

Remark: Different names are used for these classes: uniform-ACk
or u-ACk or UL-ACk or ACk (i.e., some authors already in the defi-

nition of ACk assume that the sequence of circuits is uniform)

implies polynomial size

Example:
Binary matrix multiplication is in u-AC0

[more precisely: the language of tuples (M,N,i,j) such that (M .N)i,j =1]

(M
.N)i,j = k Mi,k∧Nk,j

● level 1: compute Mi,k∧Nk,j for every (i,j,k)

● level 2: for every (i,j) compute a big disjunction
● additional two levels: select the cell (i,j) specified on input
● it is easy to generate this circuit in logarithmic space

∨

Circuits of small depth

Example:
Binary matrix multiplication is in u-AC0

[more precisely: the language of tuples (M,N,i,j) such that (M .N)i,j =1]

(M
.N)i,j = k Mi,k∧Nk,j

● level 1: compute Mi,k∧Nk,j for every (i,j,k)

● level 2: for every (i,j) compute a big disjunction
● additional two levels: select the cell (i,j) specified on input
● it is easy to generate this circuit in logarithmic space

Binary matrix multiplication is in u-NC1 as well
● a disjunction of n values (on level 2) can be realized as a tree of

depth log(n) consisting of n-1 disjunctions of fan-in 2

∨

∨
∨ ∨

∨

Circuits of small depth

The same can be done in general:
every disjunction (conjunction) of m values can be replaced by
a tree of depth log(m)≤c .log(n) consisting of m-1 disjunctions
(conjunctions) of fan-in 2

Thus we obtain that:

ACk⊆NCk+1 & u-ACk⊆u-NCk+1

By definition we also have that:

NCk⊆ACk & u-NCk⊆u-ACk

Thus in particular:

AC=NC & u-AC=u-NC

∨
∨ ∨

∨

Circuits of small depth

Intuition: u-NC contains problems, which can be quickly
solved by parallel algorithm

An open problem: does u-NC≠P?

Circuits of small depth

Intuition: u-NC contains problems, which can be quickly
solved by parallel algorithm

An open problem: does u-NC≠P?

We have a sequence of inclusions:
u-AC0⊆u-NC1⊆u-AC1⊆u-NC2⊆...⊆u-AC=u-NC⊆P⊆NP⊆PSPACE

It is conjectured that all of them are strict, but it is only known that:
● u-AC0≠u-NC1

● u-NC≠PSPACE

Circuits of small depth

Intuition: u-NC contains problems, which can be quickly
solved by parallel algorithm

An open problem: does u-NC≠P?

We have a sequence of inclusions:
u-AC0⊆u-NC1⊆u-AC1⊆u-NC2⊆...⊆u-AC=u-NC⊆P⊆NP⊆PSPACE

It is conjectured that all of them are strict, but it is only known that:
● u-AC0≠u-NC1

● u-NC≠PSPACE

Why u-NC≠PSPACE?
Follows from the hierarchy theorem, because u-NC⊆polyL
(on tutorials you will prove that u-NC1⊆L)

Why u-AC0≠u-NC1?
Following slides

Circuits of small depth

The parity language
PARITY – the language of those words {0,1} in which the number
of ones is even

Fact: PARITYu-NC1

We count ones modulo 2 – circuit of tree-like shape.

Theorem (1986): PARITYAC0

Proof – the following part of the lecture

● It is one of quite rare nontrivial proofs saying that some problem
cannot be solved in some complexity class.

● (Mostly hardness theorems are relative – is a problem A is hard,
then a problem B is hard, e.g. NP-completeness)

PARITYAC0

● We are going to consider multi-variable polynomials over the field
ℤ3={0,1,2} (we will use them to approximate the behavior of a circuit)

● A polynomial p (of n variables) is called proper if for arguments in
{0,1}n it gives results in {0,1} (we are interested only in such polynomials -
they define a boolean function of n variables, like circuits)

PARITYAC0

● We are going to consider multi-variable polynomials over the field
ℤ3={0,1,2} (we will use them to approximate the behavior of a circuit)

● A polynomial p (of n variables) is called proper if for arguments in
{0,1}n it gives results in {0,1} (we are interested only in such polynomials -
they define a boolean function of n variables, like circuits)

● The total degree of a polynomial p is defined as the sum of
exponents in a monomial in p, e.g., x4y1+x1y2z3 has degree 6

PARITYAC0

● We are going to consider multi-variable polynomials over the field
ℤ3={0,1,2} (we will use them to approximate the behavior of a circuit)

● A polynomial p (of n variables) is called proper if for arguments in
{0,1}n it gives results in {0,1} (we are interested only in such polynomials -
they define a boolean function of n variables, like circuits)

● The total degree of a polynomial p is defined as the sum of
exponents in a monomial in p, e.g., x4y1+x1y2z3 has degree 6

Fix a depth d. We will prove that PARITY cannot be recognized by
a sequence (even not necessarily uniform) of circuits of depth d
and polynomial size.

PARITYAC0

● We are going to consider multi-variable polynomials over the field
ℤ3={0,1,2} (we will use them to approximate the behavior of a circuit)

● A polynomial p (of n variables) is called proper if for arguments in
{0,1}n it gives results in {0,1} (we are interested only in such polynomials -
they define a boolean function of n variables, like circuits)

● The total degree of a polynomial p is defined as the sum of
exponents in a monomial in p, e.g., x4y1+x1y2z3 has degree 6

Fix a depth d. We will prove that PARITY cannot be recognized by
a sequence (even not necessarily uniform) of circuits of depth d
and polynomial size.
General idea:
● Every circuit of small depth can be approximated by a proper

polynomial of low degree (Lemma 1)
● The parity function cannot be approximated by a polynomial of

low degree (Lemma 2)

PARITYAC0

Lemma 1. For every t>0 and n, for every circuit C with n input gates

and depth d there exists a proper polynomial of n variables and

total degree ≤(2t)d, which differs from C on at most inputs
(where |C| denotes the number of gates in C)

––2n
2t

|C|

PARITYAC0

Lemma 1. For every t>0 and n, for every circuit C with n input gates

and depth d there exists a proper polynomial of n variables and

total degree ≤(2t)d, which differs from C on at most inputs
(where |C| denotes the number of gates in C)

We will use this lemma with 2t=n1/(2d)

Then we obtain polynomials of degree ≤√n, while the fraction
|C|/2t tends to 0 when |C| is polynomial in n, and d is constant.

––2n
2t

|C|

PARITYAC0

Lemma 1. For every t>0 and n, for every circuit C with n input gates

and depth d there exists a proper polynomial of n variables and

total degree ≤(2t)d, which differs from C on at most inputs
(where |C| denotes the number of gates in C)

We will use this lemma with 2t=n1/(2d)

Then we obtain polynomials of degree ≤√n, while the fraction
|C|/2t tends to 0 when |C| is polynomial in n, and d is constant.

Lemma 2. For large enough n every polynomial of n variables and

total degree ≤√n differs from the parity function on at least
inputs.

Lemma 1 + Lemma 2 → polynomial circuits of constant depth
cannot recognize PARITY

100––2n1

––2n
2t

|C|

Proof of Lemma 1 (*)

Lemma 1. For every t>0 and n, for every circuit C with n input gates

and depth d there exists a proper polynomial of n variables and

total degree ≤(2t)d, which differs from C on at most inputs
(where |C| denotes the number of gates in C)

Proof.
● Fix n, t and a circuit C of depth d.
● Assume w.l.o.g. that C uses only OR and NOT gates.
● To every gate of C we will assign a proper polynomial of n varia-

bles x1,...,xn, by induction on the depth of the gate, so that it will
compute the value of this gate C for relatively many inputs

––2n
2t

|C|

To every gate of C we will assign a proper polynomial of n varia-
bles x1,...,xn, by induction on the depth of the gate, so that it will
compute the value of this gate C for relatively many inputs:
● i-th input gate – take the polynomial xi, which always computes

a correct value
● NOT gate. If we have assigned a polynomial p to its predecessor,

we take polynomial 1-p, which computes a correct value precisely
when p computed a correct value

● it remains to handle OR gates – the only nontrivial case

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we could take the polynomial: 1-(1-p1)(1-pk)
● it works well whenever p1,...,pk worked well
● but its degree is too large: if p1,...,pk have degrees at most s,

then its degree is ks – we rather need to obtain ≤2ts,
as then on the output gate we will have degree (2t)d

● we thus have to proceed in a more clever way

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we could take the polynomial: 1-(1-p1)(1-pk)
● it works well whenever p1,...,pk worked well
● but its degree is too large: if p1,...,pk have degrees at most s,

then its degree is ks – we rather need to obtain ≤2ts,
as then on the output gate we will have degree (2t)d

● we thus have to proceed in a more clever way
● in a moment, we will appropriately choose sets S1,...,St⊆{1,...,k}
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● in a moment, we will appropriately choose sets S1,...,St⊆{1,...,k}
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

● p is proper, since {02,12,22}={0,1}

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● in a moment, we will appropriately choose sets S1,...,St⊆{1,...,k}
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

● p is proper, since {02,12,22}={0,1}
● if degrees of p1,...,pk are ≤s, then the degree of p is ≤2ts;

then for the output gate of C we obtain degree ≤(2t)d – as required
in the lemma

● it remains to see that p approximates well the value of the gate
(for an appropriate choice of the sets S1,...,St)

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

Fix some input (of the whole circuit C) on which all p1,...,pk give
correct values. Let us randomly choose sets S1,...,St⊆{1,...,k}
(every list of sets has the same probability)

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

Fix some input (of the whole circuit C) on which all p1,...,pk give
correct values. Let us randomly choose sets S1,...,St⊆{1,...,k}
(every list of sets has the same probability)
● If all pj give value 0, then p also gives value 0 – correctly

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

● Fix some input (of the whole circuit C) on which all p1,...,pk give
correct values. Let us randomly choose sets S1,...,St⊆{1,...,k}
(every list of sets has the same probability)

● If all pj give value 0, then p also gives value 0 – correctly
● If some pj gives value 1, then for a chosen set Si the polynomial

qi gives value 1 if in this set Si the number of polynomials with
value 1 is not divisible by 3. This is the case for at least half of
choices of Si. Thus the probability that for a random Si the polyno-
mial qi gives value 1 is ≥0.5 (then the whole p also gives value 1).

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

● Fix some input (of the whole circuit C) on which all p1,...,pk give
correct values. Let us randomly choose sets S1,...,St⊆{1,...,k}
(every list of sets has the same probability)

● If all pj give value 0, then p also gives value 0 – correctly
● If some pj gives value 1, then for a chosen set Si the polynomial

qi gives value 1 if in this set Si the number of polynomials with
value 1 is not divisible by 3. This is the case for at least half of
choices of Si. Thus the probability that for a random Si the polyno-
mial qi gives value 1 is ≥0.5 (then the whole p also gives value 1).

● Thus, if the sets S1,...,St⊆{1,...,k} are chosen randomly, the proba-
bility that p will give an incorrect value is at most 1/2t

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

● For a fixed input, for which all p1,...,pk give correct values, and for
sets S1,...,St⊆{1,...,k} chosen randomly, the probability that p gives
an incorrect value is at most 1/2t

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

● For a fixed input, for which all p1,...,pk give correct values, and for
sets S1,...,St⊆{1,...,k} chosen randomly, the probability that p gives
an incorrect value is at most 1/2t

● Thus: for an input chosen randomly among those inputs for which
all p1,...,pk give correct values, and for sets S1,...,St⊆{1,...,k} chosen
randomly, the probability that p gives an incorrect value is
at most 1/2t

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

● For a fixed input, for which all p1,...,pk give correct values, and for
sets S1,...,St⊆{1,...,k} chosen randomly, the probability that p gives
an incorrect value is at most 1/2t

● Thus: for an input chosen randomly among those inputs for which
all p1,...,pk give correct values, and for sets S1,...,St⊆{1,...,k} chosen
randomly, the probability that p gives an incorrect value is
at most 1/2t

● Thus: there exist sets S1,...,St⊆{1,...,k} such that for an input
chosen randomly among those inputs for which all p1,...,pk give
correct values, the probability that p gives an incorrect value is
at most 1/2t

Proof of Lemma 1 (*)

Consider an OR gate of fan-in k. To its arguments we have
assigned some polynomials p1,...,pk.
● we will take the polynomial:

p=1-(1-q1)(1-qt) where qi=(∑jSi
pj)2

● Thus: there exist sets S1,...,St⊆{1,...,k} such that for an input
chosen randomly among those inputs for which all p1,...,pk give
correct values, the probability that p gives an incorrect value is
at most 1/2t

● We take an arbitrary list of sets having this property
● The considered gate introduces a mistake on at most 2n/2t

inputs
● Altogether, the value will be incorrect (for some gate) for at most

|C| .2n/2t inputs
[THE END OF THE PROOF OF LEMMA 1]

Proof of Lemma 1 (*)

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54

