Computational complexity

lecture 3

Announcement

Mid-term exam:

12.12.2017, during the lecture (Tuesday, 12:15)

Universal machines

Theorem:

There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M \rangle, w) = M(w)$. If M works in time T(|w|) and space S(|w|), then U works in time $O(T(|w|) \cdot log(T(|w|)))$ and space O(S(|w|)).

Universal machines

Theorem:

There exists a universal Turing machine U (an "interpreter"), such that $U(\langle M \rangle, w) = M(w)$. If M works in time T(|w|) and space S(|w|), then U works in time $O(T(|w|) \cdot log(T(|w|)))$ and space O(S(|w|)).

Two possible definitions of time / space complexity:

- T_1/S_1 using machines ("there exists a machine...")
- T_2/S_2 using programs for the universal machine ("there exists a program...")

Relation between them:

- $T_1 \le T_2 \le T_1 \cdot log T_1$
- $S_1 = S_2$

only small difference! we use the definition with machines

Are there problems, which require very large time / space to be solved? (Maybe every problem can be solved e.g. in polynomial time?)

Are there problems, which require very large time / space to be solved? (Maybe every problem can be solved e.g. in polynomial time?)

Space hierarchy theorem:

If:

- function g(n) is space-constructible, and
- f(n)=o(g(n))then $DSPACE(f(n))\neq DSPACE(g(n))$

<u>Time hierarchy theorem</u> – similar

definition:
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$

Space hierarchy theorem:

If:

- function g(n) is space-constructible, and
- f(n)=o(g(n))then $DSPACE(f(n))\neq DSPACE(g(n))$

Proof:

Consider the language

```
L = \{(\langle M \rangle, w) \mid \text{ tape alphabet of } M \text{ is } \{0,1, \triangleright, \perp\}, \text{ and } |\langle M \rangle| \leq g(|(\langle M \rangle, w)|), and M rejects (\langle M \rangle, w) in space g(|(\langle M \rangle, w)|)\}
```

 $L = \{(\langle M \rangle, w) \mid \text{ tape alphabet of } M \text{ is } \{0,1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \le g(|(\langle M \rangle, w)|),$ and M rejects $(\langle M \rangle, w)$ in space $g(|(\langle M \rangle, w)|)\}$

Part 1 – $L \notin DSPACE(f(n))$

Suppose that $L \in DSPACE(f(n))$. Then there is M with tape alphabet $\{0,1,\triangleright,\perp\}$, which recognizes L in space O(f(n)).

Because f(n)=o(g(n)), for some long word w machine M works on $(\langle M \rangle, w)$ in space $g(|(\langle M \rangle, w)|)$, and $|\langle M \rangle| \le g(|(\langle M \rangle, w)|)$

We have a contradiction:

 $(M \text{ accepts } (\langle M \rangle, w)) \Leftrightarrow (\langle M \rangle, w) \in L \Leftrightarrow (M \text{ rejects } (\langle M \rangle, w))$

Remark – for the language

$$L' = \{((\langle M \rangle, w) \mid M \text{ rejects } (\langle M \rangle, w)\}$$

the same argument gives undecidability.

 $L = \{(\langle M \rangle, w) \mid \text{ tape alphabet of } M \text{ is } \{0,1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \le g(|(\langle M \rangle, w)|),$ and $M \text{ rejects } (\langle M \rangle, w) \text{ in space } g(|(\langle M \rangle, w)|)\}$

Part 2: $L \in DSPACE(g(n))$ – i.e., L can be recognized in space O(g(n)).

• Generally: simulate the run of M on $(\langle M \rangle, w)$

 $L = \{(\langle M \rangle, w) \mid \text{ tape alphabet of } M \text{ is } \{0,1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \le g(|(\langle M \rangle, w)|),$ and M rejects $(\langle M \rangle, w)$ in space $g(|(\langle M \rangle, w)|)\}$

Part 2: $L \in DSPACE(g(n))$ – i.e., L can be recognized in space O(g(n)).

- Generally: simulate the run of M on $(\langle M \rangle, w)$
- Reserve working space g(n) (where n = length of input)
 - > space O(g(n)) is enough (by assumption g is space-constructible)

 $L = \{(\langle M \rangle, w) \mid \text{ tape alphabet of } M \text{ is } \{0,1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \le g(|(\langle M \rangle, w)|),$ and M rejects $(\langle M \rangle, w)$ in space $g(|(\langle M \rangle, w)|)\}$

Part 2: $L \in DSPACE(g(n))$ – i.e., L can be recognized in space O(g(n)).

- Generally: simulate the run of M on $(\langle M \rangle, w)$
- Reserve working space g(n) (where n = length of input)
 - > space O(g(n)) is enough (by assumption g is space-constructible)
- Check that the input is of the form $(\langle M \rangle, w)$, that the alphabet is $\{0,1, \triangleright, \bot\}$, and that $|\langle M \rangle| \le g(n)$
 - > space O(g(n)) is enough

 $L = \{(\langle M \rangle, w) \mid \text{ tape alphabet of } M \text{ is } \{0,1, \triangleright, \perp\}, \text{ and } |\langle M \rangle| \leq g(|(\langle M \rangle, w)|),$ and $M \text{ rejects } (\langle M \rangle, w) \text{ in space } g(|(\langle M \rangle, w)|)\}$

Part 2: $L \in DSPACE(g(n))$ – i.e., L can be recognized in space O(g(n)).

- Generally: simulate the run of M on $(\langle M \rangle, w)$
- Reserve working space g(n) (where n = length of input)
 - > space O(g(n)) is enough (by assumption g is space-constructible)
- Check that the input is of the form $(\langle M \rangle, w)$, that the alphabet is $\{0,1, \triangleright, \bot\}$, and that $|\langle M \rangle| \le g(n)$
 - > space O(g(n)) is enough
- Use the Sipser's theorem (or assume that $g(n) = \Omega(\log(n))$, and use the approach with a counter), and check whether M rejects $(\langle M \rangle, w)$ in reserved space g(n).
 - > when M rejects \rightarrow we accept
 - > when M accepts or loops or exceeds space \rightarrow we reject
 - > space O(g(n)) is enough

Space hierarchy theorem:

If:

- function g(n) is space-constructible, and
- f(n)=o(g(n))then $DSPACE(f(n))\neq DSPACE(g(n))$

Time hierarchy theorem:

If:

- function g(n) is time-constructible,
- f(n)=o(g(n))

then $DTIME(f(n)) \neq DTIME(g(n)log(g(n)))$

Time hierarchy theorem:

lf:

- function g(n) is time-constructible,
- f(n)=o(g(n))then $DTIME(f(n))\neq DTIME(g(n)log(g(n)))$

Proof

Consider the language

```
L = \{(\langle M \rangle, w) \mid \text{ tape alphabet of } M \text{ is } \{0,1, \triangleright, \perp\}, \text{ and } |\langle M \rangle| \leq log(|(\langle M \rangle, w)|) and M rejects (\langle M \rangle, w) in time g(|(\langle M \rangle, w)|)\}
```

• Part $1 - L \notin DTIME(f(n)) \rightarrow exactly as previously$

```
L = \{(\langle M \rangle, w) \mid \text{ tape alphabet of } M \text{ is } \{0,1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \le \log(|(\langle M \rangle, w)|) and M rejects (\langle M \rangle, w) in time g(|(\langle M \rangle, w)|)\}
```

Part 2 – $L \in \mathsf{DTIME}(g(n)\log(g(n)))$ – i.e., L can be recognized in time $O(g(n)\log(g(n)))$

- Generally: simulate the run of M on $(\langle M \rangle, w)$
- Check that the input is of the form $(\langle M \rangle, w)$, that the alphabet is $\{0,1, \triangleright, \bot\}$, and that $|\langle M \rangle| \le log(n)$ (where n = length of input)
 - running time: O(n)
- Reserve a unary counter of length g(n), on a separate tape
 - *y g* is time constructible
 - > running time: O(g(n))
- Simulate M on word $(\langle M \rangle, w)$, like the universal machine; increase the counter after every step.
 - running time: $O(g(n) \cdot (\log g(n) + |\langle M \rangle|)) = O(g(n) \log(g(n)))$

simulating tapes

reading the description of M, modifying state

```
L = \{(\langle M \rangle, w) \mid \text{ tape alphabet of } M \text{ is } \{0,1, \triangleright, \bot\}, \text{ and } |\langle M \rangle| \le log(|(\langle M \rangle, w)|) and M rejects (\langle M \rangle, w) in time g(|(\langle M \rangle, w)|)\}
```

Part 2 – $L \in \mathsf{DTIME}(g(n)log(g(n)))$ – i.e., L can be recognized in time O(g(n)log(g(n)))

- Generally: simulate the run of M on $(\langle M \rangle, w)$
- Check that the input is of the form $(\langle M \rangle, w)$, that the alphabet is $\{0,1, \triangleright, \bot\}$, and that $|\langle M \rangle| \le log(n)$ (where n = length of input)
 - running time: O(n)
- Reserve a unary counter of length g(n), on a separate tape
 - > *g* is time constructible
 - running time: O(g(n))
- Simulate M on word $(\langle M \rangle, w)$, like the universal machine; increase the counter after every step.
 - running time: $O(g(n) \cdot (\log g(n) + |\langle M \rangle|)) = O(g(n) \log(g(n)))$
 - > when M rejects \rightarrow we accept
 - \rightarrow when M accepts or exceeds time \rightarrow we reject

Are there problems, which require very large time / space to be solved? (Maybe every problem can be solved e.g. in polynomial time?)

Corollary from hierarchy theorems

- DTIME $(n^k) \neq$ DTIME (n^{k+1}) , DSPACE $(n^k) \neq$ DSPACE (n^{k+1})
- L≠PSPACE, P≠EXPTIME

because $P\subseteq DTIME(2^n)\neq DTIME(4^n)\subseteq EXPTIME$

Are there problems, which require very large time / space to be solved? (Maybe every problem can be solved e.g. in polynomial time?)

Corollary from hierarchy theorems

- DTIME $(n^k) \neq$ DTIME (n^{k+1}) , DSPACE $(n^k) \neq$ DSPACE (n^{k+1})
- L≠PSPACE, P≠EXPTIME

because $P \subseteq DTIME(2^n) \neq DTIME(4^n) \subseteq EXPTIME$

If a machine M works in time I space precisely f(n), then there exists a problem requiring more time I space to be solved

- e.g. $2^{f(n)}$ or $f(n)^2$ for time & space
- e.g. $f(n) \cdot log(log(n))$ for space
- Moreover, functions being complexities of problems are distributed "quite densely", especially for space

Gap theorems

- Functions being complexities of problems are distributed "quite densely"
- Simultaneously, we have the following gap theorems:

There is a computable function $f(n) \ge n$ such that DTIME(f(n))=DTIME($2^{f(n)}$). There is a computable function f(n) such that DSPACE(f(n)) =DSPACE($2^{f(n)}$).

A contradiction with hierarchy theorems?

No – the function f will not be constructible (it can be computed, but in a larger time I space)

At the same time: we see that in the hierarchy theorems the assumption about constructability is really needed

<u>Gap theorem</u> – time

There is a computable function $f(n) \ge n$ such that DTIME(f(n))=DTIME($2^{f(n)}$). Proof

Fix an input alphabet $\Sigma = \{0,1\}$ (another alphabet \rightarrow time multiplied by a constant) We construct a function f(n) such that no machine stops between f(n) and $2^{f(n)}$ steps:

Assign numbers to Turing machines (in a computable way)

<u>Gap theorem</u> – time

There is a computable function $f(n) \ge n$ such that DTIME(f(n))=DTIME($2^{f(n)}$). Proof

Fix an input alphabet $\Sigma = \{0,1\}$ (another alphabet \rightarrow time multiplied by a constant) We construct a function f(n) such that no machine stops between f(n) and $2^{f(n)}$ steps:

- Assign numbers to Turing machines (in a computable way)
- We say that P(i,k) is satisfied iff none among the first i machines on none among inputs of length i stops between k and $i \cdot 2^k$ steps (they stop earlier than k or later than $i \cdot 2^k$ or loop forever)

<u>Gap theorem</u> – time

There is a computable function $f(n) \ge n$ such that DTIME(f(n))=DTIME($2^{f(n)}$). Proof

Fix an input alphabet $\Sigma = \{0,1\}$ (another alphabet \rightarrow time multiplied by a constant) We construct a function f(n) such that no machine stops between f(n) and $2^{f(n)}$ steps:

- Assign numbers to Turing machines (in a computable way)
- We say that P(i,k) is satisfied iff none among the first i machines on none among inputs of length i stops between k and $i \cdot 2^k$ steps (they stop earlier than k or later than $i \cdot 2^k$ or loop forever)
- Let $k_1(i)=i$ and $k_{i+1}(i)=i\cdot 2^{k_i(i)}$
- For a fixed i, every pair (input_of_length_i, machine_with_number_ $\leq i$) can falsify $P(i,k_j(i))$ for at most one j,

Thus there exists some $j \le i \cdot 2^i$ such that $P(i,k_i(i))$ is true.

<u>Gap theorem</u> – time

There is a computable function $f(n) \ge n$ such that DTIME(f(n))=DTIME($2^{f(n)}$). Proof

Fix an input alphabet $\Sigma = \{0,1\}$ (another alphabet \rightarrow time multiplied by a constant) We construct a function f(n) such that no machine stops between f(n) and $2^{f(n)}$ steps:

- Assign numbers to Turing machines (in a computable way)
- We say that P(i,k) is satisfied iff none among the first i machines on none among inputs of length i stops between k and $i \cdot 2^k$ steps (they stop earlier than k or later than $i \cdot 2^k$ or loop forever)
- Let $k_1(i)=i$ and $k_{i+1}(i)=i\cdot 2^{k_i(i)}$
- For a fixed i, every pair (input_of_length_i, machine_with_number_ $\leq i$) can falsify $P(i,k_j(i))$ for at most one j,
 - Thus there exists some $j \le i \cdot 2^i$ such that $P(i,k_i(i))$ is true.
- We put $f(i)=k_i(i)$. This function is computable.

<u>Gap theorem</u> – time

There is a computable function $f(n) \ge n$ such that DTIME(f(n))=DTIME($2^{f(n)}$). Proof

- For every n, none among the first n machines on none among inputs of length n stops between f(n) and $n \cdot 2^{f(n)}$ steps.
- Take any machine M with number m running in time $c \cdot 2^{f(n)}$
- For every input of length $n \ge max(m,c)$ the machine stops in $\le c \cdot 2^{f(n)}$ steps, but not between f(n) and $n \cdot 2^{f(n)}$ steps, hence in $\le f(n)$ steps

<u>Gap theorem</u> – time

There is a computable function $f(n) \ge n$ such that DTIME(f(n))=DTIME($2^{f(n)}$). Proof

- For every n, none among the first n machines on none among inputs of length n stops between f(n) and $n \cdot 2^{f(n)}$ steps.
- Take any machine M with number m running in time $c \cdot 2^{f(n)}$
- For every input of length $n \ge max(m,c)$ the machine stops in $\le c \cdot 2^{f(n)}$ steps, but not between f(n) and $n \cdot 2^{f(n)}$ steps, hence in $\le f(n)$ steps
- There are only constantly many inputs of length < max(m,c)
- Thus the language can be recognized in time O(f(n))

Gap theorems

Remarks

- In the same way we can construct a function f such that DSPACE(f(n))=DSPACE($2^{f(n)}$).
- Actually, for every function g such that $g(n) \ge n$ (instead of $g(n) = 2^n$) we can find f a such that DTIME(f(n))=DTIME(g(f(n))) or DSPACE(f(n))=DSPACE(g(f(n))).
- The functions *f* grow very quickly.
- They are not time/space-constructible.
- But they are computable.

Just finished:

Deterministic Turing machines – basic facts

Next topic:

Boolean circuits

Later:

- Nondeterministic Turing machines, reductions
- Probabilistic computations
- Fixed parameter tractability (FPT)
- Interactive proofs
- Alternating Turing machines
- Probabilistically checkable proofs (PCP)
- ...

Nonuniform computation models

- Suppose that P≠NP. Then there is no algorithm which quickly solves all instances of the SAT problem.
- But maybe for every n there is a separate algorithm, which quickly solves all instances of size n?
- Even if these algorithms are difficult to find, this would mean that SAT can be solved in practice.

Nonuniform computation models

- Suppose that P≠NP. Then there is no algorithm which quickly solves all instances of the SAT problem.
- But maybe for every n there is a separate algorithm, which quickly solves all instances of size n?
- Even if these algorithms are difficult to find, this would mean that SAT can be solved in practice.
- A similar example: breaking the cryptographic algorithm RSA. If there is an algorithm, which quickly breaks the RSA encoding for a fixed (being currently used) key length, in practice we can treat the RSA code as insecure (even if the algorithm works only for one fixed *n*, not for all *n*).

Nonuniform computation models

- Suppose that P≠NP. Then there is no algorithm which quickly solves all instances of the SAT problem.
- But maybe for every n there is a separate algorithm, which quickly solves all instances of size n?
- Even if these algorithms are difficult to find, this would mean that SAT can be solved in practice.
- A similar example: breaking the cryptographic algorithm RSA. If there is an algorithm, which quickly breaks the RSA encoding for a fixed (being currently used) key length, in practice we can treat the RSA code as insecure (even if the algorithm works only for one fixed *n*, not for all *n*).

Hence, it makes sense to consider computation models in which for every n we apply a different algorithm.

One has to be careful, though: for every n, the language of instances of size n is regular.

Models of parallel computations

What if we have plenty of processors?

Example: matrix multiplication

- 1 processor: time $O(n^3)$ (the standard algorithm)
- n^2 processors: time O(n)
- n^3 processors: time O(log(n)) an exponential speed up!

Question: Which algorithms do parallelize well, and which do not?

Another computational model: boolean circuits idea: computing boolean functions using logical gates intuition: every gate represents a very simple processor

Definition: a boolean circuit having input of size n is given by an acyclic directed graph, in which:

- there are 2n gates (nodes) of in-degree 0, denoted $X_1, \overline{X}_1, ..., X_n, \overline{X}_n$ (input gates)
- all other gates (having in-degree ≥ 0) are marked by one of the symbols \wedge or \vee
- one of the gates (having out-degree 0) is marked as the output gate [another version: multiple outputs when we compute a function]

For a fixed valuation $v:\{X_1,...,X_n\} \rightarrow \{0,1\}$ we define:

- the gate labeled by X_i gets value $v(X_i)$
- the gate labeled by \overline{X}_i gets value $\neg v(X_i)$
- the value of an OR (AND) gate is computed as the disjunction (conjunction) of values of predecessors of the gate
- the value of the circuit = the value of the output gate
- the definition makes sense, because the graph is acyclic

- two players (AND and OR) move a pawn over the graph, going back from the output gate
- AND (OR) decides in ∧ nodes (∨ nodes, respectively)
- OR wins, if the game finishes in X_i and $v(X_i)=1$, or in \overline{X}_i and $v(X_i)=0$
- the value of the circuit is 1 if OR has a winning strategy

- two players (AND and OR) move a pawn over the graph, going back from the output gate
- AND (OR) decides in ∧ nodes (∨ nodes, respectively)
- OR wins, if the game finishes in X_i and $v(X_i)=1$, or in \overline{X}_i and $v(X_i)=0$
- the value of the circuit is 1 if OR has a winning strategy

- two players (AND and OR) move a pawn over the graph, going back from the output gate
- AND (OR) decides in ∧ nodes (∨ nodes, respectively)
- OR wins, if the game finishes in X_i and $v(X_i)=1$, or in \overline{X}_i and $v(X_i)=0$
- the value of the circuit is 1 if OR has a winning strategy

- two players (AND and OR) move a pawn over the graph, going back from the output gate
- AND (OR) decides in ∧ nodes (∨ nodes, respectively)
- OR wins, if the game finishes in X_i and $v(X_i)=1$, or in \overline{X}_i and $v(X_i)=0$
- the value of the circuit is 1 if OR has a winning strategy

Equivalence of the two definitions:

- if the output has value 1, we have a strategy for OR: descend always to a node labeled by 1
- if the output has value 0, we have a strategy for AND: descend always to a node labeled by 0

- For a fixed valuation $v:\{X_1,...,X_n\} \rightarrow \{0,1\}$ we have defined the value of a circuit
- The input amounts to a word $v \in \{0,1\}^n$
- A circuit C computes a function $\{0,1\}^n \to \{0,1\}$, i.e., it recognizes a subset of $\{0,1\}^n$

Size?

We have several parameters:

- the length of an input *n*
- the depth of a circuit (the length of the longest path)
- the number of gates B, the number of edges K
- the length of a representation of a circuit: $(B+K)\cdot log(B)$ (because numbers of gates have log(B) bits)
- in-degree of gates (fan-in) we consider circuits
 - → with arbitrary fan-in
 - → with fan-in ≤2

Negations?

- in our definition there are no NOT gates, but we have negated input gates
- this does not change anything: negations can be easily moved to leaves (De Morgan laws)

Recognizing languages by sequences of circuits:

- A circuit C_n having input of size n recognizes $L(C_n)$ a subset of $\{0,1\}^n$ [in particular C_0 has no inputs, returns always 1 or always 0]
- Having a sequence of circuits C_0, C_1, C_2, \ldots we can recognize a language containing words of any length: $L((C_n)_{n\in\mathbb{N}}) = L(C_0) \cup L(C_1) \cup L(C_2) \cup \ldots$
- Which languages can be recognized using boolean circuits?

Recognizing languages by sequences of circuits:

- A circuit C_n having input of size n recognizes $L(C_n)$ a subset of $\{0,1\}^n$ [in particular C_0 has no inputs, returns always 1 or always 0]
- Having a sequence of circuits $C_0, C_1, C_2, ...$ we can recognize a language containing words of any length:

$$L((C_n)_{n \in \mathbb{N}}) = L(C_0) \cup L(C_1) \cup L(C_2) \cup ...$$

Which languages can be recognized using boolean circuits?

Fact.

Every laguage can be recognized by some sequence of boolean circuits (having depth 2 and exponential size)

i.e., the size of C_n is exponential in n

Recognizing languages by sequences of circuits:

- A circuit C_n having input of size n recognizes $L(C_n)$ a subset of $\{0,1\}^n$ [in particular C_0 has no inputs, returns always 1 or always 0]
- Having a sequence of circuits $C_0, C_1, C_2, ...$ we can recognize a language containing words of any length: $L((C_n)_{n\in\mathbb{N}})=L(C_0)\cup L(C_1)\cup L(C_2)\cup ...$
- Which languages can be recognized using boolean circuits?

Fact.

Every laguage can be recognized by some sequence of boolean circuits (having depth 2 and exponential size)

A more interesting question: Which languages can be recognized by a sequence of circuits of polynomial size?