Computational complexity

lecture 1

Introductory announcements

- Lectures will be in English
- Slides (and other materials) will be available on the webpage

Introductory announcements

Grading rules:

- homeworks (3 series) $\rightarrow 1.5$ pt
- mid-term $\rightarrow 1.5 \mathrm{pt}$
- everyone can write the June exam (no lower limit for homeworks + mid-term)
- final exam $\rightarrow 3$ pt
the final grade depends on: homeworks + mid-term + exam (max=6)
- final exam, second try $\rightarrow 4.5 \mathrm{pt}$
the final grade depends on: homeworks + exam (max = 6 pt)
- the exam consists of two parts: theory + „practical" problems

What is this course about?

- the subject of research: computational problems
\rightarrow the basic question: how fast a given problem can be solved?
\rightarrow what does it mean that a problem is difficult? (maybe we are not intelligent enough to solve it?)
- JAiO: there are decidable and undecidable problems
\rightarrow here: (decidable) problems can be easy or hard (in different senses)
- algorithmics: we have a fast algorithm
\rightarrow here: a fast algorithm does not exist

Turing machine - a formal definition of a computation

- David Hilbert: Is there an algorithm deciding any mathematical hypothesis? („Entscheidungsproblem" - 1928)
- Alonzo Church (1936), Alan Turing (1937) - NO
- The answer required a formal definition (what does it mean „an algorithm"?)

```
a Turing machine (lambda-calculus - Church)
```


Turing machine - a formal definition of a computation

Components of a (multitape) Turing machine:

- number of tapes k
- a finite working alphabet Γ, where $\triangleright, \perp \in \Gamma$
- an input alphabet $\Sigma \subseteq \Gamma \backslash\{\triangleright, \perp\}$
- a finite set of states Q
- states: initial, accepting, rejecting $q_{P} q_{A}, q_{R} \in Q$
- a transition function $\delta:\left(Q \backslash\left\{q_{A}{ }^{\prime} q_{R}\right\}\right) \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R, Z\}^{k}$ such that \ldots

Turing machine - a formal definition of a computation

Components of a (multitape) Turing machine:

- number of tapes k
- a finite working alphabet Γ, where $\triangleright, \perp \in \Gamma$
- an input alphabet $\Sigma \subseteq \Gamma \backslash\{\triangleright, \perp\}$
- a finite set of states Q
- states: initial, accepting, rejecting $q_{P} q_{A}, q_{R} \in Q$
- a transition function $\delta:\left(Q \backslash\left\{q_{A}, q_{R}\right\}\right) \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R, Z\}^{k}$ such that \ldots

A configuration of a Turing machine consists of:

- contents of k tapes; each of them is infinite to the right
- location of the head on every tape
- state

Example (2 tapes): q_{5}

$$
\triangleright \text { a b a a } \mathrm{a} ~ \perp \perp \text { a b c d } \perp \perp \perp \perp \perp \perp \ldots
$$

$$
\triangleright \mathrm{cb} \mathrm{a} \perp \mathrm{~b} \mathrm{~d} \perp \ldots
$$

Turing machine - a formal definition of a computation

A computation: a function \rightarrow_{M} between configurations
Example:
$\delta\left(q_{5}, a, b\right)=\left(q_{8^{\prime}}, a, L, L, Z\right) \quad$ usual notation: $q_{5^{2}}, a \rightarrow q_{8^{\prime}},, a, L, Z$

- if the state is q_{5}, letters under the heads are a (on tape 1), b (on tape 2)
- then change the state to q_{8}
- write x on tape $1, a$ on tape 2
- move head 1 to the left, do not move head 2

Turing machine - a formal definition of a computation

Additional assumptions about a configuration:

- from some moment on every tape there are only \perp symbols
- the first symbol on every tape is \triangleright
- the symbol \triangleright never appears later

Additional assumptions about a transition function:

- the machine never replaces \triangleright by any other symbol
- the machine never writes \triangleright when it was not there
- the machine never wants to go left when it sees \triangleright
(in particular, this ensures that every configuration has a successor, unless the state is q_{A} or q_{R})

Turing machine - a formal definition of a computation

A computation on an input word $w \in \Sigma^{*}$:

- the initial configuration is:

- the machine accepts w, if it reaches a configuration with state q_{A}
- the machine rejects w, if it reaches a configuration with state q_{R}
- otherwise the computation is infinite (the machine loops)

Turing machine - a formal definition of a computation
A computation on an input word $w \in \Sigma^{*}$:

- the initial configuration is:

- the machine accepts w, if it reaches a configuration with state q_{A}
- the machine rejects w, if it reaches a configuration with state q_{R}
- otherwise the computation is infinite (the machine loops)
\rightarrow notation: $L(M)=\{w: M$ accepts $w\}$
$\rightarrow M$ has the halting property, if it halts on every input
\rightarrow a language $L \subseteq \Sigma^{*}$ is semidecidable (or recursively enumerable) if there exists a machine that accepts exactly words from L (i.e., $L(M)=L$)
\rightarrow if this machine has the halting property, then L is computable (decidable)

Turing machine - a formal definition of a computation

$\rightarrow M$ has the halting property, if it halts on every input
\rightarrow a language $L \subseteq \Sigma^{\star}$ is semidecidable (or recursively enumerable) if there exists a machine that accepts exactly words from L (i.e., $L(M)=L$)
\rightarrow if this machine has the halting property, then L is computable (decidable)
\rightarrow Tutorials: if L and the complement of L are semidecidable, then they are decidable

Turing machine - a formal definition of a computation

$\rightarrow M$ has the halting property, if it halts on every input
\rightarrow a language $L \subseteq \Sigma^{*}$ is semidecidable (or recursively enumerable) if there exists a machine that accepts exactly words from L (i.e., $L(M)=L$)
\rightarrow if this machine has the halting property, then L is computable (decidable)
\rightarrow Tutorials: if L and the complement of L are semidecidable, then they are decidable

Computing functions:
\rightarrow a partial function $f: \Sigma^{\star} \rightarrow \Sigma^{\star}$ is computable, if there exists a machine M
\rightarrow that accepts every word $w \in$ dom(f), ending in a configuration with $\triangleright f(w) \perp^{\infty}$ on the last tape,
\rightarrow and rejects every word w \notin dom(f)

Variants of Turing machines

- a tape that is infinite in both directions
- multiple accepting / rejecting states
- a single tape only
- never writes \perp
- nondeterministic machines, alternating machines (the machines defined above were deterministic)

Variants of Turing machines

- a tape that is infinite in both directions
- multiple accepting / rejecting states
- a single tape only
- never writes \perp
- nondeterministic machines, alternating machines (the machines defined above were deterministic)
-...
Fact: All variants recognize the same class of languages. [i.e., the notion of a Turing machine is robust]
Remark: it is enough to prove that for every machine of type X there exists an equivalent machine of type Y. In practice these constructions are computable, but to obtain the above fact we do not need to know this.
Such a distinction often appears on this lecture: when it is enough that something exists, and when we have to know how to (quickly) compute it?

Time complexity

A machine M works in time $T(n)$ (for a function $T: \mathbb{N} \rightarrow \mathbb{N}$) if for every word $w \in \Sigma^{\star}$ it halts after at most $T(|w|)$ steps.
(in particular it has the halting property)
A language $L \subseteq \Sigma^{\star}$ is decidable in time $T(n)$ if there exists a (multitape) machine that recognizes this language and works in time $T(n)$. We usually talk about the asymptotic behavior of the complexity, i.e., that the time is $O(T(n))$.

Time complexity

A machine M works in time $T(n)$ (for a function $T: \mathbb{N} \rightarrow \mathbb{N}$) if for every word $w \in \Sigma^{\star}$ it halts after at most $T(|w|)$ steps.
(in particular it has the halting property)
A language $L \subseteq \Sigma^{\star}$ is decidable in time $T(n)$ if there exists a (multitape) machine that recognizes this language and works in time $T(n)$. We usually talk about the asymptotic behavior of the complexity, i.e., that the time is $O(T(n))$.

Tutorials: The language of palindromes is decidable in linear time, but on a single-tape machine it requires a quadratic time.

Time complexity

A machine M works in time $T(n)$ (for a function $T: \mathbb{N} \rightarrow \mathbb{N}$) if for every word $w \in \Sigma^{*}$ it halts after at most $T(|w|)$ steps.
(in particular it has the halting property)
A language $L \subseteq \Sigma^{\star}$ is decidable in time $T(n)$ if there exists a (multitape) machine that recognizes this language and works in time $T(n)$. We usually talk about the asymptotic behavior of the complexity, i.e., that the time is $O(T(n))$.

Tutorials: The language of palindromes is decidable in linear time, but on a single-tape machine it requires a quadratic time.

Theorem (linear speed-up):
If a language L is decidable in time $T(n)$, then for every constant $\mathrm{c}>0$ it is also decidable in time $c \cdot T(n)+O(n)$.
Proof: on tutorials (the idea: one counts the number of steps, so it is enough to simulate multiple steps while performing a single step).

Space complexity

Space complexity: the number of tape cells used by the machine Question: should we include the length of the input?

Space complexity

Space complexity: the number of tape cells used by the machine Question: should we include the length of the input?
Yes? Then the complexity is always at least linear (and we cannot distinguish between a machine M_{1} really using linear space, and a machine M_{2} that only reads the input but beyond that works in constant space).

Space complexity

Space complexity: the number of tape cells used by the machine Question: should we include the length of the input?

Yes? Then the complexity is always at least linear (and we cannot distinguish between a machine M_{1} really using linear space, and a machine M_{2} that only reads the input but beyond that works in constant space).

No? The same problem: maybe M_{1} uses only the cells occupied originally by the input word (no additional memory), so again we cannot distinguish it from M_{2}.

Space complexity

Space complexity: the number of tape cells used by the machine Question: should we include the length of the input?
Yes? Then the complexity is always at least linear (and we cannot distinguish between a machine M_{1} really using linear space, and a machine M_{2} that only reads the input but beyond that works in constant space).
No? The same problem: maybe M_{1} uses only the cells occupied originally by the input word (no additional memory), so again we cannot distinguish it from M_{2}.

Solution - allow only off-line machines:

- the input tape is read-only (when I see \perp, I cannot move right)
- working tapes
- while computing functions: output tape, where the head cannot move left (i.e., write-only)

Space complexity

In space complexity we do not include the length of the input (important when space complexity is smaller than linear)

Formally, we allow only off-line machines:

- the input tape is read-only (when I see \perp, I cannot move right)
- working tapes
- while computing functions: output tape, where the head cannot move left (i.e., write-only)

A machine M works in space $S(n)$ (for a function $S: \mathbb{N} \rightarrow \mathbb{N}$) if for every word $w \in \Sigma^{*}$ visits at most $S(|w|)$ cells on its working tapes.

A language $L \subseteq \Sigma^{*}$ is recognizable in space $S(n)$ if there exists a multitape machine that halts on every input, accepts L, and works in space $S(n)$.

Usually we talk about space $O(S(n))$ (asymptotic behavior).
It is easy to reduce space usage „times a constant" - we remember a few cells in one.
It is possible to convert a multitape machine into a machine with one working tape,
which works in the same space.

Machines vs. languages

- Sometimes we talk about time / space complexity of a language (there exists a machine such that ...)
- Sometimes we talk about working time / space of a particular machine (particular algorithm)

Example: reachability in a graph

- Input: a set of nodes, a set of edges, two distinguished nodes.
\rightarrow The input is not a word, it is a more complicated object.
\rightarrow A Turing machine reads words.
- But - a graph can be written as a word:
number_of_nodes,
number_of_edges,
a list of pair of nodes connected by edges (where we assume that nodes are numbered by consecutive natural number); particular numbers are separated by a special \$ sign.
\rightarrow Multiple possible representations of a graph
\rightarrow It is easy to convert from one representation to another.
- Usually, we talk about complexity of a problem - which means "complexity of the corresponding language under some natural representation of inputs as words" (typically the complexity does not depend on the choice of the representation)
- Sometimes it depends, and then we should be more precise (we should say which representation of inputs is considered)

Languages vs. decision problems

- While considering a concrete problem we think about an algorithm understood in an abstract way, and usually we do not refer to a particular representation - but we are aware that it is possible to implement basic programming concepts (variables, loops, etc.) on a Turing machine
- While proving general theorems we consider Turing machines (a model that is simple, but strong enough).

Church-Turing thesis

Church-Turing thesis: every physically realizable computation device can be simulated by a Turing machine.
(this is not a mathematical theorem - it is not sure what can be physically realizable) A stronger thesis: problems "easy" for other devices are also "easy" for Turing machines - every physically realizable computation device can be simulated by a Turing machine with polynomial overhead.

Random Access Machine (RAM)

[This is a side remark - RAM machines will not appear more during the lecture]
A model close to computers than Turing machines:

- Cells contain arbitrarily large numbers (instead of letters from a finite alphabet)
- A program amounts to a list of instructions. Available instructions: $X[i] \leftarrow k$
(where i, j, k, m - constants written in a program)
$X[i] \leftarrow X[j]+X[k]$
$X[i] \leftarrow X[j]-X[k]$
$X[i] \leftarrow X[X[j]]$
$X[X[i]] \leftarrow X[j]$
if $X[i]>0$ then goto m
- Every operation is performed in constant time (by definition)
- There is no multiplication - it can be realized in time linear in the number of bits

Random Access Machine (RAM)

[This is a side remark - RAM machines will not appear more during the lecture]
A model close to computers than Turing machines:

- Cells contain arbitrarily large numbers (instead of letters from a finite alphabet)
- A program amounts to a list of instructions. Available instructions:

$$
\begin{aligned}
& X[i] \leftarrow k \\
& X[i] \leftarrow X[j]+X[\mathrm{k}] \\
& X[i] \leftarrow X[j]-X[\mathrm{k}] \\
& X[i] \leftarrow X[X[j]] \\
& X[X[i]] \leftarrow X[j] \\
& \text { if } X[i]>0 \text { then goto } m
\end{aligned}
$$

- Every operation is performed in constant time (by definition)
- There is no multiplication - it can be realized in time linear in the number of bits
- Input (and output) in cells $X[1], \ldots, X[n]$; additionally $X[0]=n$
- The size of the input is defined as the total number of bits
- A computation of a Turing machine using time $T(n)$ can be simulated on RAM in time $O(T(n))$
- A computation of a RAM using time $T(n)$ can be simulated on a Turing machine in time $O\left(T(n)^{3}\right)$

Time complexity - basic classes
[Now we come back to Turing machines]

- DTIME(T(n)) - languages recognizable in time $O(T(n))$
- $P=\bigcup_{k \in \mathbb{N}} D \operatorname{TIME}\left(n^{k}\right)$ - i.e., languages recognizable in time $p(n)$ for some polynomial p
- $\operatorname{EXPTIME}=\cup_{k \in \mathbb{N}} \operatorname{DTIME}\left(2^{n^{k}}\right)$

Space complexity - basic classes

- DSPACE $(S(n))$ - languages recognizable in space $O(S(n))$
- $\mathrm{L}=\bigcup_{\mathrm{k} \in \mathbb{N}}$ DSPACE $\left(\log n^{k}\right)=\operatorname{DSPACE}(\log n)$
- $\operatorname{PSPACE}=\bigcup_{k \in \mathbb{N}} \operatorname{DSPACE}\left(n^{k}\right)$ - i.e., languages recognizable in space $p(n)$ for some polynomial p
- $\operatorname{EXPSPACE}=\bigcup_{k \in \mathbb{N}} \operatorname{DSPACE}\left(2^{n^{k}}\right)$

Time vs space

$\operatorname{DTIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n))$

Proof: In time $f(n)$ a machine can visit at most $k \cdot f(n)$ cells ($k=$ the number of tapes)

Time vs space

Conversely:
if $f(n) \geq \log (n)$, then simply:
$\operatorname{DSPACE}(f(n)) \subseteq \bigcup_{c>0} \operatorname{DTIME}\left(n \cdot c^{(n)}\right)$
$\operatorname{DSPACE}(f(n)) \subseteq \bigcup_{c>0} \operatorname{DTIME}\left(c^{f(n)}\right)$

Proof: Take some $L \in \operatorname{DSPACE}(f(n))$, recognized by M.
M does not loop, so
(the number of visited configurations) = (the number of steps) (the number of all configurations) \geq (the number of steps)
the number of all configuration equals:
$|Q| \cdot(n+2) \cdot(4|\Gamma|)^{d f(n)}$
state
contents of working tapes + a special marker for:

- the position of the head
- the last visited cell on the tape
position on the input tape

Time vs space

$\operatorname{DTIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n)) \subseteq \bigcup_{c>0} \operatorname{DTIME}\left(n \cdot c^{f(n)}\right)$

In particular:
$\mathrm{L} \subseteq \mathrm{P} \subseteq \mathrm{PSPACE} \subseteq E X P T I M E \subseteq E X P S P A C E$

Time vs space

$\operatorname{DTIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n)) \subseteq \bigcup_{\mathrm{c}>0} \operatorname{DTIME}\left(n \cdot c^{f(n)}\right)$

In particular:
$\mathrm{L} \subseteq \mathrm{P} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPTIME} \subseteq E X P S P A C E$
Are these classes different?
it is NOT known whether:

- L $\neq \mathrm{P}$
- P $=$ PSPACE
- PSPACEFEXPTIME
- EXPTIME =EXPSPACE

It is known (and we will prove this soon), that

- LғPSPACE=EXPSPACE
- P $=$ EXPTIME

Sipser's theorem

Theorem. Consider a machine M working in space $S(n)$, but not necessarily having the halting property.
Then there exists a machine M^{\prime} such that:

- $L\left(M^{\prime}\right)=L(M)$
- M^{\prime} works in space $S(n)$
- M^{\prime} halts on every input

Sipser's theorem

Theorem. Consider a machine M working in space $S(n)$, but not necessarily having the halting property.
Then there exists a machine M^{\prime} such that:

- $L\left(M^{\prime}\right)=L(M)$
- M^{\prime} works in space $S(n)$
- M^{\prime} halts on every input

Thus: in the following definition
A language $L \subseteq \Sigma^{*}$ is recognizable in space $S(n)$ if there exists a multitape machine that halts on every input, accepts L, and works in space $S(n)$.
this condition was redundant

Sipser's theorem

Theorem. Consider a machine M working in space $S(n)$, but not necessarily having the halting property.
Then there exists a machine M^{\prime} such that:

- $L\left(M^{\prime}\right)=L(M)$
- M' works in space $S(n)$
- M^{\prime} halts on every input

Proof
Approach 1: (in which the resulting M^{\prime} uses a lot of space) Key observation: in an accepting run no configuration repeats.

- after every move we copy the current configuration to an additional working tape,
- additionally we check whether the current configuration equals to some configuration saved earlier
- a configuration has repeated \Rightarrow a loop \Rightarrow we reject

