

Computational complexity

lecture 1

Introductory announcements

● Lectures will be in English
● Slides (and other materials) will be available on the webpage

Grading rules:
● homeworks (3 series)  1.5 pt
● mid-term  1.5 pt
● everyone can write the June exam

(no lower limit for homeworks + mid-term)
● final exam  3 pt

the final grade depends on: homeworks + mid-term + exam (max=6)
● final exam, second try  4.5 pt

the final grade depends on: homeworks + exam (max = 6 pt)
● the exam consists of two parts: theory + „practical” problems

Introductory announcements

What is this course about?

● the subject of research: computational problems
→ the basic question: how fast a given problem can be solved?
→ what does it mean that a problem is difficult? (maybe we are not
 intelligent enough to solve it?)

● JAiO: there are decidable and undecidable problems
→ here: (decidable) problems can be easy or hard (in different senses)

● algorithmics: we have a fast algorithm
→ here: a fast algorithm does not exist

Turing machine – a formal definition of a computation

● David Hilbert: Is there an algorithm deciding any mathematical
hypothesis? („Entscheidungsproblem” - 1928)

● Alonzo Church (1936), Alan Turing (1937) – NO

● The answer required a formal definition
(what does it mean „an algorithm”?)
→ a Turing machine (lambda-calculus - Church)

Components of a (multitape) Turing machine:
● number of tapes k
● a finite working alphabet G, where ▹,∈G
● an input alphabet S⊆G\{▹,}
● a finite set of states Q
● states: initial, accepting, rejecting q

I
,q

A
,q

R
∈Q

● a transition function d:(Q\{q
A
,q

R
})GkQGk{L,R,Z}k such that ...

Turing machine – a formal definition of a computation

Components of a (multitape) Turing machine:
● number of tapes k
● a finite working alphabet G, where ▹,∈G
● an input alphabet S⊆G\{▹,}
● a finite set of states Q
● states: initial, accepting, rejecting q

I
,q

A
,q

R
∈Q

● a transition function d:(Q\{q
A
,q

R
})GkQGk{L,R,Z}k such that ...

A configuration of a Turing machine consists of:
● contents of k tapes; each of them is infinite to the right
● location of the head on every tape
● state

Turing machine – a formal definition of a computation

▹ a b a a a   a b c d       ...
q

5

▹ c b a  b d           ...

Example (2 tapes):

A computation: a function 
M
 between configurations

Example:
d(q

5
,a,b)=(q

8
,x,a,L,Z) usual notation: q

5
,a,b  q

8
,x,a,L,Z

● if the state is q
5
, letters under the heads are a (on tape 1), b (on tape 2)

● then change the state to q
8

● write x on tape 1, a on tape 2
● move head 1 to the left, do not move head 2

Turing machine – a formal definition of a computation

▹ a b a a a   a b c d       ...
q

5

▹ c b a  b d           ...

▹ a b a a x   a b c d       ...
q

8

▹ c a a  b d           ...

Additional assumptions about a configuration:
● from some moment on every tape there are only  symbols
● the first symbol on every tape is ▹
● the symbol ▹ never appears later

Additional assumptions about a transition function:
● the machine never replaces ▹ by any other symbol
● the machine never writes ▹ when it was not there
● the machine never wants to go left when it sees ▹

(in particular, this ensures that every configuration has a successor,
unless the state is q

A
 or q

R
)

Turing machine – a formal definition of a computation

A computation on an input word w∈S*:
● the initial configuration is:

● the machine accepts w, if it reaches a configuration with state q
A

● the machine rejects w, if it reaches a configuration with state q
R

● otherwise the computation is infinite (the machine loops)

▹ a b a a a b c a b c d    ...

▹               ...
q

I

w

Turing machine – a formal definition of a computation

A computation on an input word w∈S*:
● the initial configuration is:

● the machine accepts w, if it reaches a configuration with state q
A

● the machine rejects w, if it reaches a configuration with state q
R

● otherwise the computation is infinite (the machine loops)

➔ notation: L(M)={w : M accepts w}

➔ M has the halting property, if it halts on every input

➔ a language L⊆S* is semidecidable (or recursively enumerable) if there
exists a machine that accepts exactly words from L (i.e., L(M)=L)

➔ if this machine has the halting property, then L is computable (decidable)

▹ a b a a a b c a b c d    ...

▹               ...
q

I

w

Turing machine – a formal definition of a computation

➔ M has the halting property, if it halts on every input

➔ a language L⊆S* is semidecidable (or recursively enumerable) if there
exists a machine that accepts exactly words from L (i.e., L(M)=L)

➔ if this machine has the halting property, then L is computable (decidable)

➔ Tutorials: if L and the complement of L are semidecidable,
then they are decidable

Turing machine – a formal definition of a computation

➔ M has the halting property, if it halts on every input

➔ a language L⊆S* is semidecidable (or recursively enumerable) if there
exists a machine that accepts exactly words from L (i.e., L(M)=L)

➔ if this machine has the halting property, then L is computable (decidable)

➔ Tutorials: if L and the complement of L are semidecidable,
then they are decidable

Computing functions:
➔ a partial function f:S*→S* is computable, if there exists a machine M
➔ that accepts every word w dom(f), ending in a configuration ∈

with f(w)▹ ∞ on the last tape,
➔ and rejects every word w dom(f)∉

Turing machine – a formal definition of a computation

Variants of Turing machines

● a tape that is infinite in both directions
● multiple accepting / rejecting states
● a single tape only
● never writes 
● nondeterministic machines, alternating machines

(the machines defined above were deterministic)
● ...

Variants of Turing machines

● a tape that is infinite in both directions
● multiple accepting / rejecting states
● a single tape only
● never writes 
● nondeterministic machines, alternating machines

(the machines defined above were deterministic)
● ...

Fact: All variants recognize the same class of languages.
[i.e., the notion of a Turing machine is robust]
Remark: it is enough to prove that for every machine of type X there exists an equivalent machine
of type Y. In practice these constructions are computable, but to obtain the above fact we do not
need to know this.
Such a distinction often appears on this lecture: when it is enough that something exists, and
when we have to know how to (quickly) compute it?

Time complexity

A machine M works in time T(n) (for a function T:ℕℕ) if for every
word w∈S* it halts after at most T(|w|) steps.
(in particular it has the halting property)

A language L⊆S* is decidable in time T(n) if there exists a (multitape)
machine that recognizes this language and works in time T(n).
We usually talk about the asymptotic behavior of the complexity, i.e., that the time is O(T(n)).

Time complexity

A machine M works in time T(n) (for a function T:ℕℕ) if for every
word w∈S* it halts after at most T(|w|) steps.
(in particular it has the halting property)

A language L⊆S* is decidable in time T(n) if there exists a (multitape)
machine that recognizes this language and works in time T(n).
We usually talk about the asymptotic behavior of the complexity, i.e., that the time is O(T(n)).

Tutorials: The language of palindromes is decidable in linear time,
but on a single-tape machine it requires a quadratic time.

A machine M works in time T(n) (for a function T:ℕℕ) if for every
word w∈S* it halts after at most T(|w|) steps.
(in particular it has the halting property)

A language L⊆S* is decidable in time T(n) if there exists a (multitape)
machine that recognizes this language and works in time T(n).
We usually talk about the asymptotic behavior of the complexity, i.e., that the time is O(T(n)).

Tutorials: The language of palindromes is decidable in linear time,
but on a single-tape machine it requires a quadratic time.

Theorem (linear speed-up):
If a language L is decidable in time T(n), then for every constant c>0
it is also decidable in time c

.T(n)+O(n).

Proof: on tutorials (the idea: one counts the number of steps, so it is
enough to simulate multiple steps while performing a single step).

Time complexity

Space complexity

Space complexity: the number of tape cells used by the machine

Question: should we include the length of the input?

Space complexity

Space complexity: the number of tape cells used by the machine

Question: should we include the length of the input?

Yes? Then the complexity is always at least linear (and we cannot
distinguish between a machine M1 really using linear space, and
a machine M2 that only reads the input but beyond that works
in constant space).

Space complexity

Space complexity: the number of tape cells used by the machine

Question: should we include the length of the input?

Yes? Then the complexity is always at least linear (and we cannot
distinguish between a machine M1 really using linear space, and
a machine M2 that only reads the input but beyond that works
in constant space).

No? The same problem: maybe M1 uses only the cells occupied
originally by the input word (no additional memory), so again we
cannot distinguish it from M2.

Space complexity

Space complexity: the number of tape cells used by the machine

Question: should we include the length of the input?

Yes? Then the complexity is always at least linear (and we cannot
distinguish between a machine M1 really using linear space, and
a machine M2 that only reads the input but beyond that works
in constant space).

No? The same problem: maybe M1 uses only the cells occupied
originally by the input word (no additional memory), so again we
cannot distinguish it from M2.

Solution – allow only off-line machines:
● the input tape is read-only (when I see , I cannot move right)

● working tapes
● while computing functions: output tape, where the head cannot move

left (i.e., write-only)

In space complexity we do not include the length of the input
(important when space complexity is smaller than linear)

Formally, we allow only off-line machines:
● the input tape is read-only (when I see , I cannot move right)

● working tapes
● while computing functions: output tape, where the head cannot move

left (i.e., write-only)

A machine M works in space S(n) (for a function S:ℕℕ) if for every
word w∈S* visits at most S(|w|) cells on its working tapes.

A language L⊆S* is recognizable in space S(n) if there exists a multitape
machine that halts on every input, accepts L, and works in space S(n).

Usually we talk about space O(S(n)) (asymptotic behavior).

It is easy to reduce space usage „times a constant” - we remember a few cells in one.

It is possible to convert a multitape machine into a machine with one working tape,
which works in the same space.

Space complexity

Machines vs. languages
● Sometimes we talk about time / space complexity of a language

(there exists a machine such that ...)
● Sometimes we talk about working time / space of a particular machine

(particular algorithm)

Languages vs. decision problems

Example: reachability in a graph
● Input: a set of nodes, a set of edges, two distinguished nodes.
→ The input is not a word, it is a more complicated object.
→ A Turing machine reads words.

● But – a graph can be written as a word:
number_of_nodes,
number_of_edges,
a list of pair of nodes connected by edges (where we assume that
nodes are numbered by consecutive natural number);
particular numbers are separated by a special $ sign.
→ Multiple possible representations of a graph
→ It is easy to convert from one representation to another.

● Usually, we talk about complexity of a problem – which means
“complexity of the corresponding language under some natural
representation of inputs as words” (typically the complexity does not
depend on the choice of the representation)

● Sometimes it depends, and then we should be more precise
(we should say which representation of inputs is considered)

● While considering a concrete problem we think about an algorithm
understood in an abstract way, and usually we do not refer to a
particular representation – but we are aware that it is possible to
implement basic programming concepts (variables, loops, etc.)
on a Turing machine

● While proving general theorems we consider Turing machines
(a model that is simple, but strong enough).

Languages vs. decision problems

Church-Turing thesis: every physically realizable computation device
can be simulated by a Turing machine.
(this is not a mathematical theorem – it is not sure what can be physically realizable)

A stronger thesis: problems “easy” for other devices are also “easy”
for Turing machines – every physically realizable computation device
can be simulated by a Turing machine with polynomial overhead.

Church-Turing thesis

Random Access Machine (RAM)
[This is a side remark – RAM machines will not appear more during the lecture]

A model close to computers than Turing machines:
● Cells contain arbitrarily large numbers (instead of letters from a finite

alphabet)
● A program amounts to a list of instructions. Available instructions:

X[i]←k (where i,j,k,m – constants written in a program)
X[i]←X[j]+X[k]
X[i]←X[j]-X[k]
X[i]←X[X[j]]
X[X[i]]←X[j]
if X[i]>0 then goto m

● Every operation is performed in constant time (by definition)
● There is no multiplication – it can be realized in time linear in the

number of bits

Random Access Machine (RAM)
[This is a side remark – RAM machines will not appear more during the lecture]

A model close to computers than Turing machines:
● Cells contain arbitrarily large numbers (instead of letters from a finite

alphabet)
● A program amounts to a list of instructions. Available instructions:

X[i]←k (where i,j,k,m – constants written in a program)
X[i]←X[j]+X[k]
X[i]←X[j]-X[k]
X[i]←X[X[j]]
X[X[i]]←X[j]
if X[i]>0 then goto m

● Every operation is performed in constant time (by definition)
● There is no multiplication – it can be realized in time linear in the

number of bits
● Input (and output) in cells X[1],...,X[n]; additionally X[0]=n
● The size of the input is defined as the total number of bits

Random Access Machine (RAM)
● A computation of a Turing machine using time T(n) can be simulated

on RAM in time O(T(n))
● A computation of a RAM using time T(n) can be simulated on a Turing

machine in time O(T(n)3)

Time complexity – basic classes
 [Now we come back to Turing machines]

● DTIME(T(n)) – languages recognizable in time O(T(n))
● P = k∈ℕDTIME(nk) – i.e., languages recognizable in time p(n) for

 some polynomial p
● EXPTIME = k∈ℕDTIME(2nk)

Space complexity – basic classes
● DSPACE(S(n)) – languages recognizable in space O(S(n))

● L = k∈ℕDSPACE(log nk) = DSPACE(log n)

● PSPACE = k∈ℕDSPACE(nk) – i.e., languages recognizable in space

 p(n) for some polynomial p
● EXPSPACE = k∈ℕDSPACE(2nk)

Time vs space

DTIME(f(n)) ⊆ DSPACE(f(n))

Proof: In time f(n) a machine can visit at most
 k

.f(n) cells (k = the number of tapes)

Conversely: DSPACE(f(n)) ⊆ c>0
DTIME(n

.cf(n))

if f(n)≥log(n), then simply: DSPACE(f(n)) ⊆ c>0
DTIME(cf(n))

Proof: Take some LDSPACE(f(n)), recognized by M.
M does not loop, so
(the number of visited configurations) = (the number of steps)
(the number of all configurations) ≥ (the number of steps)

the number of all configuration equals:

|Q|
.(n+2)

.(4|G|)df(n)

state

position on the input tape

contents of working tapes + a special marker for:
● the position of the head
● the last visited cell on the tape

Time vs space

DTIME(f(n)) ⊆ DSPACE(f(n)) ⊆ c>0
DTIME(n

.cf(n))

In particular:
L ⊆ P ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE

Time vs space

DTIME(f(n)) ⊆ DSPACE(f(n)) ⊆ c>0
DTIME(n

.cf(n))

In particular:
L ⊆ P ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE

Are these classes different?

it is NOT known whether:
● L≠P
● P≠PSPACE
● PSPACE≠EXPTIME
● EXPTIME≠EXPSPACE

It is known (and we will prove this soon), that
● L≠PSPACE≠EXPSPACE
● P≠EXPTIME

Time vs space

Sipser's theorem

Theorem. Consider a machine M working in space S(n), but not
necessarily having the halting property.
Then there exists a machine M' such that:
● L(M')=L(M)
● M' works in space S(n)
● M' halts on every input

Sipser's theorem

Theorem. Consider a machine M working in space S(n), but not
necessarily having the halting property.
Then there exists a machine M' such that:
● L(M')=L(M)
● M' works in space S(n)
● M' halts on every input

Thus: in the following definition

A language L⊆S* is recognizable in space S(n) if there exists a multitape
machine that halts on every input, accepts L, and works in space S(n).

this condition was redundant

Sipser's theorem

Theorem. Consider a machine M working in space S(n), but not
necessarily having the halting property.
Then there exists a machine M' such that:
● L(M')=L(M)
● M' works in space S(n)
● M' halts on every input

Proof
Approach 1: (in which the resulting M' uses a lot of space)
Key observation: in an accepting run no configuration repeats.
● after every move we copy the current configuration to an additional

working tape,
● additionally we check whether the current configuration equals to

some configuration saved earlier
● a configuration has repeated ⇒ a loop ⇒ we reject

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39

