
  

Computational complexity

lecture 1



  

Introductory announcements

● Lectures will be in English
● Slides (and other materials) will be available on the webpage



  

Grading rules:
● homeworks (3 series)  1.5 pt
● mid-term  1.5 pt
● everyone can write the June exam

(no lower limit for homeworks + mid-term)
● final exam  3 pt

the final grade depends on: homeworks + mid-term + exam (max=6)
● final exam, second try  4.5 pt

the final grade depends on: homeworks + exam (max = 6 pt)
● the exam consists of two parts: theory + „practical” problems

Introductory announcements



  

What is this course about?

● the subject of research: computational problems
→ the basic question: how fast a given problem can be solved?
→ what does it mean that a problem is difficult? (maybe we are not     
    intelligent enough to solve it?)

● JAiO: there are decidable and undecidable problems
→ here: (decidable) problems can be easy or hard (in different senses)

● algorithmics: we have a fast algorithm
→ here: a fast algorithm does not exist



  

Turing machine – a formal definition of a computation

● David Hilbert: Is there an algorithm deciding any mathematical
hypothesis? („Entscheidungsproblem” - 1928)

● Alonzo Church (1936), Alan Turing (1937) – NO

● The answer required a formal definition 
(what does it mean „an algorithm”?)
→ a Turing machine      (lambda-calculus - Church)



  

Components of a (multitape) Turing machine:
● number of tapes k
● a finite working alphabet G, where ▹,∈G
● an input alphabet S⊆G\{▹,}
● a finite set of states Q
● states: initial, accepting, rejecting q

I
,q

A
,q

R
∈Q

● a transition function d:(Q\{q
A
,q

R
})GkQGk{L,R,Z}k such that ... 

Turing machine – a formal definition of a computation



  

Components of a (multitape) Turing machine:
● number of tapes k
● a finite working alphabet G, where ▹,∈G
● an input alphabet S⊆G\{▹,}
● a finite set of states Q
● states: initial, accepting, rejecting q

I
,q

A
,q

R
∈Q

● a transition function d:(Q\{q
A
,q

R
})GkQGk{L,R,Z}k such that ... 

A configuration of a Turing machine consists of:
● contents of k tapes; each of them is infinite to the right
● location of the head on every tape
● state

Turing machine – a formal definition of a computation

▹ a b a a a   a b c d       ...
q

5

▹ c b a  b d           ...

Example (2 tapes):



  

A computation: a function 
M
 between configurations

Example: 
d(q

5
,a,b)=(q

8
,x,a,L,Z) usual notation: q

5
,a,b  q

8
,x,a,L,Z

● if the state is q
5
, letters under the heads are a (on tape 1), b (on tape 2)

● then change the state to q
8

● write x on tape 1, a on tape 2
● move head 1 to the left, do not move head 2

Turing machine – a formal definition of a computation

▹ a b a a a   a b c d       ...
q

5

▹ c b a  b d           ...

▹ a b a a x   a b c d       ...
q

8

▹ c a a  b d           ...



  

Additional assumptions about a configuration:
● from some moment on every tape there are only  symbols
● the first symbol on every tape is ▹
● the symbol ▹ never appears later

Additional assumptions about a transition function:
● the machine never replaces ▹ by any other symbol
● the machine never writes ▹ when it was not there
● the machine never wants to go left when it sees ▹

(in particular, this ensures that every configuration has a successor, 
unless the state is q

A
 or q

R
)

Turing machine – a formal definition of a computation



  

A computation on an input word w∈S*:
● the initial configuration is:

● the machine accepts w, if it reaches a configuration with state q
A

● the machine rejects w, if it reaches a configuration with state q
R

● otherwise the computation is infinite (the machine loops)

▹ a  b  a  a  a  b  c  a  b  c  d     ...

▹               ...
q

I

w

Turing machine – a formal definition of a computation



  

A computation on an input word w∈S*:
● the initial configuration is:

● the machine accepts w, if it reaches a configuration with state q
A

● the machine rejects w, if it reaches a configuration with state q
R

● otherwise the computation is infinite (the machine loops)

➔ notation: L(M)={w : M accepts w}

➔ M has the halting property, if it halts on every input

➔ a language L⊆S* is semidecidable (or recursively enumerable) if there
exists a machine that accepts exactly words from L (i.e., L(M)=L)

➔ if this machine has the halting property, then L is computable (decidable)

▹ a  b  a  a  a  b  c  a  b  c  d     ...

▹               ...
q

I

w

Turing machine – a formal definition of a computation



  

➔ M has the halting property, if it halts on every input

➔ a language L⊆S* is semidecidable (or recursively enumerable) if there
exists a machine that accepts exactly words from L (i.e., L(M)=L)

➔ if this machine has the halting property, then L is computable (decidable)

➔ Tutorials: if L and the complement of L are semidecidable, 
then they are decidable

Turing machine – a formal definition of a computation



  

➔ M has the halting property, if it halts on every input

➔ a language L⊆S* is semidecidable (or recursively enumerable) if there
exists a machine that accepts exactly words from L (i.e., L(M)=L)

➔ if this machine has the halting property, then L is computable (decidable)

➔ Tutorials: if L and the complement of L are semidecidable, 
then they are decidable

Computing functions:
➔ a partial function f:S*→S* is computable, if there exists a machine M
➔ that accepts every word w dom(f), ending in a configuration ∈

with f(w)▹ ∞ on the last tape,
➔ and rejects every word w dom(f)∉

Turing machine – a formal definition of a computation



  

Variants of Turing machines

● a tape that is infinite in both directions
● multiple accepting / rejecting states
● a single tape only
● never writes 
● nondeterministic machines, alternating machines 

(the machines defined above were deterministic)
● ...



  

Variants of Turing machines

● a tape that is infinite in both directions
● multiple accepting / rejecting states
● a single tape only
● never writes 
● nondeterministic machines, alternating machines 

(the machines defined above were deterministic)
● ...

Fact: All variants recognize the same class of languages.
[i.e., the notion of a Turing machine is robust]
Remark: it is enough to prove that for every machine of type X there exists an equivalent machine
of type Y. In practice these constructions are computable, but to obtain the above fact we do not
need to know this. 
Such a distinction often appears on this lecture: when it is enough that something exists, and
when we have to know how to (quickly) compute it?



  

Time complexity

A machine M works in time T(n) (for a function T:ℕℕ) if for every
word w∈S* it halts after at most T(|w|) steps.
(in particular it has the halting property)

A language L⊆S* is decidable in time T(n) if there exists a (multitape)
machine that recognizes this language and works in time T(n).
We usually talk about the asymptotic behavior of the complexity, i.e., that the time is O(T(n)).



  

Time complexity

A machine M works in time T(n) (for a function T:ℕℕ) if for every
word w∈S* it halts after at most T(|w|) steps.
(in particular it has the halting property)

A language L⊆S* is decidable in time T(n) if there exists a (multitape)
machine that recognizes this language and works in time T(n).
We usually talk about the asymptotic behavior of the complexity, i.e., that the time is O(T(n)).

Tutorials: The language of palindromes is decidable in linear time,
but on a single-tape machine it requires a quadratic time.



  

A machine M works in time T(n) (for a function T:ℕℕ) if for every
word w∈S* it halts after at most T(|w|) steps.
(in particular it has the halting property)

A language L⊆S* is decidable in time T(n) if there exists a (multitape)
machine that recognizes this language and works in time T(n).
We usually talk about the asymptotic behavior of the complexity, i.e., that the time is O(T(n)).

Tutorials: The language of palindromes is decidable in linear time,
but on a single-tape machine it requires a quadratic time.

Theorem (linear speed-up): 
If a language L is decidable in time T(n), then for every constant c>0 
it is also decidable in time c 

.T(n)+O(n).

Proof: on tutorials (the idea: one counts the number of steps, so it is
enough to simulate multiple steps while performing a single step).

Time complexity



  

Space complexity

Space complexity: the number of tape cells used by the machine

Question: should we include the length of the input?



  

Space complexity

Space complexity: the number of tape cells used by the machine

Question: should we include the length of the input?

Yes? Then the complexity is always at least linear (and we cannot 
distinguish between a machine M1 really using linear space, and
a machine M2 that only reads the input but beyond that works 
in constant space).



  

Space complexity

Space complexity: the number of tape cells used by the machine

Question: should we include the length of the input?

Yes? Then the complexity is always at least linear (and we cannot 
distinguish between a machine M1 really using linear space, and
a machine M2 that only reads the input but beyond that works 
in constant space).

No? The same problem: maybe M1 uses only the cells occupied 
originally by the input word (no additional memory), so again we 
cannot distinguish it from M2.



  

Space complexity

Space complexity: the number of tape cells used by the machine

Question: should we include the length of the input?

Yes? Then the complexity is always at least linear (and we cannot 
distinguish between a machine M1 really using linear space, and
a machine M2 that only reads the input but beyond that works 
in constant space).

No? The same problem: maybe M1 uses only the cells occupied 
originally by the input word (no additional memory), so again we 
cannot distinguish it from M2.

Solution – allow only off-line machines:
● the input tape is read-only (when I see , I cannot move right)

● working tapes 
● while computing functions: output tape, where the head cannot move

left (i.e., write-only)



  

In space complexity we do not include the length of the input
(important when space complexity is smaller than linear)

Formally, we allow only off-line machines:
● the input tape is read-only (when I see , I cannot move right)

● working tapes 
● while computing functions: output tape, where the head cannot move

left (i.e., write-only)

A machine M works in space S(n) (for a function S:ℕℕ) if for every
word w∈S* visits at most S(|w|) cells on its working tapes.

A language L⊆S* is recognizable in space S(n) if there exists a multitape 
machine that halts on every input, accepts L, and works in space S(n).

Usually we talk about space O(S(n)) (asymptotic behavior).

It is easy to reduce space usage „times a constant” - we remember a few cells in one.

It is possible to convert a multitape machine into a machine with one working tape, 
which works in the same space.

Space complexity



  

Machines vs. languages
● Sometimes we talk about time / space complexity of a language

(there exists a machine such that ...)
● Sometimes we talk about working time / space of a particular machine

(particular algorithm)



  

Languages vs. decision problems

Example: reachability in a graph
● Input: a set of nodes, a set of edges, two distinguished nodes.
→ The input is not a word, it is a more complicated object.
→ A Turing machine reads words.

● But – a graph can be written as a word:
number_of_nodes,
number_of_edges, 
a list of pair of nodes connected by edges (where we assume that
nodes are numbered by consecutive natural number);
particular numbers are separated by a special $ sign.
→ Multiple possible representations of a graph
→ It is easy to convert from one representation to another.

● Usually, we talk about complexity of a problem – which means 
“complexity of the corresponding language under some natural
representation of inputs as words” (typically the complexity does not
depend on the choice of the representation)

● Sometimes it depends, and then we should be more precise 
(we should say which representation of inputs is considered)



  

● While considering a concrete problem we think about an algorithm
understood in an abstract way, and usually we do not refer to a
particular representation – but we are aware that it is possible to
implement basic programming concepts (variables, loops, etc.)
on a Turing machine

● While proving general theorems we consider Turing machines 
(a model that is simple, but strong enough).

Languages vs. decision problems



  

Church-Turing thesis: every physically realizable computation device 
can be simulated by a Turing machine.
(this is not a mathematical theorem – it is not sure what can be physically realizable)

A stronger thesis: problems “easy” for other devices are also “easy”
for Turing machines – every physically realizable computation device 
can be simulated by a Turing machine with polynomial overhead.

Church-Turing thesis



  

Random Access Machine (RAM)
[This is a side remark – RAM machines will not appear more during the lecture]

A model close to computers than Turing machines:
● Cells contain arbitrarily large numbers (instead of letters from a finite

alphabet)
● A program amounts to a list of instructions. Available instructions:

X[i]←k (where i,j,k,m – constants written in a program)
X[i]←X[j]+X[k]
X[i]←X[j]-X[k]
X[i]←X[X[j]]
X[X[i]]←X[j]
if X[i]>0 then goto m

● Every operation is performed in constant time (by definition) 
● There is no multiplication – it can be realized in time linear in the 

number of bits



  

Random Access Machine (RAM)
[This is a side remark – RAM machines will not appear more during the lecture]

A model close to computers than Turing machines:
● Cells contain arbitrarily large numbers (instead of letters from a finite

alphabet)
● A program amounts to a list of instructions. Available instructions:

X[i]←k (where i,j,k,m – constants written in a program)
X[i]←X[j]+X[k]
X[i]←X[j]-X[k]
X[i]←X[X[j]]
X[X[i]]←X[j]
if X[i]>0 then goto m

● Every operation is performed in constant time (by definition) 
● There is no multiplication – it can be realized in time linear in the 

number of bits
● Input (and output) in cells X[1],...,X[n]; additionally X[0]=n
● The size of the input is defined as the total number of bits 



  

Random Access Machine (RAM)
● A computation of a Turing machine using time T(n) can be simulated 

on RAM in time O(T(n)) 
● A computation of a RAM using time T(n) can be simulated on a Turing

machine in time O(T(n)3) 



  

Time complexity – basic classes
     [Now we come back to Turing machines]

● DTIME(T(n)) – languages recognizable in time O(T(n))
● P = k∈ℕDTIME(nk) – i.e., languages recognizable in time p(n) for 

                                 some polynomial p
● EXPTIME = k∈ℕDTIME(2nk)



  

Space complexity – basic classes
● DSPACE(S(n)) – languages recognizable in space O(S(n))

● L = k∈ℕDSPACE(log nk) = DSPACE(log n)

● PSPACE = k∈ℕDSPACE(nk) – i.e., languages recognizable in space

                                                p(n) for some polynomial p
● EXPSPACE = k∈ℕDSPACE(2nk)



  

Time vs space

DTIME(f(n)) ⊆ DSPACE(f(n))

Proof: In time f(n) a machine can visit at most 
           k 

.f(n) cells (k = the number of tapes)



  

Conversely: DSPACE(f(n)) ⊆ c>0
DTIME(n 

.cf(n))

if f(n)≥log(n), then simply: DSPACE(f(n)) ⊆ c>0
DTIME(cf(n))

Proof: Take some LDSPACE(f(n)), recognized by M.
M does not loop, so
(the number of visited configurations) = (the number of steps)
(the number of all configurations) ≥ (the number of steps)

the number of all configuration equals:

|Q| 
.(n+2) 

.(4|G|)df(n)

state

position on the input tape

contents of working tapes + a special marker for:
● the position of the head
● the last visited cell on the tape

Time vs space



  

DTIME(f(n)) ⊆ DSPACE(f(n)) ⊆ c>0
DTIME(n 

.cf(n))

In particular:
L ⊆ P ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE

Time vs space



  

DTIME(f(n)) ⊆ DSPACE(f(n)) ⊆ c>0
DTIME(n 

.cf(n))

In particular:
L ⊆ P ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE

Are these classes different?

it is NOT known whether:
● L≠P
● P≠PSPACE
● PSPACE≠EXPTIME
● EXPTIME≠EXPSPACE

It is known (and we will prove this soon), that 
● L≠PSPACE≠EXPSPACE
● P≠EXPTIME

Time vs space



  

Sipser's theorem

Theorem. Consider a machine M working in space S(n), but not 
necessarily having the halting property. 
Then there exists a machine M' such that:
● L(M')=L(M)
● M' works in space S(n)
● M' halts on every input



  

Sipser's theorem

Theorem. Consider a machine M working in space S(n), but not 
necessarily having the halting property. 
Then there exists a machine M' such that:
● L(M')=L(M)
● M' works in space S(n)
● M' halts on every input

Thus: in the following definition

A language L⊆S* is recognizable in space S(n) if there exists a multitape 
machine that halts on every input, accepts L, and works in space S(n).

this condition was redundant



  

Sipser's theorem

Theorem. Consider a machine M working in space S(n), but not 
necessarily having the halting property. 
Then there exists a machine M' such that:
● L(M')=L(M)
● M' works in space S(n)
● M' halts on every input

Proof
Approach 1: (in which the resulting M' uses a lot of space)
Key observation: in an accepting run no configuration repeats.
● after every move we copy the current configuration to an additional

working tape,
● additionally we check whether the current configuration equals to

some configuration saved earlier
● a configuration has repeated ⇒ a loop ⇒ we reject
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