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An iterated pushdown is a pushdown of pushdowns of . . . of pushdowns. An 
iterated exponential function is 2 to the 2 to the to the 2 to some polynomial. 
The main result presented here is that the nondeterministic 2-way and multi-head 
iterated pushdown automata characterize the deterministic iterated exponential 
time complexity classes. This is proved by investigating both nondeterministic and 
alternating auxiliary iterated pushdown automata, for which similar characteriza- 
tion results are given. In particular it is shown that alternation corresponds to one 
more iteration of pushdowns. These results are applied to the l-way iterated 
pushdown automata: (1) they form a proper hierarchy with respect to the number 
of iterations, and (2) their emptiness problem is complete in deterministic iterated 
exponential time. Similar results are given for iterated stack (checking stack, non- 
erasing stack, nested stack, checking stack-pushdown) automata. ? 1991 Academic 

Press. Inc 

INTRODUCTION 

It is well known that several types of 2-way and multi-head pushdown 
automata and stack automata have the same power as certain time or 
space bounded Turing machines; see, e.g., Chapter 14 of (Hopcroft and 
Ullman, 1979), or Sections 13 and 20.2 of (Wagner and Wechsung, 1986). 
For the deterministic and nondeterministic case such characterizations 
were given by Fischer (1969) for checking stack automata, by Hopcroft 
and Ullman (1967b) for nonerasing stack automata, by Cook (1971) 
for auxiliary pushdown and 2-way stack automata, by Ibarra (1971) for 
auxiliary (nonerasing and erasing) stack automata, by Beeri (1975) for 
2-way and auxiliary nested stack automata, and by van Leeuwen (1976) 
for auxiliary checking stack-pushdown automata. The alternating case was 
considered by Chandra, Kozen, and Stockmeyer (1981), and was exten- 
sively studied by Ladner, Lipton, and Stockmeyer (1984). The highest com- 
plexity class reached by the 2-way or multi-head versions of these automata 
is double exponential time: the class of languages recognized by alternating 
multi-head stack automata (Ladner, Lipton, and Stockmeyer, 1984). 
Higher complexity classes were characterized by Vogel and Wagner (1985). 
Let exp,(n) be the k-iterated exponential function, where k is the number 
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of 2’s: exp,(n) = n, and exp,(n + 1) = 2 expk(n). It is shown in (Vogel and 
Wagner, 1985) that DTIME(exp,(poly)) is the class of languages accepted 
by deterministic multi-head automata with one pushdown and k (inde- 
pendent) checking stacks. Similarly, for a nonerasing stack instead of a 
pushdown, the class DSPACE(exp,(poly)) is obtained. In both cases the 
corresponding nondeterministic automata of course accept all recursively 
enumerable languages. 

In this paper we present an alternative automaton-theoretic characteriza- 
tion of DTIME(exp,(poly)), in terms of the nondeterministic multi-head 
(k + 1)-iterated pushdown automata (where a l-iterated pushdown is an 
ordinary pushdown, a 2-iterated pushdown is a pushdown of pushdowns, 
etc.). According to Greibach (1970), iterated pushdown automata were first 
considered by Aho and Ullman: they showed that the nondeterministic 
l-way 2-iterated pushdown automata recognize the indexed languages of 
(Aho, 1968); see (Parchmann, Duske, and Specht, 1980) for essentially the 
same result. Greibach (1970) shows how pushdowns can be iterated by the 
use of “nested AFA,” but only the special case of “well-nested AFA” is 
studied there. Maslov (1974, 1976) defines the nondeterministic l-way 
k-iterated pushdown automata, and shows that they correspond to the 
k-level indexed grammars. Damm and Goerdt (1986) prove that they 
correspond to the k-level 01 macro grammars. The classes of k-level 01 
languages (and hence the classes of nondeterministic l-way k-iterated 
pushdown languages) are often viewed as an alternative, more natural, 
infinite, Chomsky hierarchy, called the 01-hierarchy; see, e.g., (Damm, 
1982). Taking a O-iterated pushdown automaton to mean a finite 
automaton, the first three classes in the 01-hierarchy consist of the regular, 
the context-free, and the indexed languages. 

Our main results on k-iterated pushdown automata (P” automata) 
are given in the table of Fig. 1, where we consider nondeterministic or 
alternating Pk automata which may be l-way, (2-way) r-head with r > 1, 
(Zway) multi-head, or SPACE(s(n)) auxiliary Pk automata with s(n)> 
log n. Note that the multi-head case follows from both the r-head and the 
SPACE(log n) case; it is added for clearness sake. For k = 1 (k = 0), the 
results are of course the known ones for pushdown automata (finite 
automata, respectively). For k = 2, the results are those for stack automata: 
we show that the mentioned types of 2-iterated pushdown automata are 
equivalent to the corresponding stack automata. Since, moreover, almost 
all reasonable types of 2-iterated pushdown automata are equivalent to the 
corresponding nested stack automata (e.g., the l-way types both recognize 
the indexed languages), this also fits with the results of (Beeri, 1975). In 
fact, for iterated stack automata (SAk) and iterated nested stack automata 
(NSAk) we show that the table of Fig. 1 holds with k replaced by 2k 
everywhere. These complexity characterizations are applied to the l-way Pk 
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Pk nondeterministic alternating 

l-way ----- uDTIHE(expk(dn)) 

k&l 

I I 

r-head uDTIME(expk-l(dn 2r) I uDTIME[enpk(dnr)) 

k,2 k>l 

multi-head DTI14E(expk-l(poly)) DTIHE(expk(poly)) 

k&l k&O 

SPACE(s(nl1 uDTIHE(expk(dsfn))) uDTIME(erpk+l(ds(n)ll 

k>l k >O 

FIG. 1. Characterization of k-iterated pushdown automata by time-bounded Turing 
machines. In this table, IJ... d... abbreviates IJd,O... d ., and poly abbreviates 
U ,,,O nd 

automata: (1) they form a proper hierarchy, i.e., the (k + l)-iterated 
pushdown automata are more powerful than the k-iterated pushdown 
automata, and (2) their emptiness problem is complete in 
DTIME(exp,-,(poly)). Similar results hold for SAk and NSAk automata. 

Additionally we investigate (iterated) checking stack and nonerasing 
stack automata, and stack-pushdown automata; for the latter, see 
(van Leeuwen, 1976, Engelfriet, Schmidt, and van Leeuwen, 1980). In 
particular, iterated checking stack automata characterize iterated 
exponential space (rather than time) complexity classes. Since in the l-way 
case these automata correspond to the 2GSM hierarchy (see Greibach, 
1978c, Engelfriet, 1982), this gives an alternative proof of the properness of 
that hierarchy. It also implies that the emptiness problem for arbitrary 
compositions of 2-way gsm’s is nonelementary (i.e., is not in 
Uk DTIME(exp,(poly)). A similar relationship holds between the iterated 
checking stack-pushdown automata and the ETOL hierarchy; see (Asveld 
and van Leeuwen, 1975, Engelfriet, 1982). 

A preliminary version of this paper was presented in (Engelfriet, 1983). 
It was recently shown in (Kowalczyk, Niwinski, and Tiuryn, 1989) that 
deterministic SPACE(s(n)) auxiliary Pk automata have the same power as 
nondeterministic ones (for space constructable s(n)), generalizing the result 
of (Cook, 1971) for k= 1; this problem was left open in (Engelfriet, 1983). 
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NOTATION 

For a set A, P,,(A) denotes the set of all finite subsets of A. For a rela- 
tion R, R- ’ is its inverse and R(A) is the image of A under R. For a class 
S of relations and a class K of sets, S - ’ = {R -’ 1 R E S}, and S(K) = 
{R(A) 1 R E S, A E K}. So(K) = K, and for k > 0, Sk+ ‘(K) = S(Sk(K)). 

For a set A, A* is the set of finite sequences of elements of A, and A + = 
A* - {A}, where A is the empty sequence. In case A is an alphabet, A* is 
the set of strings over A, and 1. is the empty string. Let w  = a, u2.. . a, be 
a string with ai E A. Then 1 WI is its length n. The reverse of w  is the string 
wR = a, . . . alal . For a language L, LR = ( wR ) w  E L}, and for a family K of 
languages KR = { LR 1 L E K}. REG denotes the family of regular languages. 

We use u... d.‘.. for Ud,O... d . . . . and . . . poly . . . for Ud,O... nd... (as in 
Fig. 1). 

For the notation of time and space complexity classes, see Chapter 12 of 
(Hopcroft and Ullman, 1979). 

1. BASIC DEFINITIONS AND FACTS 

In this section we describe the iterated pushdown automata which are 
the main subject of this paper. Since we will consider many variations of 
iterated pushdown automata, and also of other automata, we need some 
general terminology on automata with an arbitrary storage type, explained 
in Section 1.1. In order to cope with essentially equivalent ways of 
describing the same kind of automaton, we also discuss the notion of 
equivalent storage types, in Section 1.2. In Section 1.3, finally, the iterated 
pushdown automata are defined. In fact, for any storage type X (such as 
pushdown, stack, etc.), we consider pushdown-of-X automata, i.e., 
automata of which the storage consists of a pushdown of storage contigura- 
tions of an X automaton. Our main technique in dealing with the rather 
complex iterated pushdown automata is to generalize known results for 
pushdown automata to pushdown-of-X automata, for arbitrary X, and 
then to iterate the “pushdown-of” operation, in order to obtain similar 
results for iterated pushdown automata. The same approach was used in 
(Engelfriet and Vogler, 1987) for deterministic l-way Pk automata, in 
(Engelfriet and Vogler, 1988) for iterated pushdown tree transducers, and 
in (Vogler, 1986) for iterated one-turn pushdown automata. 

1.1. Automata and Storage Types 

Let X be a storage type of an automaton (e.g., X= pushdown). We 
assume the reader to be familiar with 
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l-way X automata, 

2-way multi-head X automata, and 

auxiliary SPACE(s(n)) X automata (for s: N -+ N), 

and with the corresponding automata with output, i.e., transducers. Recall 
that an auxiliary SPACE(s(n)) X automaton has, in addition to its 
X-storage, a 2-way read-only input tape and a Turing machine worktape 
with space restricted to s(n), where n is the length of the input. The above- 
mentioned automata may be deterministic, nondeterministic, or alternating 
(except that transducers cannot be alternating). All storage types X 
investigated in this paper (such as X= pushdown, k-iterated pushdown, 
stack, checking stack, etc.) will be explained in due course; for more details 
on the corresponding X automata see, e.g., Hopcroft and Ullman (1979), 
Cook (1971), Ladner, Lipton, and Stockmeyer (1984), and Ibarra (1971). 
In the special case that there is no internal storage X, we put “finite” 
instead of X, i.e., we have the usual l-way finite automata and 2-way multi- 
head finite automata. The auxiliary SPACE(s(n)) finite automata are of 
course the usual s(n)-space bounded Turing machines. 

Notation. The class of languages accepted by alternating l-way (2-way 
r-head, 2-way multi-head, auxiliary SPACE(s(n))) X automata is denoted 
1A -X (2A(r) - X, 2A(multi) - X, ASPACE(s(n)) - X, respectively), 
where r 2 1 and s: N -+ N. For the deterministic and nondeterministic 
automata, the leading A is replaced by D and N, respectively. The class of 
transductions realized by nondeterministic (deterministic) l-way X trans- 
ducers is denoted INT -X (1DT - X, respectively), and similarly for the 
other variations (adding T before “-X”). In case X= “finite”, the suffix 
“-X” is dropped; thus 2D(r) denotes the class of languages accepted by 
2-way deterministic r-head finite automata, and NSPACE(s(n)), as usual, 
the class of languages accepted by nondeterministic SPACE(s(n)) Turing 
machines. We finally note that the heads of a 2-way r-head automaton may 
be sensing or non-sensing: our results do not depend on this distinction. 

We will use Y as a metavariable ranging over the set (lA, 2A(r), 
2A(multi), ASPACE(s(n)), lN, . . . . lNT, . . . . lD, . . . . lDT, . ..} of all variations 
of X automata mentioned above. An element of this set will be called an 
automaton type. Thus, for an automaton type Y and a storage type X, we 
may consider the class of Y-X automata, and the corresponding class 
Y - X of languages (or transductions). 

For the investigation of X automata (or, rather, pushdown-of-X 
automata) for arbitrary storage type X, we need some precise terminology 
on storage types. Our definition of storage type (as in Engelfriet and Vogler 
(1987); see also Engelfriet (1986), Engelfriet and Vogler (1986, 1988), 



26 JOOST ENGELFRIET 

Engelfriet and Hoogeboom (1989)) is based on those of Ginsburg (1975), 
Scott (1967), Hopcroft and Ullman (1967a), and Goldstine (1977). 

DEFINITION. A storage type is a tuple X= (C, T, F, m, C,, id), where C 
is the set of (X-) configurations, CO s C is the set of initial configurations, 
T is the set of tests, F is the set of instructions, id E F is the identity instruc- 
tion, and m is the meaning function that associates with every t E T a 
mapping m(t): C-P {true, false}, and with every f~ F a partial function 
m(f): C+ C, such that m(id) is the identity on C. 

The sets C, T, F, and CO may all be infinite. 
A test t or instruction f is “executed” by an X automaton by applying 

the function m(t) or m(f), respectively, to its X-configuration. Note 
that the execution of id has no effect on storage (it may be pronounced 
as “idle”). To model the execution of several instructions f,, . . . . f, E F, 
in that order, we extend m to F+, by defining m(fif2 . ..fn)(c)= 
m(f,)( . ..m(f2)(m(fi)(c)) ... ) for every CE C. 

As an example, the usual pusdown storage type P is defined by taking 
c=r+ for some fixed, infinite, set of pushdown symbols, CO = r, 
T = {top = y I y E r} such that m(top = y)(w) = true iff the right-most 
symbol of w  E r + is y, and F={push(y)ly~r}u{pop,id} such that 
m(pusUy)) = I( w,wy)Iw~r+), m(pop)={(wy,w)lwET+,yET}, and 
m(id) = ((w, w) 1 w  E f + }, Note that there is no empty pushdown; this 
simplifies things when generalizing to pushdown-of-X. 

To be able to treat automata without internal storage as a special case 
of X automata (i.e., X= “finite”), we use the trivial storage type, denoted X0 
and defined by X0= ((co), a, {id], m, {co>, id), where cO is an arbitrary 
object and m(id) is the identity on {co}. Thus, X0 automata are finite 
automata (and the suffix “ - X,,” can be dropped, see Notation). 

In the rest of this subsection we want to fix some more terminology on 
the way Y - X automata work, and in particular the way they manipulate 
storage, so that the reader can check that everything is as usual. Let 
X= (C, T, F, m, CO, id) be a storage type. 

We first need a notion formalizing the test information that an 
automaton can obtain from its storage. For a finite subset T, of T, the set 
of test results for T, , denoted R( T, ), is the set R( T, ) = (p ) p is a mapping 
T1 -+ {true, false} }. For c E C, the test result of c for T,, denoted by 
p(T,, c), is the element of R(T,) that satisfies p( T,, c)(t) = m(t)(c) for 
every t E T, . Note that R(G) is a singleton. 

Next we discuss the specification of X automata. Let Y be an automaton 
type. A Y-X automaton M is specified by a set of states Q (divided into 
existential and universal states in case M is alternating), an initial state 
q,, E Q and a set of final states QH E Q, an input alphabet Z, an output 
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alphabet 52 (in case M is a transducer), a worktape alphabet @ (in case M 
is an auxiliary automaton), a transition function 6 (the most important 
part), an initial X-configuration c0 E C,, a linite subset T, of T, and a 
finite subset F, of F (the tests and instructions used by M, respectively). 
The transition function 6 is a mapping of the form 

6: A x R( T,) + P,,,( B x FM) 

where A = Q x A’ and B = Q x B’, and the precise form of the sets A’ 
and B’ depends on the precise type Y of the automaton M. If M is a 
l-way X automaton, then A’ = C u {A} and B’ is trivial, i.e., 6: 
Q x (,Z u {A}) x R( TM) + P,,(Q x F,). In case it is a transducer, B’ = 52*, 
i.e., 6 maps into Pfin(Q x sZ* x F,). If M is a 2-way r-head automaton, then 
A’= (Cu ($, $1,’ and B’ = ( - 1, 0, + 1 >‘, where e and S are the left and 
right endmarkers, respectively, and - 1, 0, + 1 indicate the motions of 
the heads, as usual (note that here we assume for convenience that the 
heads are non-sensing; this is, however, not essential). If M is an 
auxiliary SPACE(s(n)) X automaton, then A’ = (C u {e, $}) x @ and 
B’= { - 1, 0, + 1 } x { - LO, + 1) x @; note that M has one input head 
and one worktape head. For the corresponding transducers, sZ* is added 
to B’. 

In the 2-way multi-head case and the auxiliary SPACE@(n)) case, A4 is 
deterministic if 6 is a partial function, i.e., 6(x) is a singleton or empty for 
every x in its domain. In the l-way case it is additionally required that if 
6(q, ,%, p) # @ for some q E Q and p E R( T,), then 6(q, c, p) = $3 for all 
u E Z (in words, if M can do a i-move, then it cannot do a reading move). 

Finally we discuss the computations of our automaton M. An instan- 
taneous description (ID) of M is a pair (a, c), where c E C is an 
X-configuration, and a consists of the usual things: a state q E Q, an input 
string w  E Z*, the position of the input head(s) on w  (or on ew%), possibly 
an output string in Q*, and possibly a worktape string in @* together with 
the position of the worktape head. If M is alternating, then (a, c) is a 
universal (existential) ID if q is a universal (existential, respectively) state. 
Let (a, c) and (/I, d) be two ID’s of M where c, de C, and a, /? represent 
the rest of the ID’s. Suppose that &a, p) contains (b, S) with UE A, 
pcR(T,+,), beB, andfEFM.ThenMcando themove(a,c)t-(p,d)ifa 
satisfies a (in the usual way), p =p(T,, c), the test result of c for T,, 
/I is obtained from a by b (in the usual way), m(f)(c) is defined, and 
m(f)(c) =.d. (p, d) is called a SUccessor of (a, c). As usual, t- * denotes the 
transitive, reflexive closure of t. 

The initial ID of M for an input string w  E Z* is (aO, cO) where c0 is the 
initial X-configuration of M, and a0 consists of the initial state qo, the input 
string w, all input heads positioned to the left of w, an empty output string, 
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and a blank worktape. Acceptance is by final state, i.e., an accepting ID of 
A4 is an ID of which the state belongs to & (thus there are no 
requirements on the X-configuration of the ID). 

For a nondeterministic (or deterministic) automaton M, a string w  E C* 
is in the language L(M) accepted by M if there is a computation, i.e., a finite 
sequence of consecutive moves of M, that starts with the initial ID for 
w  and ends with an accepting ID. In other words, WE L(M) iff 
(a,, cO) t- * (~1, c), where (cQ,, cO) is the initial ID for w  and (a, c) is an 
accepting ID. Moreover, for an auxiliary SPACE(s(n)) automaton all 
worktape strings of all ID’s in the computation should be of length at most 
s(n), where n = 1~1. Similarly, for a transducer, (w, v) EC* x Q* is in the 
transduction z(M) realized by M if moreover the accepting ID contains u 
as output string. Note that, for a deterministic transducer M, z(M) is not 
necessarily a partial function. For an alternating automaton M, a computa- 
tion tree is a finite tree of which the nodes are labeled by ID’s of M, such 
that the children of a nonleaf labeled by a universal (existential) ID are 
labeled by all successors (one successor, respectively) of that ID (and, 
as above, in the auxiliary case all ID’s in the tree should satisfy the 
corresponding length restriction). A string w  E C* is in the language L(M) 
accepted by M if there is a computation tree of which the root is labeled 
by the initial ID for w, and all leaves are labeled by accepting IDS. 

The class of all languages accepted (or translations realized) by Y-X 
automata is denoted Y - X. 

Two automata M and M’ are equivalent if L(M) = L(M’), or 
z(M) = t(M’) if they are transducers. 

1.2. Simulation and Equivalence of Storage Types 

This subsection can be glanced at on first reading; it is only necessary to 
read Definition 1.2.1 (of < and = ) and to believe Theorem 1.2.4. 

One of the basic notions related to data types is that of one data type 
simulating another: e.g., a pushdown of integers can be simulated by an 
array of integers, in the usual way, and a similar statement of course holds 
for a pushdown of booleans. Since a storage type of an automaton is a data 
type, the same notion of simulation applies to storage types: e.g., a Turing 
machine tape can be simulated by two pushdowns (and vice versa). 

We will need a formal definition of this concept of simulation. In 
Engelfriet and Vogler (1986) such a definition was given, based on the idea 
of stepwise simulation of Hoare (1972): roughly, each instruction or test of 
the first storage type is replaced by a procedure that simulates it in the 
second storage type. Although this definition is intuitively clear, it is quite 
long, and difficult to handle. Therefore, in this paper (and in Engelfriet and 
Hoogeboom, 1989), we propose a more manageable definition. It is weaker 
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than the one in (Engelfriet and Vogler, 1986), but can serve the same 
purposes, for the restricted kind of storage type we have defined here. 

DEFINITION 1.2.1. Let X, and X, be two storage types. X, simulates X, , 
denoted X, d X,, if 1DT - X, s 1DT - X,. X, and X2 are equiualent, 
denoted X,3X2, if lDT-Xi= lDT-X,. 

Obviously, the simulation relation < is reflexive and transitive; 
moreover, X, = X, if and only if X, < X, and X, Q X,. 

In words, two storage types are equivalent if they define the same class 
of l-way deterministic transductions. Now this is certainly something one 
would require of (intuitively) equivalent storage types, but we claim that it 
also suffices. One way to convince the reader of this unprovable claim is to 
prove that if X, = X, then Y-X, = Y-X, for every automaton type Y 
(which one would also expect of intuitively equivalent storage types). The 
proof of this will be based on another, intuitive, argument that the above 
definition captures the intuitive notion of equivalence: intuitively a storage 
type may be viewed as a transduction (for a given fixed initial conligura- 
tion), as follows. Suppose A4 is an X automaton with its storage in a 
certain configuration, reached from the initial configuration. What can h4 
do with its storage? At one of its moves, M feeds an instruction into 
storage, as a result of which storage changes configuration. Then h4 
obtains from storage the test result of the new configuration, upon which 
the choice of its next move will be based. Thus, storage receives informa- 
tion, changes configuration, and returns information. In this way storage 
acts as a transducer. We now formalize the corresponding transductions. 
They are analogous to the AFL generators obtained from an AFA 
representation of an AFL (see Section 5.2 of Ginsburg, 1975). 

DEFINITION 1.2.2. Let X= (C, T, F, m, CO, id) be a storage type. Let 
T1 and F, be finite subsets of T and F, respectively, and let c0 E C,, be 
an initial X-configuration. The X-transduction corresponding to T, , 
F,, and co, denoted T(T,, F,, co), is the relation in F: x R( T,)* 
defined by T(T,, F,, cd= {(fi . ..fk. ~1 ...P~II~~O, fi EF,, PiER(T,), 
m(fi . . .fk)(co) is defined, and pi = p( T,, m(fi . .L.)(c,,)) for every i, 
1 <id/c}. 

In fact t(T,, F,, co) is a partial function F: + R( T,)*. Its domain is 
{fl . ..fkIm(fl . ..fk)(co) is defined}. Note that if m(fi . ..fk)(co) is defined, 
then so is m(fi . ..f.)(co) for 1 < iQ k. When f,, f2, . . . . fk are “fed,” one by 
one, “into” ~(7’,, F,, co), it “produces,” one by one, the test results of 
m(fi)(coh m(fifd(c0h . . . . m(f, fi ... fk)(co) for T,. We now show that 
these X-transductions are in 1DT -X. 
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LEMMA 1.2.3. Let X = (C, T, F, m, CO, id) be a storage type. For every 
T, s T, F, E F (both finite), and c,, E C,, r( T,, F,, cO) E 1DT - X. 

Proof The l-way deterministic X transducer A4 that realizes 
r( T,, F,, cO) has initial configuration cO, and uses T, = T, and F, = F, . 
A4, when reading fe F,, executes f and then outputs the test result of 
the resulting X-configuration. Formally, M has transition function 6: 
Qx(.ZLJ{~L))XR(T~)+QX~~* xF,, with Q= {q1,q2), and a(q,,f,p)= 
(q2, kf), @q,, 4 p)=(ql, P, id) for all PENT,) andfEFl, where q1 is 
the,initial state and the only final state. Note that C = F, and Sz = R( T,). 1 

We use the X-transductions in the proof of the following “Justification 
Theorem” (it justifies our definition of equivalent storage types; see also 
Corollary 3.9 of (Engelfriet and Hoogeboom, 1989) and Theorem 4.18 of 
(Engelfriet and Vogler, 1986)). 

THEOREM 1.2.4. Let X, and X2 be storage types, and let Y be an 
automaton type. 

ZfX,<Xx,, then Y-X,E Y-X?. 

ZfX1rX2, then Y-X,= Y-X,. 

Proof. Obviously the second statement follows from the first. Let Xi = 
(Ci, Ti, F,, mi, Coi, idi) for i= 1,2, and assume that X, <X,. We have to 
show that Y-X, E Y-X,. For Y = 1DT this holds by definition of <. 
We now give the proof simultaneously for all other Y. Let A4 be a Y-X, 
automaton with initial configuration cM E Cal, set of tests T,,,, E T,, and 
set of instructions F, G I;,. The use that M makes of its storage is fully 
determined by the X,-transduction T = r( T,, FM, c,,,,). Since z E 1DT - X, 
(by Lemma 1.2.3) and X, <X,, also r E 1DT - X,. Let N be a l-way deter- 
ministic X, transducer realizing r. We have to show the existence of a 
Y-X, automaton M’ equivalent to M. Intuitively, M’ is obtained from M 
and N by a variation of the usual product construction. In fact M’ imitates 
the behaviour of A4, using N instead of X,-storage. Whenever A4 executes 
an instruction f of F,, M’ instead feeds f into N, simulates N until it 
produces a test result p, and stores p in its finite control, using it to 
simulate the next move of M. 

Formally, let 6,: QM xA’xR(T,)-+Pfi,(QMxB’xF,) and 6,: 
QN x (F, u {A}) x R( TN) + QN x R( TM)* x F, be the transition functions 
of A4 and N, respectively, where QM and QN are the set of states of M and 
N, respectively, and T, and F, are the finite subsets of T, and F2 used by 
N. The precise form of A’ and B’ depends on Y. 

Clearly we may assume that N produces at most one symbol at a time. 
Moreover, it is not difficult to argue that we may also assume that in any 
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successful computation of N, translating fi ... fk into pr ... pk, pi is not 
produced before fi is read. 

We now describe M’. It has the same initial configuration as N, and it 
also uses TN and FN. The set of states of M’ is Q = Q,+, x Q,+. x R(T,), and 
the initial state is (qo, p,,, p,,) where q. and p. are the initial states of A4 
and N, respectively, and pO = p( T,,,, c,+,). A state (q, p, p ) of M’ is final 
whenever q and p are. In case M is alternating, a state (q, p, p) is existen- 
tial or universal whenever q is. M’ has the same input (worktape, output) 
alphabet as M. It remains to specify the transition function 6: 
Q x A’ x R( TN) -+ P,,(Q x B’ x F,,,) of M’. Let bb E B’ be such that it leaves 
the involved devices invariant (i.e., no output, no heads moving, etc.). 
Moreover, in what follows, q, q’e QM, p, P’E QN, p, p’ E R(T,), f E F,, 
fi E R( TN), g E FN, a’ E A’, and b’ E B’. First we treat the A-moves of N. 

~ If 6,(p, 4 P) = (P’, A, gh then &(q, p, P>, a’, B) = 

(((a ~‘1 P), 4, 8)). 

- Similarly, if 6,(p, 1, 8) = (p’, p’, g), then the new state of M’ 
is (4, P’, P’>. 

Second we treat the other moves of N, together with the moves of M. 

- If 6,(p, .L B) = (P’, 2, g) and 6dq, a’, PI contains (4, b’, f), then 

6( (4, P, P >, a’, P) contains ((q’, P’, P >, b’, g). 
- Similarly, again, if d,(p, f, /?) = (p’, p’, g), then the new state of 

M’ is (q’, p’, p’). 

This ends the description of M’. It easily follows from this description 
that M’ is deterministic if M is. 

In a state (q, p, p), p represents the test result of the configuration of 
M. After simulating a move of M, M’ first simulates the I-moves of N until 
N waits for input (an instruction of FM). In the meantime, M’ has received 
from N the test result p’ of the new configuration of M, and has stored p’ 
in its finite control. This enables M’ to simulate the next move of M. Note 
that, initially, M’ starts by executing I-moves of N (and already has the 
correct test result). From these observations it should be clear that 
s(W) = z(M). 1 

It is quite obvious that this theorem also holds for many other 
automaton types Y not used in this paper (e.g., l-way multi-head 
automata, multi-tape automata, etc.). However, it obviously does not 
hold for time-restricted automata; in that case the notion of simulation 
should be adapted, putting appropriate time restrictions on the 1DT -X 
transducers too (cf. Engelfriet and Hoogeboom, 1989). 
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1.3. Pushdowns and Iterated Pushdowns 

The easiest way to define the storage type of an iterated pushdown is to 
view the pushdown as an operation on storage types, and to iterate this 
operation; see Greibach (1970), Engelfriet (1986), Engelfriet and Vogler 
(1986, 1987, 1988), and Vogler (1986). We will discuss several equivalent 
ways of defining this operation, and we will show that it preserves 
equivalence. 

Let X= (C, T, F, m, C,, id) be a storage type. Let r be a fixed, infinite 
set of pushdown symbols. The storage type pushdown of X, denoted P(X), 
has configurations that are pushdowns of which each square contains a 
pair (y, c), where y is a pushdown symbol and c an X-configuration. As 
usual, a P(X) automaton M has access to the top-most square (y, c) of its 
pushdown only. It can test which symbol y is in that square, and it can 
apply the tests from T to c. Also as usual, M can change the pushdown by 
popping the top-most square or by pushing a new square. The push 
instruction contains the symbol of the new square, and contains an instruc- 
tion from F that should be applied to c in order to obtain the 
X-configuration of the new square. 

Formally, P(X) = (C’, T’, F’, m’, C’& id’), where 

C’=(TxC)+ and Cb=rxCo, 

T’={top=yIy~r}u{test(t)lt~T), 

F’ = {PuW, f) I Y E C f E F> u {pop, id’}, 

and, for every c’ = b(p, c) with /I E (TX C)*, p E r, and c E C: 

m’(top = y)(c’) = (P = Y), 
m’(test(t))(c’) = m(t)(c), 

m’(push(y,f))(c’)= j?(p, c)(y, m(f)(c)) if m(f) is defined on c, and 
undefined otherwise, 

m’(pop)(c’) = /I if /I # I and undefined otherwise, and 

m’(id’)(c’) = c’. 

Remarks. (1) The top of the pushdown is to the right. For reasons of 
simplicity there is no empty pushdown. 

(2) Whenever no confusion can arise, the prime is dropped from id’. 

(3) A pushdown alphabet PM E r is specified for every P(X) 
automaton M. In fact it is always possible to take rM to contain the y that 
occurs in the initial P(X)-configuration of M, and all y’s that occur in 
push(y, f) instructions used by M (as determined by FL). 
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(4) For a pushdown c’=(y,,, c,)(y,, c,)...(y,, c,)E(~x C)‘, we 
will call yOyl ... y, the symbol part and c,,cl ... c, the X-configuration part 
of c’. 

The operation P(X) on storage types can now be iterated: for a storage 
type X, P”(X) =X, and, for k> 1, Pk+ ‘(X) = P(P”(X)). For k 30, the 
k-iterated pushdown is the storage type Pk(Xo), also denoted Pk. Any Pk 
automaton is called an iterated pushdown automaton. One-way iterated 
pushdown automata were considered in, e.g., Maslov (1976), Damm and 
Goerdt (1986), Engelfriet and Vogler (1987), and Vogler (1986). Note that 
the l-iterated pushdown P(X,) is equivalent to the usual pushdown P (as 
defined in Section 1.1); i.e., P(X,) = P. In fact, P(X,) just has the additional 
X,-configuration co in each square of the pushdown, which has no 
influence on the computation of any P(X,) automaton. 

It is possible to strengthen P(X) by allowing an additional test “bottom” 
that is true for one-square pushdowns, and additional instructions 
“stay(y, f)” with y E r and fe F that transform B(p, c) into fl(y, m(f)(c)). 
Let the resulting storage type be denoted by P,(X): pushdown of X with 
stay instructions. In fact, P,(X) is not really stronger than P(X) because they 
are equivalent storage types: P,(X) = P(X). Clearly P(X) < P,(X) is trivial. 
Let us show now that P,(X) d P(X). Let A4 be a l-way deterministic P,(X) 
transducer. We have to show that M can be changed into an equivalent 
l-way deterministic P(X) transducer. It is easy for M to get rid of the 
bottom test: it just marks the bottom square symbol and keeps it marked. 
The stay(y, f) instruction can be simulated by a push(jj,f) instruction, 
where the bar means that the square below this one is garbage; thus, each 
pop instruction should be replaced by a subroutine 

while the top symbol is barred do pop; 
POP. 

In this way it should be clear that P,(X) z P(X). 
On the other hand P(X) can be weakened, e.g., by taking two pushdown 

symbols instead of infinitely many, say 0 and 1. We will denote by 
P{,,](X) the storage type that is defined in exactly the same way as P(X) 
except that (0, 1 } is used instead of IY It is well known that ordinary 
pushdown automata only need two pushdown symbols, and this also holds 
for P(X) automata because P,, 1,(X) = P(X). Again, P,, I;(X) d P(X) is 
trivial. To see that P(X) d PC,.,)(X), let rM = (y,, yz, . . . . y,}, and simulate 
a pushdown square (y,, c) by the piece of pushdown (1, c)(O, c)j. Then 
push(y,, f) is simulated by a push (1, f) followed by i times push(0, id), 
and pop is simulated by while top =0 do pop followed by one pop, and 
test(t) remains the same. Finally, the top symbol can be determined (in the 
finite control) by first executing while top = 0 do pop, meanwhile counting 
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the number i of iterations, and then executing i push(O, id) instructions to 
restore the old pushdown. 

Thus we can feel at ease that several of the usual variations for 
pushdowns can also be used for P(X). But what about iterated pushdowns? 
E.g., is Pr = Pk? In other words, can we use stay instructions at all levels 
of the iterated pushdown? To show this we need the fact that the operation 
P(X) preserves =, or better, that P(X) is monotonic with respect to < (cf. 
Theorem 4.22 of Engelfriet and Vogler, 1986). Note that this is a very 
natural requirement for any operation on storage types. 

THEOREM 1.3.1. Let X, and X, be two storage types. 

IfX, <X2, then P(X,)<P(X,). 

If X, E X2, then P(X,) = P(X,). 

Proof The proof is similar to that of Theorem 1.2.4. Let Xi = 
(Ci, T,, F,, mi, Coi, idi) for i= 1,2, and assume that X, <X1, i.e., 
lDT-X,slDT-X,. We have to show that lDT- P(X,)c 
1DT - P(X,). Since, as discussed above, P&X,) E P(X,), it suffices to show 
that 1DT - P(X,) E 1DT - P,(X,). Let A4 be a l-way deterministic P(X,) 
transducer with initial configuration (y,,, cO) E r x C,, . Let TM denote the 
set of all t E T, that occur in the tests test(t) used by M, and let F, denote 
the set of all f E F, that occur in the instructions push(y, f) used by M. As 
in the proof of Theorem 1.2.4, the use that M makes of the storage X, 
(through its P(X,) storage) is fully determined by the X,-transduction 
r=$T,w, F,, co). Let N be a l-way deterministic X, transducer realizing 
r. We will give an informal description of a l-way deterministic P,(X,) 
transducer M’ that simulates M; the formal construction is left to the 
reader. M’ has the same states, initial state, and final states as M (and, of 
course, the same input and output alphabets as M). M’ simulates a 
pushdown square (y, c) of M, with y E r and c E C,, by a pushdown square 
((y, p, p), d), where p is a state of N, p is the test result of c for T,, and 
dE C,. This clearly allows M’ to obtain the test result of (y, c) for the 
P(X,) tests used by M. M’ simulates a pop instruction of A4 by a pop 
instruction. Thus, it only remains to explain the simulation by M’ of a 
push(y, f) instruction of M. Consider a pushdown (yO, c,)(y,, c,) ... 
(yn, c,) arisen during a computation of M. Clearly, this pushdown was 
built up from the initial P(X, )-configuration (yO, cO) by applying instruc- 
tions pusNyl, h 1, . . . . PWy,, LA in that order, such that ci = m,(fi)(c,+ i) 
for 1~ i < n. When simulating M, M’ has a corresponding pushdown 
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where pi and dj are the state of N and the X,-configuration of N, respec- 
tively, that are obtained when the stringf, . ..f. is fed into N (executing the 
maximal number of i-moves of N); note that N then produces output 
PI . . . pi, and, as in the proof of Theorem 1.2.4, we may assume that pi is 
not produced by N before it reads fi. A push(y, f) instruction of M is 
simulated by M’ by first executing a push( (y, p, p), g) instruction where 
p and g are the new state of N and the instruction executed by N when 
feeding the symbol f into N (in state p, and configuration d,); in case N 
produces output during this move, p is this output, otherwise p = pn. The 
simulation of push(y, f) is then continued by simulating all following 
A-moves of N, storing output of N (if it occurs) at the third position of the 
pushdown symbol; to do this M’ executes instructions of the form 
stay((y, P’, P’>, g’). 

Finally we note that the initial P(X,)-configuration of M’ is 
( (yO, pb, po), db), where J& is the initial state of N, po=p(T,, c,), and 
db is the initial X,-configuration of N. M’ should start its work by 
executing all A-moves of N, thus changing ((yO, pb, po), db) into 
((~0, PO> po>,do). I 

From this theorem it can easily be concluded, e.g., that P$(X,) = P”(X,), 
i.e., that stay instructions can be used at all levels of the k-iterated 
pushdown, The proof is by induction: the case k = 0 is trivial; assuming 
that Pt(X,) = Pk(Xo), application of P to both sides is allowed by the 
previous theorem and gives P(P:(X,)) = P” ‘(X0); using the equivalence 
P(X) E P,(X) for X= Pt(X,) then gives P(Pt(X,)) E P,(P$(X,)) = 
Pf’ ‘(X0). This simple proof illustrates our technique of dealing with 
iterated pushdown automata, as mentioned in the introduction to this 
section. First we show that stay instructions can be used in all P(X) 
automata, generalizing an obvious property of ordinary pushdown 
automata. Then we iterate the P(X) operation, thus obtaining that stay 
instructions can be used in all Pk automata. 

Let us draw two other easy conclusions from Theorem 1.3.1. First, we 
already argued that P(X,) = P. Repeated application of Theorem 1.3.1 now 
gives that Pk(Xo) = Pk- ‘(P) for every k 3 1. Thus we may assume that the 
innermost pushdown squares of an iterated pushdown just contain 
pushdown symbols. Second, it is easy to see that, for every storage type X, 
X< P(X). In fact, every instruction f can be simulated by a push(y, f), 
and every test t by test(l). Thus, iterated application of Theorem 1.3.1 
gives that Pk < Pk + ’ for every k > 0. Hence, by Theorem 1.2.4, Y - Pk E 
Y - Pk+ ’ for every k > 0 and every automaton type Y. 

Later we will consider other operations U(X) on storage types. For such 
an operation we always define U’(X) = X and Ukf ‘(X) = U( U”(X)), and 
we denote Uk(Xo) by Uk. For every such U, it can be shown that X< U(X) 
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for every X, and that U is monotonic with respect to 6. Hence, as above, 
Uk < Uk+ ’ for all k. We usually leave it to the reader to prove these facts; 
the proof of monotonicity is always similar to that of Theorem 1.3.1. 

2. ITERATED PUSHDOWN AUTOMATA 

In this section we show the results in Fig. 1, except for the nondeter- 
ministic r-head case. As remarked before, these results will be shown by 
induction on the number k of iterations of the pushdown operation. In all 
cases, the basis of the induction is obtained from Cook’s well-known 
characterization of the nondeterministic auxiliary pushdown automata by 
time complexity classes. 

PROPOSITION 2.1 (Cook, 1971). For s(n) 2 log n, NSPACE(s(n)) - P= 
u DTIME(2d”‘“‘). 

The induction step is obtained by “taking” two results of Ladner, 
Lipton, and Stockmeyer (1984) and Ruzzo (1980) on auxiliary pushdown 
automata, and generalizing them to auxiliary P(X) automata in a 
straightforward way. Thus, in a certain sense, we obtain our results “for 
free.” In the first of these two results (stated in Theorems 2.2 and 2.3) alter- 
nating auxiliary pushdown (of X) automata are considered, and it is shown 
that the pushdown is equivalent to exponentially more space. 

THEOREM 2.2. For any storage type X and s(n) > log n, ASPACE(s(n)) - 
P(X) = u ASPACE(2d”‘“‘) - X. 

Proof. The proof is a rather straightforward generalization of the proof 
of Theorem 3.1 of (Ladner, Lipton, and Stockmeyer, 1984), where it is 
shown that ASPACE(s(n)) - P = u ASPACE(2d”‘“‘), i.e., the result for 
X= X0. Nevertheless we will discuss the proof here, so that it can be 
adapted to proofs of later theorems. Let X= (C, T, F, m, C,,, id). 

(i) We have to show that, for any d>O, ASPACE(2d”‘“‘) - XG 
ASPACE(s(n)) - P(X). Let M be an alternating auxiliary SPACE(2d”‘“‘) X 
automaton. As in Ladner, Lipton, and Stockmeyer (1984) we may assume 
that d> 1 and that M has only one tape, i.e., a worktape and no input 
tape. Thus, an ID of M can be viewed as a pair (CX, c) such that c E C and 
cr~@*(Q x @)@* with 11~1 =2d”‘“‘, where @ is the worktape alphabet and Q 
the set of states of M. As usual, in u, the pair (q, 4) E Q x @ indicates that 
M is in state q scanning 4. Moreover we may assume that each ID of M 
has at most two successors. Thus the transition function of M is a partial 
function 6: Q x @ x R( T,) + (Q x { - 1, 0, + 1) x @ x FM)*, where T, and 
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F, are the tests and instructions used by M to manipulate its X-storage. 
This is just as in Ladner, Lipton, and Stockmeyer (1984), with R(T,) and 
FM added. 

The ASPACE(s(n))- P(X) automaton M’ that simulates IV, starts by 
laying off a block of s(n) squares on its worktape (assuming that s(n) is 
space constructable; otherwise M’ just guesses s(n) nondeterministically). 
In general, M’ simulates M by storing a computation (a,, cO) k 
(a,, c,) k ... t- (a,, ck) of M on its pushdown, where (IX,, ck) is the 
current ID of M (note that a computation is a path in a computation 
tree). To be more precise, the symbol part of the pushdown of M’ contains 
the string aom,a,m2a2 ...rnkak, where m, E { 1,2} indicates whether 
(cl;, ci) is the first or second successor of (tli- r, cjp,). Furthermore, each 
square of CI~ contains co, and each square of miai contains ci, 1 6 i< k. 
Thus the X-configuration part of the pushdown contains cO, cr, . . . . ck with 
ci appearing Irnjail times. Note that as soon as ci appears (by some 
push(m,,f) instruction), it can be duplicated for all squares of ai by 
appropriate push(y, id) instructions. Moreover, M’ keeps the element of 
Q x @ of the topmost ID (ak, ck) in its finite control. Since the test result 
of the pushdown includes the test result of ck for T, (due to the tests of the 
form test(t), t E TM, of M’), we may in fact assume that M’ keeps the element 
of Q x @ x R(T,) in its lin$e control that corresponds to the current 
ID (ak, ck) of M, i.e., an element x of the domain of the transition function 
6 of M. A next move of M is now simulated by M’ as follows. First the 
symbol mk+ i E { 1,2} is chosen universally (existentially) by M’ if (a,, ck) 
is a universal (existential, respectively) ID of M. Now, x and mk + , together 
determine the next move of M, including an instruction f E F,. Thus, M’ 
executes the push(m, + r, f) instruction, and then nondeterministically (i.e., 
existentially) pushes the symbols of a new ak+ , , one by one, executing 
push(y, id) instructions. M’ can count to 2’Y(n’ (the length of LX~+ ,) using 
its s(n)-bounded worktape. M’ ensures that (ak+ i, ck+ i) is the correct 
successor of (ak, c,), according to x and mk + , , by a universal branch after 
each push of a symbol of ak + 1. In this universal branch it compares this 
symbol with the corresponding one(s) in ak by popping (roughly) 2ds(n) 
symbols, again using its worktape as a counter. Note that, as usual, the jth 
symbol of elk+ I is determined by x, mk+ , , and the (j- 1) th, jth, and 
(j+ 1)th symbols of ak. 

Initially M’ installs the initial ID (ao, cO) of M by copying the input 
string (of length n) to the pushdown, extending it with blanks to length 
2ds(n’, and duplicating the initial X-configuration cO of M (M’ has an initial 
P(X)-configuration (y, cO) for some y). M’ accepts whenever (a,, ck) is an 
accepting ID of M. 

For more details see Ladner, Lipton, and Stockmeyer (1984). Note that 
in fact the mi are superfluous (M’ only needs mk + 1, which it may as well 
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keep in its finite control). However, they are useful in later variations of 
this proof. 

(ii) We have to show that ASPACE(s(n)) - P(X) E IJ ASPACE(2d”(“‘) 
-X. In this direction the proof is based on ideas of Cook, in his 
proof of Proposition 2.1. In Ladner, Lipton, and Stockmeyer (1984) it 
is unfortunately shown in this direction that ASPACE(s(n)) - Ps 
u DTIME(exp,(ds(n))), which equals U ASPACE(2d”‘“‘) by a well-known 
result of Chandra, Kozen, and Stockmeyer (1981). However, the largest 
and most important part of that proof can be taken over. 

Let M be an alternating auxiliary SPACE(s(n)) P(X) automaton. As in 
Ladner, Lipton, and Stockmeyer (1984), we may assume that M behaves 
deterministically while it is either pushing or popping; in other words, if, 
for the transition function 6 of M, &a, p) contains more than one element, 
then all elements of &a, p) contains more than one element, then all 
elements of &a, p) are of the form (b, id), where id is the identity instruc- 
tion of P(X). As a consequence (as in Ladner, Lipton, and Stockmeyer, 
1984), each ID of M may be thought of as being in one of three possible 
modes: PUSH, POP, or IDLE (depending on whether the appropriate 
&a, p) contains push(y, f), pop, or id instructions, respectively). The IDLE 
ID’s are partitioned into U-IDLE and E-IDLE ID’s, depending on whether 
they are universal or existential, respectively. 

The notion of a (s(n)-bounded) surface ID can be defined as in Ladner, 
Lipton, and Stockmeyer (1984); it now also involves an X-configuration. 
Thus, a surface ID is an ID (a, (y, c)) of M, where (y, c) is a one-square 
P(X)-configuration, and a is the rest of the ID, containing a worktape of 
length s(n). Define top(a, (y, c)) = (y, c). Intuitively (y, c) is the top square 
of a pushdown in an ordinary ID: every ID of M has an associated surface 
ID, obtained by replacing the pushdown by its top square. For an ID w  we 
denote the associated surface ID by surf(w). It would now be possible to 
define a surface computation just as in Ladner, Lipton, and Stockmeyer 
(1984), where the top square now plays the role of the top symbol in 
Ladner, Lipton and Stockmeyer (1984). For our purposes it suffices to 
use the following simplified notion of surface computation: a surface 
computation is a computation tree of A4 of which both the root and the 
leaves are labeled by ID’s with one-square pushdowns, i.e., by surface ID%. 
Obviously, the root ID and the leaf ID’s have the same pushdown square 
(because there are no stay(y, f) instructions in P(X)), and in particular the 
same X-configuration. For surface ID’s r, z,, . . . . zk we write r + (z,, . . . . zk} 
if there is a surface computation whose root is labeled r and whose leaf 
labels are contained in the set {z,, . . . . z,}; thus we may assume that 
top(r) = top(z,) for all 1 < id k. 

For every input string x there is an initial (surface) ID Z(x) = 
(aO, (yO, co)) of ikf, where a,, contains x. Clearly we may also assume that 
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there is exactly one accepting (surface) ID with input string x, say, A(x) = 
(/lo, (yO, c,)), where PO differs only from c(,, in its state; thus, M accepts by 
(unique) final state, one-square pushdown, and blank worktape. Conse- 
quently, x is accepted by M iff Z(x) -+ {A(x)). 

In Ladner, Lipton, and Stockmeyer (1984) a “proof system,” consisting 
of six “proof rules,” is given in which “terms” of the form r -+ {z, , . . . . zk) 
can be “proven,” where r, zl, . . . . zk are surface ID%. Exactly the same proof 
system can be used here, except that we restrict all terms r + {z, , . . . . zk} to 
those that satisfy top(r) = top(z,) for all 1 < id k. This restriction could 
also have been made in Ladner, Lipton, and Stockmeyer (1984), where it 
is only mentioned in proof rule 4. For completeness’s sake we list the proof 
rules below: 

1. If true, then r -+ {r}. 

2. (a) If r-+ Wand WG V, then r+ V. 

(b) Ifr+Wu{w}andw+V,thenr-+WuV. 

3. (a) If r is in E- IDLE mode and r t-- w, then r -+ {w}. 

(b) If r is in U-IDLE mode and {wl, . . . . wk} = {w 1 r t w}, then 
r + (wl, . . . . wkj. 

4. If r is in PUSH mode, 

r t w’, 
w = surf( w’), 
w  -+ (v1, . . . . QJ, 
for every 1 didk 

ui is in POP mode, 
u( k zi, 
surf(ul) = oi, 

then r + {z,, . . . . zk). 

In these rules, lower case letters stand for surface ID’s, primed lower case 
letters stand for ID’s with two-square pushdowns, and upper case letters 
stand for finite sets of surface ID’s. Note that each proof rule consists of 
zero, one, or two antecedents (between “if” and “then”) and one conse- 
quent (after “then”), together with some application conditions (also 
between “if” and “then”). As an example, rule 2(a) has antecedent r + W, 
application condition Ws V, and consequent r -+ V. In Lemma 3.2 of 
Ladner, Lipton, and Stockmeyer (1984) it is shown that the proof system 
is sound and complete, i.e., that r + { z1 , . . . . zk} can be proven iff it is true. 
The proof of that Lemma 3.2 stays valid here (in Ladner, Lipton, and 
Stockmeyer, 1984, a more involved notion of surface computation is used, 
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to facilitate the proof of Lemma 3.2; this notion can easily be adapted to 
our case). 

It remains to show that there is an alternating auxiliary SPACE(2d”‘“‘) 
X automaton M’, for some d > 0, that checks whether Z(x) + {A(x)} for a 
given input X. To do this, M’ guesses a “proof tree” for Z(x) + {A(x)}. As 
usual, such a proof tree is a tree whose nodes are labeled by terms 
r + {z, , . . . . zk} an w  d h ose root is labeled by Z(x) -+ {.4(x)}. Moreover, for 
each nonleaf node, its label and the labels of its children are the consequent 
and the antecedents (respectively) of an instance of a proof rule. M’ guesses 
the proof tree top-down, using the proof rules in a backward fashion, in 
such a way that its computation tree mirrors the proof tree. More precisely, 
at each moment of its computation the current ID of M’ contains a coded 
version of a term r -+ {zl, . . . . zk }. M’ chooses existentially an instance of a 
rule whose consequent is r + {z-] , . . . . zk >, and then branches universally to 
check each of the antecedents of the rule; it accepts in case there are no 
antecedents (proof rules 1 and 3). Note that actually M’ branches univer- 
sally in proof rule 2(b) only. 

M’ stores a term r -b (2,) . . . . zk} by keeping the X-configuration of r, 
7 
b 1, ..‘, zk as its own X-configuration (recall that top(r) = top(z,) for all i), 
and keeping everything else on its worktape. Since “everything else” mainly 
consists of the worktape contents of r, ;i, . . . . zk (which are of length s(n)), 
it is easy to see that M’ only needs workspace 2ds(n) for some d (note that 
z,, . . . . zk are all different). Clearly this workspace also suffices to construct 
an antecedent out of a consequent (and to test the application conditions). 
Note that, in the construction of such an antecedent, if A4 tests its 
pushdown (as needed to obtain an instance of proof rule 3 or 4), M’ can 
test the corresponding top square; in particular, a test test(t) of M is 
simulated by the test t of M’. Furthermore, if M executes a push(y,f) 
instruction (as needed for an instance of proof rule 4), M’ just applies f; 
this results in the X-configuration of the surface ID’s w, u,, . . . . uk of the 
antecedent w  + {v I, . . . . uk}. Note that, when using proof rule 4, M’ does 
not have to construct the ID’s w’, o’,, . . . . ok explicitly. Initially, M’ stores the 
term Z(x) + {A(x)}, with Z(x) = (a,, ho, cd) and A(x) = U&, (yoy cd) 
where (yO, c,,) is the initial configuration of M. Thus M’ has initial 
configuration cO. This ends the description of M’. 1 

Since it is easy to see that 2A(multi)-X= ASPACE(log n)- X, 
generalizing the well-known equivalence of multi-head automata and 
SPACE(log n) Turing machines, it follows from Theorem 2.2 that 
2A(multi) - P(X) = ASPACE(poly) - X. In the next theorem we show that 
the number of heads of the multi-head automaton corresponds to the expo- 
nent of the polynomial. Moreover, in the case of one head, it may be 
restricted to be one-way. 
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THEOREM 2.3. For any storage type X, 

(1) for every Y > 1, 2A(r) - P(X) = ASPACE - X, and 

(2) 1A -P(X) = 2A( 1) - P(X) = ASPACE - X. 

Proof (i) The proof that ASPACE(XE 2A(r) - P(X) is exactly 
the same as in part (i) of the proof of Theorem 2.2. This is because r heads 
can be used to count to n’. 

In case r = 1, the head only needs to move one way to count to 
n. However, since the head cannot be reset, care should be taken that 
counting is done only in universal side branches. Thus, the fact that 
(g k+l, ck+ i) is of the correct length should be checked after guessing 
elk+ 1. Similarly, c(~ should first be guessed and then compared to the 
input; to permit this, the symbol part of the pushdown should contain 
cc,Rm,af ...rnkuf rather than cfOmluI...rnkClk, where ci R is the reverse 
of CI. For details see the proof of Theorem 5.4 of Chandra, Kozen, and 
Stockmeyer (1981), where it is shown that ASPACE E 1A -P. 

(ii) The proof that 2A(r)- P(X) GASPACE(X is the same as 
in part (ii) of the proof of Theorem 2.2. The only difference is in the 
construction of the ASPACE(X automaton M’ that simulates the 
2A(r)- P(X) automaton M. M’ should be able to store a term 
ZO + {z,, . . . . zk ), where ro, pi, . . . . ;k are surface ID’s of M. The 
X-configuration of ro, z,, . . . . zk is no problem. For fixed X-configuration, 
M has O(nr) possible surface ID’s. Since they are of size O(log n), not 
counting the input, M’ does not have enough worktape to store them all. 
However, they can be generated by M’ in a systematic order. Thus, to store 
zo -+ {zl, . . . . z,}, M’ keeps z. directly on its worktape, and for z,, . . . . zk it 

keeps a boolean array A of length O(nr) on its worktape, where A[i] 
indicates whether or not the ith surface ID, in the above order, is in the 
set {zi, . . . . zk}. Whenever M’ needs the ith surface ID, M’ can generate it 
and keep it on its worktape. In this way M’ can compute antecedents from 
consequents (and test application conditions), as required by the proof 
rules. [ 

In the second result that is needed for our induction step, we show the 
equivalence of alternation and an auxiliary pushdown (Theorem 2.4). This 
equivalence was first established in Chandra, Kozen, and Stockmeyer 
(1981), where it is shown that ASPACE(s(n)) = u DTIME(2d”(“‘) and 
hence that ASPACE(s(n)) = NSPACE(s(n)) - P, by Cook’s result 
(Proposition 2.1). In Theorem 1 of Ruzzo ( 1980) a direct proof of the latter 
equality is given, in order to show that time on the pushdown automaton 
corresponds to (computation) tree size on the alternating automaton. In 
this way Ruzzo (1980) strengthens the equivalence alternation = pushdown. 
Here we strengthen it by generalizing it to X automata. 
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THEOREM 2.4. For any storage type X and s(n) >, log n, NSPACE(s(n)) - 
P(X) = ASPACE( -X. 

Proof. (i) We have to show that ASPACE(s(n)) - Xc NSPACE(s(n)) - 
P(X). This could be done as in the proof of Theorem 1 of Ruzzo (1980). 
Here we adapt part (i) of the proof of Theorem 2.2; compared to that 
proof, when simulating an ASPACE(s(n)) - X automaton by an auxiliary 
P(X) automaton, we have space s(n) rather than space log(s(n)), but we do 
not have alternation. The construction of M’ from M is the same as in 
Theorem 2.2 except for two differences, to get rid of universal branching. 

First, to ensure that (c++ , , ck +, ) is the correct successor of (a,, c,), 
Q+, is computed from CQ on the worktape of M’ (where there is enough 
space now). 

Second, M’ does not simulate a universal move of M by a corresponding 
universal move, but executes the two universal branches one after another. 
Thus, rather than mirroring the computation tree of A4, M’ does “a simple 
depth first search of MS computation tree, using its stack to backtrack 
through the universal nodes” (Ruzzo, 1980). More precisely, if the top ID 
(elk, CJ is a universal ID of M, then M’ pushes mk + i = 1 and pushes the 
first successor of (a,, ck). When the top ID is an accepting ID of M, M’ 
pops ID’s until the top ID is a universal ID (elk, ck) with mk+ i = 1. It then 
pushes mk+ i = 2 and pushes the second successor of (ak, ck). Note that to 
find out that (Q, ck) is universal, and to compute its second successor, M’ 
can copy c(~ to its worktape. M’ accepts if it reaches the bottom of its 
pushdown. 

This second change could also have been used in part (i) of the proof of 
Theorem 2.2. In other words, in that proof, alternation was needed only to 
check that (Q + , , ck + , ) is a successor of (ak, ck). 

(ii) We have to show that NSPACE(s(n)) - P(X) E ASPACE(s(n)) 
- X. The proof is exactly the same as part (ii) of the proof of Theorem 2.2. 
The only difference is that all computation trees and hence all surface 
computations consist of one path only, and thus have one leaf only. This 
means that the proof system can be restricted to terms r + {z}, i.e., to pairs 
of surface ID’s, just as in Cook’s original proof of Proposition 2.1 (see also 
the second part of the proof of Theorem 1 of Ruzzo, 1980). Clearly such 
terms can be stored in space U(s(n)) rather than O(2d”‘“‘). 1 

These generalizations now allow us to prove the main results of this 
section: all results of Fig. 1, except for the 2N(r) - Pk automata. The proofs 
are by straightforward inductions. 

THEOREM 2.5. For any k> 1 and s(n) >log n, NSPACE(s(n))- Pk= 
ASPACE(s(n)) - Pkpl = U DTIME(exp,(ds(n))). 
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Proof Since the first equality is just Theorem 2.4, for X= Pkp I, it 
remains to show that this class equals U DTIME(expk(ds(n))). The proof 
is by induction on k. For k = 1 this is Cook’s theorem (Proposition 2.1) 
and the induction step is immediate from Theorem 2.2. 1 

THEOREM 2.6. For an-v k > 1, 2N(multi) - Pk = 2A(multi) - Pk-’ = 
DTIME(exp,~ ,(poly)). 

ProoJ This is just Theorem 2.5 for s(n)= log n, using the obvious 
facts that 2N(multi) -X= NSPACE(log n) - X and 2A(multi) -X= 
ASPACE(log n) -X. h 

It is shown in Kowalczyk, Niwinski, and Tiuryn (1989), by a more 
careful analysis, that DSPACE(s(n)) - Pk = NSPACE(s(n)) - Pk (for space 
constructable s(n)), and thus 2D(multi) - Pk = 2N(multi) - Pk. 

The reader who is interested in the application of Theorem 2.6 to one- 
way automata can jump directly to Section 7 and read Section 7.1 up to 
Theorem 7.5 and Section 7.2 up to Theorem 7.14. 

THEOREM 2.7. For any k > 1, 

(1) for eoery r b 1, 2A(r) - Pk = U DTIME(exp,(dn’)), and 

(2) 1A - Pk = U DTIME(exp,(dn)). 

Proof: (1) By Theorem 2.3(l), for X=Pkp’, 2A(r)-Pk=ASPACE(n’) 
- Pkp ‘. By Theorem 2.5, for s(n) = n’, this equals U DTIME(exp,(dn’)). 

(2) By Theorem 2.3(2), for X=Pk-‘, lA-Pk = 2A(l)-Pk. i 

In the remainder of this section we prove one half of the characteri- 
zation of the 2N(r) - Pk automata, viz. the inclusion 2N(r)- Pk E 
U DTIME(exp,~ l(dn2’)) f or k 3 2. This result would follow from 
Theorem 2.7( 1) if we could prove that 2N(r) - P(X) c2A(2r)-X. One 
could believe this inclusion to be true by looking at the proof of 
NSPACE(s(n)) - P(X) 5 ASPACE(s(n)) -X in Theorem 2.4. Since only 
pairs of surface ID’s have to be stored by the new automaton, twice as 
many heads as the original automaton suffice. Unfortunately this does not 
suffice to simulate proof rule 2(b) backwards: a term u + (u} has to be 
replaced (universally) by two terms u + (w) and w  -+ (u}. Thus, the alter- 
nating automaton has to guess an arbitrary new surface ID w  and use this 
in both universal branches. For this it would need 3r heads. To solve this 
problem we extend the power of 2A(r) - X automata in an ad hoc fashion, 
calling them 2A + (r) - X automata. 

A 2A+(r) - X automaton is a 2A(r) - X automaton with the following 
additional features. First, any head may nondeterministically jump to an 
arbitrary position on the input tape. To this end the set ( - 1, 0, + 1) in the 
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transition function is replaced by { - 1, 0, + 1, jump}. Clearly, this feature 
alone would not strengthen the power of 2A(r) - X automata. Second, in 
a universal move of the automaton with, say, two universal branches, a 
finite number of relationships between the jumping heads in the first 
branch and those in the second branch may be specified. Such a rela- 
tionship is of the form (i, 1) = (j, 2), meaning that only those pairs of 
successors of the current ID are considered in which head i in the first 
branch is on the same position as head j in the second branch. This rela- 
tionship can be required only if both i and j are jumping heads. We leave 
the formalization of this type of automaton to the reader. 

First we show that this extension does not increase the power of 
alternating multi-head pushdown automata. 

LEMMA 2.8. For any storage type X and r > 1, 2A +(r) - P(X) = 
2A(r) -P(X). 

Proof Let A4 be a 2A+(r) - P(X) automaton. A 2A(r)- P(X) 
automaton M’ can simulate A4 as follows. Just before a universal move 
with, say, two branches, M’ guesses nondeterministically the new positions 
of the jumping heads in each branch, by pushing them in unary notation 
on the pushdown, using appropriate push(y, id ) instructions. Then M’ 
simulates the universal move of M, without executing the pushdown 
instruction involved. Next, M’ resets the jumping heads of M to the left 
endmarker e and puts them on their correct position by popping the 
pushdown. Finally, with the pushdown back in its configuration before the 
move, M’ executes the pushdown instruction of M. 1 

Next we show that the extension solves the above-mentioned problem. 

LEMMA 2.9. For any storage type X and r 3 1, 2N(r) - P(X) E 
2A + (2r) -A’. 

Proof: The proof is the same as in part (ii) of the proofs of 
Theorems 2.2 and 2.4. The new automaton M’ only has to store terms 
u + {u >, i.e., two surface ID’s of the old automaton M. Clearly M’ can do 
this with 2r heads, say, heads 1 to r for U, and heads r + 1 to 2r for u. When 
simulating proof rule 2(b) backwards, u -+ (u) has to be replaced univer- 
sally by u + { > w  an d w  + {u} for an arbitrary surface ID w. Thus, for the 
first branch M’ jumps with heads r + 1 up to 2r, and for the second branch 
with heads 1 up to r. The relationships between the jumping heads in both 
branches are (r + i, 1) = (i, 2) for all 1 < i < r; this ensures that heads 
r + 1 to 2r in the first branch guess the same surface ID w  as heads 1 to r 
in the second branch. 1 

These two lemmas together give us the following partial characterization. 
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LEMMA 2.10. For any storage type X and r> 1, 2N(r) -P(P(X)) c 
ASPACE -X. 

Proof: 2N(r) - P(P(X)) G 2A + (2r) - P(X) by Lemma 2.9. The latter 
class equals 2A(2r) - P(X) by Lemma 2.8, which equals ASPACE - X 
by Theorem 2.3( 1). 1 

In the next section we will show that the inclusion in this 
lemma is in fact an equality (Theorem 3.2). Note that, taking X= P”- *, 
Lemma 2.10 together with Theorem 2.5 show that 2N(r)- Pk G 
lJ DTIME(exp,- ,(dn*‘)), for k > 2. 

3. ITERATED STACK AUTOMATA 

The results of this section can be stated in one sentence: for 2-way multi- 
head automata and for auxiliary SPACE(s(n)) automata, a stack has the 
same power as a pushdown of pushdowns. This implies that for iterated 
stack automata all results in Fig. 1 hold with k replaced by 2k. 

A stack automaton is a pushdown automaton with the additional ability 
of reading in the stack (Ginsburg, Greibach, and Harrison, 1967; Hopcroft 
and Ullman, 1979). Thus the storage type stuck of X, denoted SA(X), can 
be defined similarly to P(X), with two additional instructions for moving 
its stack pointer up and down the stack: move-up and move-down, respec- 
tively. The reading tests of SA(X) are called sym = y (for y E r) rather than 
top =y, and the elements of f are now called stack symbols. A storage 
configuration of SA(X) consists of a sequence (yO, c,)(y,, ci ). . . (y,, c,) of 
“squares” (just as in P(X)), together with a number i (0 d i<n) that 
indicates the position of the stack pointer (or stack head). If i= n, the 
configuration is said to be in pushdown mode (because only then the push 
and pop instructions are defined). If i < n, the configuration is said to be in 
reading mode. The move-down instruction decreases i by 1, and the move- 
up instruction increases i by 1. The test sym = y tests whether yi = y, and 
the test test(t) with t E T tests t on ci. We leave it to the reader to give a 
more formal definition of SA(X). It should also be clear that there exist 
several equivalent variations of SA(X), where “equivalent” is meant in the 
formal sense of Section 1.2 (cf. the variations of P(X) in Section 1.3). Thus, 
one could add tests “bottom” and “top” and instructions “stay(y, f)” with 
their obvious meanings. One could also restrict the set of stack symbols to 
(0, 1 }. As a final example, one could require test(t) always to be false in 
reading mode: just after pushing, the test result of the new X-configuration 
can be stored in the symbol part of the new square (by an appropriate 
stay(y, id) instruction). To guarantee that these variations can also be used 
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when SA(X) is iterated, it should be proved that SA(X) is monotonic with 
respect to < . This can be shown in exactly the same way as Theorem 1.3.1. 
Note finally that, trivially, P(X) < SA(X). 

The operation SA on storage types can be iterated just as P. For k 2 0, 
k-iterated stack is the storage type SAk(XO), also denoted SAk. Any SAk 
automaton is called an iterated stack automaton. 

As remarked before, for multi-head and auxiliary automata, a stack has 
the same power as a pushdown of pushdowns. In fact, in one direction, a 
stack ‘can be simulated by a pushdown of pushdowns. 

LEMMA 3.1. For every storage type X, SA(X) 6 P(P(X)). 

Proof. Let X= (C, T, F, m, C,,, id). We have to show that 1DT - 
SA(X)s IDT- P(P(X)). It s&ices to show that lDT-SA(X)c 
lDT- P,(P(X)), cf. Section 1.3 (Ps is P with stay instructions). Let M be 
a l-way deterministic SA(X) transducer. An equivalent l-way deterministic 
P,(P(X)) transducer M’ can be constructed as follows. The SA(X)-con- 
figuration of M in Fig. 2(a) is simulated by the P(P(X))-configuration of 
M’ shown in Fig. 2(b). In Fig. 2, each blank square represents a pair (y, c) 
with y E r and CE C. Each square with p or r, together with the “inner” 
pushdown above it, is a square of the “outer” pushdown in Fig. 2(b) 
(where the outer pushdown grows horizontally, and each inner pushdown 
grows vertically). The symbols p and r (with p, r E r but $ r,,,) stand for 
“pushdown mode” and “reading mode,” respectively. Each inner pushdown 
is a prefix of the inner pushdowns to the left of it, and the number of inner 
pushdowns equals the number of squares in Fig. 2(a) that are above the . I , , 1 _I Y 

(al (bl 

FIG. 2. Simulation of a stack by a pushdown of pushdowns. 
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stack pointer (including the square pointed at). The left-most inner 
pushdown (above p) has the same contents as the stack in Fig. 2(a). 

The simulation of M by M’ is easy. A move-down instruction of M is 
simulated by a push(r, pop) instruction of M’. This instruction adds 
another step to the “staircase’ of Fig. 2(b). A move-up instruction of M is 
simulated by a pop instruction of M’. A push(y, f) instruction, with y E r 
and f E F, is simulated by stay(p, push(y, f)) provided top = p (and 
undefined otherwise). Similarly, a pop is simulated by stay(p, pop) 
provided top = p. A test sym = y, with y E r, of A4 is simulated by the test 
test(top =y) of M’, and test(r), with t E T, is simulated by test(test(t)). Of 
course, M’ simulates the state behaviour and the input and output of M in 
the obvious way. Finally, if (yO, c,,) is the initial configuration of M, then 
(p, (yO, c,,)) is the initial configuration of M’. i 

In general, a pushdown of pushdowns cannot be simulated by a stack 
(see next section). We now show that, for auxiliary and multi-head 
automata, the P*(X) automata can be simulated by the corresponding 
SA(X) automata. First we discuss the nondeterministic case, including the 
missing part of the nondeterministic r-head pushdown automata. 

THEOREM 3.2. For any storage type X, s(n) 3 log n, and r > 1, 

(1) NSPACE(s(n)) - SA(X) = NSPACE(s(n)) - P(P(X)) 
= lJ ASPACE(2d”‘“‘) -X, and 

(2) 2N(r) - SA(X) = 2N(r) - P(P(X)) = ASPACE - X. 

Proof: (1) By Lemma 3.1 and Theorem 1.2.4, NSPACE(s(n)) - SA(X) E 
NSPACE(s(n)) - P(P(X)). By Theorems 2.4 and 2.2, NSPACE(s(n)) - 
P(P(X)) = u ASPACE(2d”‘“‘) - X. Thus, it remains to show that, for every 
d> 0, ASPACE(2d”‘“‘) - XL NSPACE(s(n)) - SA(X). This is shown again 
by adapting part (i) of the proof of Theorem 2.2. Universal branching is 
avoided by the following two changes. 

First, to ensure that (CQ + , , ck + , ) is the correct successor of (ak, c,), the 
stack automaton M’ goes into reading mode each time a new symbol y of 
ak+ I is pushed. It moves down to the corresponding symbols in ak (using 
space s(n) as a counter), compares those symbols to y, and then moves up 
to the top again, to continue pushing ak + i. This is the only use M’ makes 
of its reading facility. Note that M’ may as well first guess ak + I completely, 
and then compare it to ak, symbol for symbol. Second, M’ backtracks 
through the computation tree of M, as explained in part (i) of the proof of 
Theorem 2.4. 

(2) By Lemma 3.1 and Theorem 1.2.4, 2N(r)- SA(X)c2N(r)- 
P(P(X)). By Lemma 2.10, 2N(r) - P(P(X)) G ASPACE - X. Thus 
it remains to show that ASPACE(Xc2N(r)- SA(X). This can be 
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proven as in (1) above, where the only problem is how to ensure that 
(a k+l? Ck+l ) is the correct successor of (a,, ck) using r heads only (it 
would seem that, as in part (i) of the proof of Theorem 2.3, 2r heads are 
needed to count to racy). In Theorem 5 of (Hopcroft and Ullman, 1967b) it 
is explained how a 2-way one-head stack automaton can compare strings 
of length n* (see also Lemma 3 of Cook, 1971). The basic idea is to divide 
such strings into n blocks of length n each. In exactly the same way r heads 
can compare strings of length n”, by dividing them into n’ blocks of length 
n’ each (and using the heads to count to nr). Obviously this method also 
works for SA(X) automata. 1 

With the next result the proof of Fig. 1 (for iterated pushdown 
automata) is completed. 

THEOREM 3.3. For any ka 2 and r 2 1, 2N(r)- Pk = lJ DTIME 
texpk- Adn2’N. 

Proof: Both classes equal ASPACE(n2’) - Pk-‘, by Theorems 3.2(2) 
and 2.5, respectively. h 

Next we discuss alternating stack automata, including alternating non- 
erasing stuck automata. A stack automaton is nonerasing if it does not use 
its pop instruction. The corresponding storage type NESA(X) is obtained 
from SA(X) by simply dropping the pop instruction from the set of instruc- 
tions. Thus, trivially, NESA(X) < SA(X). Also, NESA is monotonic with 
respect to 6. 

THEOREM 3.4. For any storage type X, s(n) > log n, and r 2 1, 

(1) ASPACE(s(n)) - NESA(X) = ASPACE(s(n)) - SA(X) 
= ASPACE(s(n)) - P(P(X)) = U ASPACE(exp,(ds(n)) - X, 

(2) 2A(r) - NESA(X) = 2A(r) - SA(X) = 2A(r) - P(P(X)) 
= lJ ASPACE(exp,(dn’)) - X, and 

(3) lA-NESA(X)=lA-SA(X)=lA-P(P(X)) 
= U ASPACE(2d”) - X. 

Proof. (1) All inclusions “ c ” follow from NESA( X) d SA( X) d 
P( P(X)) (Lemma 3.1) and from Theorem 2.2. Thus it remains to show 
that, for every d>O, ASPACE(exp,(ds(n)) - XE ASPACE(s(n)) - 
NESA(X). For X=X, this is proven in Lemma 5.2 of Ladner, Lipton, and 
Stockmeyer (1984), and it is obvious that the proof generalizes to arbitrary 
X (another “free” result). In fact, the proof is very similar to part (i) of the 
proof of Theorem 2.2; note that the pushdown automaton in that proof 
uses pop instructions only when comparing successor ID’s in its universal 
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side branches. This comparison is done here in reading mode. The extra 
exponential can be handled “by preceding each symbol of an ID by a 
binary address” (Ladner, Lipton, and Stockmeyer, 1984) of length 2ds(n), 
and comparing addresses using s(n)-worktape as a counter. For details see 
Ladner, Lipton, and Stockmeyer (1984). 

(2) As in (1). The addresses are of length rir, and the r heads can be 
used to count to nr. 

(3) As in (2) observing that, in the proof of Lemma 5.2 of Ladner, 
Lipton, and Stockmeyer (1984), all comparisons of addresses are done in 
universal side branches. Note that, upon initialization, the symbols of the 
first worktape configuration can first be guessed, and then checked against 
the input in a universal branch. 1 

These results imply the characterizations of iterated stack automata by 
time complexity classes. 

THEOREM 3.5. For any k> 1, s(n)>log n, and r>, 1, 

(1) NSPACE(.r(n)) - SAk = U DTIME(exp,,(&(n))), 

(2) ASPACE(s(n)) - SAk = ASPACE(s(n)) - NESAk 
= U DTIME(ewk+ ,(&n))), 

(3) 2N(multi) - SAk = DTTME(exp,,- i(poly)), 

(4) 2A(multi) - SAk = ZA(multi) - NESAk = DTIME(exp,,(poly)), 

(5) 2N(r) - SAk = U DTIME(exp,,- ,(dn*‘)), 

(6) 2A(r) - SAk = 2A(r) - NESAk = U DTIME(exp,,(dn’)), and 

(7) 1A - SAk = 1A - NESAk = lJ DTIME(exp,,(dn)). 

ProojY (2) follows from repeated application of Theorem 3.4( 1 ), ending 
with an application of Theorem 2.4 and Proposition 2.1 that show that 
ASPACE(s’(n)) = U DTIME(exp,(ds’(n))). Using this, all other equalities 
follow directly from Theorem 3.2 and Theorem 3.4(2, 3). 1 

The advantage of our “iterated pushdown approach” is that to prove 
these results we did not have to find any efficient simulation of stack 
automata (such as in Lemma 5.3 of Ladner, Lipton, and Stockmeyer, 
1984). Instead, we simulated stack automata by P2 automata in a 
straightforward fashion (Lemma 3.1), and then we just made use twice of 
the efficient simulation of pushdown automata. 

Finally we observe that automata with a storage that is obtained by a 
mixed application of the operations P(X) and SA(X) can also be charac- 
terized by time complexity classes, using the general theorems on X 
automata. Thus, e.g., NSPACE(s(n)) - SA( P) = NSPACE(s(n)) - P(SA) = 
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ASPACE(s(n)) - SA = NSPACE(s(n)) - P3 = lJ DTIME(exp,(ds(n))). The 
“rule” is: each P gives an exponential jump, alternation (A) gives an 
exponential jump, and each SA gives a double exponential jump. 

4. ITERATED NESTED STACK AUTOMATA 

(This section can be skipped by the reader who is not interested in 
nested stacks.) 

A nested stack automaton (Aho, 1969) is a stack automaton that can 
create (and destroy again) new stacks that are nested inbetween two 
squares of the old stack. In this way stacks can get nested to any depth. 
The nested stack can be formalized as a storage type NSA, and, adding an 
X-configuration to each stack square as usual, as a storage type operation 
NSA(X). In this section we show that the nested stack is equivalent to the 
pushdown of pushdowns. This means that any kind of NSA automaton is 
equivalent to the corresponding P* automaton. In particular it shows that 
all results on stack automata in the previous section also hold for nested 
stack automata (thus re-proving and extending some results of Beeri, 
1975). 

Although we assume the reader to be more or less familiar with 
nested stack automata, we will give a rather precise, but not too formal, 
description of the storage type nested stack of X, denoted NSA(X); see 
Engelfriet and Vogler (1986) for a more formal definition. Let 
X= (C, T, F, m, C,, id). 

An NSA(X)-configuration consists of stack squares of the form (y, p, c) 
with y E r, c E C, and ~1 c {e, $, t }, where e, $, and t are symbols not in 
r. Intuitively, t E p means that the stack pointer points to the square, L E p 
means that it is a bottom square (of one of the nested stacks), and $ EP 
means that it is a top square. To be more precise, an NSA(X)-configura- 
tion c’ is a sequence 

of such stack squares (with n 2 0), satisfying the following requirements: 

(i) espy and SEA, 
(ii) there is exactly one j, 0 d j< n, such that t E pj; this unique 

integer will be indicated by i in what follows (thus the stack pointer points 
to square (ri, pi, ci)), and 

(iii) $#pj for all O<j<i. 

Another requirement on c’ that will automatically be satisfied for any 
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NSA(X)-configuration that is actually used by an automaton is that all 
occurrences of e and $ in c’ are well nested, viewing e as a left parenthesis 
and $ as a right parenthesis (and if pj contains both e and $, then & is sup- 
posed to occur before $). This requirement in fact expresses the nested 
stack structure: every pair of matching parentheses e and $ corresponds to 
a stack. 

In Fig. 3(a) a picture is shown of a nested stack configuration (y,, 
{e>, C,)(Ym {e, t >Y Cd(Yl,~ w  C,,)(Y2? a C&Y99 {e, $L C,)(Y,, b4, c5) 
(ye5 Ek cd(~,, {e, $1, c,)(Y,, {S>, Q)(Y~, ~3, c3)(y4, {S>, c4). The reason 
for this numbering will appear below. In each square (yj, /J, c,) of Fig. 3(a), 
p and j are shown. The lines underneath indicate the nesting structure of 
the live stacks involved; in parentheses this structure is (( )( )(( ))). Taken 
apart, these live stacks are 

sl=(Yl, {e), C,)(Y,, a C,)(Y,, a C,)(Y,, PI? c4L 

$2 = (Y5, {!a C,)(Y,, a CdY,, {VT C,)? 

s3= (Ys, ($7 rs>, cd, 

s4= (rg, {e, $1, ~1, and 

s5 = (YKI, ($3 t 19 C,,)(Y,,, {Q Cl,). 

The initial NSA(X)-configurations are of the form (yO, (e, S, t }, cO) 
with your and CUE C,. Apart from the identity, the instructions of 
NSA(X) are push(y, f), pop, move-down, move-up, create(y), and destroy. 
We now discuss the effect of their execution on the above NSA(X)- 
configuration c’. Let c” denote the resulting NSA(X)-configuration (if it is 
defined). Recall that i is the number of the square pointed at by the stack 
pointer. 

- push(y,f) is defined on c’ only if $ l pi and m(f)(c;) is defined. 
To obtain C” from c’, replace (y,, pi, ci) by (y,, pLi - {$, t ), ci)(y, {S, T }, 
4f)(c,)). 

- pop is defined on c’ only if $ E pi and & #pi (there are no empty 
stacks). TO obtain C” from c’, replace (yi-,, pi- Ir c;-~)(Y~, pi, ci) by 
(Yi-13Fi-l”{$9 t>2Ci--l). 

- move-down is defined only if i> 0. Replace (yip 1, pi-i, ci- ,) 
(Yi, Pi, Ci) by (Yi- 19 Pi- 1 ” { T }, Ci- l)(Yi, Pi - { t >, Ci). 

- move-up is defined only if $4 pi. Replace (yi, pi, ci)(yi+, , pi+, , 
Ci+,)bY (Yit Pi-it >, Ci)(Yi+ly Pi+l”{T >, Ci+l). 

- create(y) is always defined. Replace (yi, pi, ci) by (y, {e, $, t }, 
c,)(y,, pi, cJ. Thus, a new one-square stack is nested below the square 
pointed at, with stack symbol y, and with the same X-configuration. The 
stack pointer moves to the new stack. 
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1 10 11 2 9 5 6 8 7 3 4 

c et $ 6s e cs $ $ 

FIG. 3. Simulation of a nested stack by a pushdown of pushdowns. 

- destroy is defined only if ,u, = {e, $, T } and n > 0. Replace 
(Yi9 P-i, ci)(Y~+ 19 Pi+,, ci+l) by (Yi+l, Pi+Iu { t 1, ci+l). Thus, the nested 

stack is destroyed, and the stack pointer returns to the square the stack 
was created from. 

The tests of NSA(X) are sym = y and test(r), where sym = y tests whether 
yi = y, and test(t) tests whether m(r)(c,) = true. 

In the example of Fig. 3(a), s2 was created from square 3 of s,, s3 from 
square 7 of s2, s4 from square 5 of s2, and s5 from square 2 of s, . Any 
nested stack automaton necessarily has to create these stacks in this order, 
due to the fact that it cannot move-up past a $ (thus, the order of creation 
of stacks is the order, from right to left, of their top squares). This means 
that the squares are numbered in the order in which they have come into 
life during the computation of an NSA(X) automaton. 

This ends the description of NSA(X). Since SA(X) is obtained by 
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dropping the create(y) and destroy instructions from NSA(X), SA(X) 6 
NSA(X). The definition of NSAk(X) and NSAk is as for P and SA. 

The equivalence of NSA(X) and P(P(X)), extending Lemma 3.1, was 
already proven in Section 7 of Engelfriet and Vogler (1986)(and, as noted 
in the introduction, the original idea came from Aho and Ullman). Here 
we give a proof that is easier to read, due to our simpler definition of 
equivalence (in Section 1.2). Note that we have to reprove this 
equivalence anyway, because the “Justification Theorem” (Theorem 1.2.4) 
was not proven for the automaton types of this paper in Engelfriet and 
Vogler (1986). 

THEOREM 4.1. For ever-v storage type X, NSA(X) = P(P(X)). 

Proof: We have to show that NSA(X) 6 P(P(X)) and P(P(X))< 
NSA(X). 

(1) Let us start with the simulation of a nested stack storage by a 
pushdown of pushdowns, extending the proof of Lemma 3.1. Let M be 
a l-way deterministic NSA(X) transducer, with stack alphabet rM G IY 
A l-way deterministic P,(P,(X)) transducer M’ equivalent to M can be 
constructed as follows (note that we allow M’ to use stay(y, f) instruc- 
tions on both levels). As in Engelfriet and Vogler (1986), the simulation 
of a nested stack by a pushdown of pushdowns is based on the obvious fact 
that every NSA(X)-configuration used by M can be built up from the 
initial configuration (yO, {e, $, r }, cO) of M by a sequence of push, 
move-down, and create instructions. This sequence is unique (apart from 
possible nonuniqueness caused by the instructions f in push(y, f) instruc- 
tions). The P(P(X)) -configuration used by M’ to simulate this NSA(X)- 
configuration is obtained by executing a corresponding sequence of 
P(P(X)) instructions to the initial configuration (p, (yO, co)) of M’, where 
push(y, f) corresponds to stay(p, push(y, f)), move-down to push(r, pop), 
just as for SA(X) in Lemma 3.1, and create(y) to push(p, stay(y, id)). As 
in Lemma 3.1, we use p and r on the “outer” pushdown to indicate the 
pushdown mode ($ E pi) and the reading mode ($ $ pi) of M, respectively. 
Moreover, in the inner pushdowns we use barred symbols 7 to indicate 
bottom squares of the NSA(X)-configuration (for every y E r,,,,, 7 is a new 
symbol in f ). As an example, Fig. 3(b) pictures the P(P(X))-configuration 
corresponding to the NSA(X)-configuration of Fig. 3(a). It is shown 
in each square of the P(P(X))-configuration whether or not the stack 
symbol is barred. The number of a square indicates that the (unbarred) 
stack symbol and the X-configuration are the same as those in the 
corresponding square of the NSA(X)-configuration. Note also that the 
concatenation of all top squares of all inner pushdowns equals the reverse 
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of all squares of the NSA(X)-configuration to the right of (and including) 
the square pointed at. 

This description should s&ice to understand that M’ can simulate the 
instructions and tests of M as follows. Each NSA(X) instruction or test to 
the left is simulated by P(P(X)) instructions and tests as indicated on the 
right. 

pushty, f) 

POP 

move-down 

move-up 

create(y) 

destroy 

sym=y 

test(t) 

SW p, pushty, f)) provided top = p 

Wt P, POP) provided top = p and 
test(top = y) for some (unbarred) y E rM 

pushtr, POP) 

POP provided top = r 

pushtp, stay(7, id)) 

POP provided top = p and 
test(top = 7) for some y E rM 

test(top = y) or test(top = 7) 

test(test(t)) 

As noted before, if (yO, {e, $, r }, cO) is the initial configuration of M, then 
(p, (TV, co)) is the one of M’. The state behaviour and the input and output 
of M are simulated by M’ in the obvious way. 

(2) Next we show how to simulate a pushdown of pushdowns by a 
nested stack. Let M be a l-way deterministic P(P(X)) transducer. To start 
with we observe that M can be transformed in such a way that the symbols 
on its “outer” pushdown are all the same. In fact it is easy to code each 
symbol of the outer pushdown into the symbol part of the top square of 
the corresponding inner pushdown (note that empty pushdowns do not 
exist). The top = y test can be simulated by appropriate test(top = y’) tests. 

Thus we may assume that M just uses one symbol on its outer 
pushdown. We will denote this symbol by “-“. The simulation of M by a 
l-way deterministic NSA(X) transducer M’ is based on the fact that every 
P(P(X))-configuration c used by M can be built up from the initial con- 
figuration (-, (yO, co)) by a sequence of push(-, push(y, f)), push(-, pop), 
and push(-, id) instructions. As in part (1) of this proof, this sequence is 
unique (apart from the fs). M’ simulates this P(P(X))-configuration by 
the NSA(X)-configuration that is obtained from its initial configuration 
(y,,, cO) by executing the corresponding sequence of NSA(X) instructions. 
In this sequence push(-, push(y, f)) corresponds to (create( /3); push(y, f)), 
push(-, pop) to move-down, and push(-, id) to create(B), where fi is the 
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symbol such that test(top =p) holds before execution of the P(P(X)) 
instruction. In this way the top-most inner pushdown of the P(P(X))-con- 
figuration contains precisely all squares of the NSA(X)-configuration that 
are to the left of (and including) the square pointed at. As an example, the 
P(P(X))-configuration of Fig. 4(a) is built up from the initial configuration 
by a sequence of instructions of the form push(-, push(y,, fi)); 
push(-, push(y,, fi)); push(-, id); push(-, pop). The corresponding 
NSA(X)-configuration is shown in Fig. 4(b). Two squares in Fig. 4 are 
given the same number to represent that they contain the same stack 
symbol and the same X-configuration. Note that the stacks s,, s2, s3, 
and sq correspond to the first four inner pushdowns (i.e., those that are not 
obtained by a push(-, pop) instruction). Note also that all stacks are of size 
1 or 2 (without the inner stacks). 

Of course, M’ simulates the above-mentioned push instructions of M as 
indicated above. The only remaining P(P(X)) instruction is pop. This can 
be simulated by M’ because it can reverse the effect of a simulated 
push(-, . ..) instruction by distinguishing between the above three 
possibilities. To do this, it needs additional tests “bottom” and “top” that 
are true iff the square pointed at is a bottom square or a top square, 
respectively. It should be clear that we may allow these tests (formally, it 
can be shown that the resulting storage type is equivalent to NSA(X)). The 
pop instruction of M is now simulated by M’ as follows: 

if not top then move-up 
else if not bottom then (pop; destroy) 
else destroy. 

The three lines in this program correspond to the case that the last 
P(P(X)) instruction in the sequence discussed above is a push(-, pop), 
push(-, push(y, f)), or push(-, id) instruction, respectively. 

(a) (b) 

FIG. 4. Simulation of a pushdown of pushdowns by a nested stack. 
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Finally, a test test(top = y) is simulated by the test sym = y, and a 
test test(test(t)) by the test test(t). Note that the test top = - needs no 
simulation. 

This should convince the reader that M’ can simulate M. 1 

It would not be diflicult to prove the monotonicity of the operation 
NSA(X) with respect to <, along the lines of the proof of Theorem 1.3.1. 
However, monotonicity of NSA(X) follows directly from Theorem 4.1 and 
the monotonicity of P(X) (shown in Theorem 1.3.1). Theorem 4.1 also 
implies the following two corollaries. 

COROLLARY 4.2. For every k > 0, NSAk = P2k. 

Proof: Assume NSAk 5 P2k. Then, since P(X) preserves equivalence 
(Theorem 1.3.1), P(P(NSAk)) z P2k+2. By Theorem 4.1, for X= NSAk, 
P(P(NSAk)) E NSAk+ ‘. 1 

COROLLARY 4.3. For every automaton type Y and every k> 1, 
Y - NSAk = Y - P2k. 

Proof. By Corollary 4.2 and Theorem 1.2.4. g 

Note that this corollary includes one-way nondeterministic automata 
and deterministic automata (and transducers). 

It can be concluded that in all results of Section 3, SA may be replaced 
by NSA. Thus, for those types of automata, stacks, nested stacks, and 
pushdowns of pushdowns all have the same power. 

We observed before that SA cannot always be replaced by P2 because it 
is not true that P2 d SA. Indeed, it is not true that NSA GSA, because 
1N - SA 5 1N - NSA (see p. 27 of Greibach, 1970). 

5. ITERATED CHECKING STACK AUTOMATA 

A checking stack automaton (Greibach, 1969) is a nonerasing stack 
automaton that is not allowed to push after it has executed a move-down 
instruction. Thus, it is not allowed to change from reading mode to 
pushdown mode. It is easy to define this formally as a storage type CSA, 
by adding an extra component to the configurations of NESA that 
indicates whether the configuration is in pushdown mode or in reading 
mode. We leave the details to the reader. Similarly, the operation CSA(X) 
can be defined, and it can easily be shown that CSA(X) ,<NESA(X). As 
usual, CSA(X) is monotonic, and CSAk(X) and CSAk are defined as usual. 

In this section we show that nondeterministic multi-head iterated 
checking stack automata characterize iterated exponential space complexity 
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classes (as one would expect from Fischer, 1969, and Ibarra, 1971). The 
results of this section will be applied to the one-way languages in Section 7. 
Moreover, they give more information on NESA automata. 

The characterization will follow from the next result, by induction. 

THEOREM 5.1. For an,~ storage type Xands(n) 2 log n, NSPACE(s(n)) - 
CSA(X) = NSPACE(s(n)) -NESA(X) = u NSPACE(2d”‘“‘) - X. 

Proof Let X = (C, T, F, m, CO, id). 
(i) We first show that for any d > 0 NSPACE(2”“‘“‘) - X c 

NSPACE(s(n)) -CSA(X). This is again a variation of the proof of 
Theorem 2.2, or more precisely of the proof of Theorem 3.2(l), where it is 
shown that ASPACE(2d”‘“‘) - XG NSPACE(s(n)) - SA(X). Note that in 
our case, since there is no alternation, there is no need to backtrack 
(through the computation tree of M). Hence the stack is nonerasing, which 
already shows that NSPACE(2d”‘“‘) - XG NSPACE(s(n)) - NESA(X). 
However, M’ may as well start by guessing nondeterministically the whole 
ultimate contents of its stack (after it has copied the input to the stack, 
initially), and then check that (elk+, , ck+ r) is the correct successor of 
(a,, ck) for all k, from left to right. Note that M’ can count to 2ds(n’ using 
its worktape, and thus can walk back and forth between two consecutive 
configurations of M. In order to check that the X-configuration part of the 
checking stack corresponds to the moves of M, M’ should record the 
instructions f E F which it has applied during the guessing phase. Thus, M’ 
should use instructions push((m,, f ), f) rather than push(m,, f), where 
(m,, f) is a stack symbol. Tests on X-configurations can of course still be 
executed by M’ during the checking phase. This shows that M’ can be 
constructed as an NSPACE(s(n)) - CSA(X) automaton. 

(ii) Second, we have to show that NSPACE(s(n))-NESA(X) c 
U NSPACE(2d”‘“‘) -X. “Unfortunately,” we are now forced to simulate a 
stack automaton, without help from our results on pushdown automata 
(cf. the end of Section 3). Fortunately, however, we only need the standard 
technique of transition tables (Section 14.2 of Hopcroft and Ullman, 1979). 
Let M be an NSPACE(s(n)) - NESA(X) automaton. We may assume that 
M accepts when the stack pointer is at the top of the stack. We have to 
construct an NSPACE(2d”‘“’ )-X automaton M’ equivalent to M. M’ 
simulates M by keeping track of the top square of the stack of M, and 
keeping track of a transition table to represent the rest of that stack. The 
symbol part of the top square can of course be kept in the finite control of 
M’, whereas the X-configuration part is kept as the X-configuration of M’. 
The transition table is kept on the worktape, together with the worktape 
contents of M. 

We now explain the notion of transition table. For fixed input string, let 
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us call the part c1 of an ID (tl, c’) of M, where c’ is a NESA(X)-conligura- 
tion, the “worktape configuration” of M; c( includes the worktape contents 
and position of the worktape head, and also the state and the position of 
the input head, but not the input tape. Thus, tl can be coded as a string of 
size O(s(n)). Now, if c’ is a NESA(X)-configuration with the stack‘pointer 
at the top square, then the corresponding transition table R(c’) is the set 
of pairs of worktape configurations, defined as follows: (c(, b) E R(c’) if 
and only if there is a computation (c(, c;) k * (p, c’) of M such that c’ 
occurs in the last ID of the computation only, where c; is obtained from 
c’ by executing one move-down instruction. Thus the transition table com- 
pletely characterizes all the computations that M can do in reading mode. 
If M’ knows R(c’), it additionally only needs to keep the top square of c’ 
to be able to simulate the behaviour of M. As soon as A4 executes a move- 
down instruction, 44’ consults R(c’) and shortcuts the reading mode com- 
putation of M. Clearly, the size of the transition table is O(2d”‘“‘) for some 
d> 0, and thus fits into the workspace of M’. M’ can keep track of the 
current worktape configuration of M by marking it in the transition table. 
It remains to discuss how M’ simulates a push(y, f) instruction of M. First 
it updates its transition table. The new transition table can be computed 
from the old transition table and the old top square, by checking nondeter- 
ministically, for every pair of worktape configurations, whether there exists 
a computation from one to the other as described above. As soon as the 
computation becomes longer than the number of worktape configurations 
(where each application of the old transition table counts as a step), M’ 
can stop the check because a repetition occurred. It should be clear that 
M’ can do all this in space O(2d”‘“‘). S econd, M’ updates the top square by 
storing y in its finite control, and executingfon its X-storage. This ends the 
description of M’. We repeat that the above is just a standard technique 
that turns out to work line also for X automata. 1 

For r-head automata the proofs are more subtle. It may not be sufficient 
to use transition tables (for CSA), and if it is (for NESA), it is more 
difficult to see that they can be updated within the proper space (see 
Hopcroft and Ullman, 1967b). 

From this theorem the characterization of the iterated exponential space 
complexity classes by iterated checking stack automata follows. 

THEOREM 5.2. For any k > 1, 2N(multi) - CSAk = 2N(multi) - NESAk 
= DSPACE(exp,- ,(poly)). 

Proof. Iterated appliation of Theorem 5.1 gives that NSPACE(log n) - 
CSAk = NSPACE(log n) - NESAk = NSPACE(exp,- ,(poly)). The result 
now follows from the fact that NSPACE(log n) - X= 2N(multi) -X 
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for every storage type X, and from Savitch’s theorem (NSPACE(s(n))c 
DSPACE(s(n)‘); see Hopcroft and Ullman, 1979). 1 

A comparison with Theorem 3.5(4) shows that alternation gives a big 
jump in power to multi-head NESAk automata. 

Note that, by Theorem 5.1, Proposition 2.1, and Theorem 2.5, 
NSPACE(s(n)) - CSAk(P) = NSPACE(s(n)) - Pkf ‘. One would not 
expect this when considering the storage types CSAk(P) and Pk+’ on their 
own (CSA and P are incomparable storage types, with respect to < ). 

6. ITERATED STACK-PUSHDOWN AUTOMATA 

(This section can be skipped by the reader, who should then also skip 
the part of Section 7.1 following Theorem 7.8.) 

Checking stack-pushdown automata were introduced in van Leeuwen 
(1976), where the corresponding auxiliary automata were used to obtain a 
uniform characterization of certain well-known complexity classes. In 
Engelfriet, Schmidt, and van Leeuwen (1980) they were generalized in the 
obvious way to stack-pushdown automata (and compared to macro 
grammars; see also Engelfriet and Slutzki, 1984). 

A stack-pushdown (SPD) automaton is a stack automaton with an addi- 
tional pushdown. The stack and the pushdown are not independent, but 
should satisfy the restriction that the length of the pushdown is equal to the 
number of squares above the stack pointer (including the square pointed 
at). Thus, if one imagines the pushdown upside down with its bottom next 
to the top of the stack, the top of the pushdown has to follow the 
movements of the stack pointer, cf. Fig. 5. This restriction is formalized by 
giving the storage type SPD the same instructions as SA except that move- 
down is replaced by move-down(y), where y is a pushdown symbol that 
should be pushed on the pushdown. Execution of the move-up instruction 
automatically involves a pop of the pushdown. SPD has tests sym = y and 
top = y, where sym refers to the stack symbol and top to the pushdown 
symbol (both taken from r). Thus, the pushdown can only be used in 
reading mode. In pushdown mode it always contains one square. An initial 
configuration of SPD consists of a one-square stack and a one-square 
pushdown. 

We now define the storage type operation stack-pushdown of X, denoted 
SPD(X), by adding X-configurations to the stack squares only; the 
pushdown just has symbols in its squares. (This is just the opposite of, and 
should not be confused with, the storage type operation of the same name 
studied in Engelfriet and Slutzki, 1984). Thus SPD(X) has instructions 
push(y, f ), pop, move-down(y), move-up, and id, and it has tests sym = y, 
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pushdown 

top l-l T-T- bottom . L . . 
toe 

stack 

FIG. 5. A stack-pushdown configuration. 

top = y, and test(t). The details are left to the reader. We stress again that 
push and pop operate on the stack (when in pushdown mode), whereas 
move-down(y) and move-up push and pop the pushdown, respectively. By 
appropriately restricting the stack of SPD(X), the storage type CSPD(X) 
is obtained: the checking stack-pushdown of X. Note that CSA(X) 6 
CSPD(X) and SA(X) < SPD(X). 

LEMMA 6.1. For every storage type X, SPD(X) < P(P(X)). 

ProoJ: The simulation is exactly the same as in Lemma 3.1. The 
symbols of the pushdown can be stored in the symbol part of the “outer” 
pushdown, in addition to the p and r markers. 1 

Since SA(X) < SPD(X) d P(P(X)), it follows from Section 3 that all 
results stated there for SA also hold for SPD. This takes care of iterated 
SPD automata. 

Next we show that the analogues of Theorems 5.1 and 5.2 hold for 
CSPD automata. 

THEOREM 6.2. For any storage type X and s(n) B log n, NSPACE(s(n)) - 
CSPD(X) = U NSPACE(2d”‘“‘) - X. 

ProojI Since CSA(X) < CSPD(X), it suffices to generalize part (ii) of 
the proof of Theorem 5.1. Let M be an NSPACE(s(n)) -CSPD(X) 
automaton. An NSPACE(2d”‘“‘) - X automaton M’ that simulates M can 
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be constructed in exactly the same way. M’ keeps track of the top square 
of the stack, now including the bottom square of the pushdown (in its finite 
control). The rest of the stack can be represented by a finite set of transition 
tables, one for each y ET (used in the first move-down(y) instruction). 
Thus, taking over the notation in the proof of Theorem 5.1, if c’ is a 
CSPD(X)-configuration with the stack pointer at the top square, then, for 
each y E r, the corresponding transition table R&c’) is defined by 
(a, /I) E R,(c’) iff there is a computation (a, ci,) k * (/I, c’) of M such that c’ 
occurs in the last ID of the computation only, where ci is obtained from 
c’ by executing move-down(y). The rest of the proof is analogous. 1 

As a corollary we obtain the analogue of Theorem 5.2. 

THEOREM 6.3. For any k > 1, 2N(multi) - CSPDk = DSPACE 

(eXpkd~ol~)). 

7. APPLICATIONS TO ONE-WAY AUTOMATA 

In this final section we apply our results to formal language theory. 
Characterizations of multi-head automata (as obtained in the previous 
sections) can be used to prove proper inclusions between classes of 
languages accepted by one-way automata, and to provide (upper and 
lower) bounds on the complexity of the emptiness problem for one-way 
automata. These two applications will be discussed one by one. 

7.1. Hierarchies of One- Wa.v Iterated Automata 

The first application consists in particular of showing that the one-way 
iterated pushdown automata form a proper hierarchy at each level, i.e., 
that one-way (k + 1 )-iterated pushdown automata are more powerful than 
one-way k-iterated pushdown automata for every k 3 1 (and similarly for 
iterated stack, checking stack, etc., automata). The time/space complexity 
characterization of the 2-way multi-head iterated X automata (where 
X= pushdown, stack, checking stack, etc.) implies (by the usual time/space 
hierarchy theorems) that these automata form a proper hierarchy at 
each level of iteration. The following straightforward result allows us 
to “translate” these hierarchies “down” to l-way iterated X automata. 
The “translation” is performed by 2N(multi) transducers, i.e., by non- 
deterministic log-space reductions. For a class of transductions YT and 
a class of languages K we denote by YT- ‘(K) the class of languages 
{t-‘(L)lze YT, LEK}. 
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LEMMA 7.1. For every storage type X, 2N(multi) - X = 2N(multi) 
TP’(lN-X)=2N(multi) TP’(lD-X). 

Proof The proof uses standard techniques from automata theory. Let 
X = (C, T, F, m, CO, id). 

(i) To show that 2N(multi) -XcZN(multi) T-‘(lD- X), let M be a 
2-way nondeterministic multi-head X automaton, that uses tests T, c T 
and instructions F, c F, and has the initial X-configuration cO. The idea 
of the decomposition of M (familiar from AFA theory, Ginsburg, 1975) is 
to turn M into a transducer M’ that does not execute the tests and instruc- 
tions of M on storage, but rather prints them on its output tape. A l-way 
deterministic X automaton N is then used to check the “executability” of 
that sequence of tests and instructions. This is a variation of the proof of 
Theorem 1.2.4. 

The 2-way nondeterministic multi-head finite transducer M’ has the 
same states, initial state, final states, input alphabet, and number of heads 
as M. The output alphabet of M’ is 52 = R(T,) u FM. If the transition 
function 6 of M has the form 6: A x R( T,) + P,,(B x F,), cf. Section 1.1, 
then the transition function 6’ of M’ has the form 6’: A + P,,(B x Q*). In 
fact, for a E A, 6’(a) = ((b, pf) 1 &a, p) contains (b, f)), where pf is a string 
of length 2 over the alphabet !Z Thus, M’ simulates M by guessing the test 
results of its X-configurations. These guesses will be checked by feeding 
the output of M’ into the automaton N. N has input alphabet B and 
initial X-configuration cO, and it accepts a string p,fr p2fz ... p,f, if 
and only if m(fi . ..f.,)(cO) is defined and m(p,)(cO)= true and m(p,+l) 
(m(fi . . .fi)(cO)) = true for all 1 6 i < n - 1. The transition function of N is 
a partial function 6,: Q x Sz x R( TM) --) Q x FM, where Q consists of one 
(initial and final) state q. For every p E R(T,) and f E FM, h,(q, p, p) = 
(q, id) and 6,(q, f, p) = (q, f). The other values of 6, are undefined. It 
should now be clear that L(M) = r(M’))’ (L(N)). 

(ii) To show that 2N(multi) T-‘(1N - X) E 2N(multi) -X, let M be a 
2N(multi) transducer and N a 1N - X automaton. A 2N(multi)- X 
automaton M’ such that L(M’) = z(M)-’ (L(N)) can be obtained from M 
and N by a straightforward product construction. We may assume that M 
outputs strings of length at most one at each step. M’ simulates all output- 
less moves of M and all input-less moves of N separately. As soon as M 
produces an output symbol, M’ feeds this symbol into N; thus, in this case, 
it simulates a move of M and a move of N simultaneously. 1 

This theorem holds in fact for any nondeterministic automaton type Y 
(without T): Y-X= YT-‘(lN-X)= YT-‘(lD-XX). It might be called 
the “inverse law” of automata theory, and it enables us to translate proper 
inclusions between Y- X automata down to proper inclusions between 
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one-way X automata. In our case we use this law to translate the fact that 
“k + 1 iterations are more than k” from multi-head to one-way automata. 

COROLLARY 1.2. Let U he an operation on storage types, such that 
Uk < Uk+’ for every k > 1 (where, as usual, Uk abbreviates U”(X,)). 
For every k 3 1, if 2N(multi) - Uk 5 2N(multi) - Ukf ‘, then 
lN- U”s lN- U”+‘, and even lD- Ukfl @ lN- Uk. 

Proof Assume that 1D - Uk+’ E 1N - Uk. Then 2N(multi) 
T-‘(1D - U”+‘) c 2N(multi) T-‘(IN - U”). Hence, by Lemma 7.1, 
2N(multi) - Uk+’ c 2N(multi) - Uk. 1 

As we have seen, for all operations U considered, 2N(multi) - Uk is a 
time or space complexity class. Since it is well known that these complexity 
classes are properly included in each other (for growing k), Corollary 7.2 
implies that the 1N - Uk automata form a proper hierarchy. Note that the 
proper inclusion of complexity classes is proven by a diagonalization argu- 
ment. Thus, in a way, we prove 1N - Uk 5 1N - Uk+ ’ also by diagonaliza- 
tion, which is a technique that usually does not work for one-way 
automata! For completeness’s sake we state the needed proper inclusions of 
complexity classes (which follow from the time and space hierarchy 
theorems, see Hopcroft and Ullman, 1979). 

PROPOSITION 7.3. For every k > 0, DTIME(exp,(poly)) 5 DTIME 
cexpk+ l(~ol~)), and DSPACE(evk(poly))G DSPACE(exp,+,(poly)). 

We are now able to state the first main result of this section: properness 
of the hierarchy of one-way iterated pushdown languages. 

THEOREM 7.4. The diagram of Fig. 6 is correct (i.e., ascending lines 
denote proper inclusions, and classes that are not connected by ascending 
lines are incomparable). In formulas this means that, for every k > 1, 
lN-Pk 5 lN-Pk+’ and even 1D - Pk” G 1N - Pk. Moreover, 
lN-P @ Uk lD-Pk. 

Proof The inclusions are obvious. The noninclusion 1D - Pk + ’ @ 
1N - Pk follows from Theorem 2.6 (the time complexity characterization of 
2N(multi) - Pk), Proposition 7.3 (which implies that { 2N(multi) - P”} is a 
proper hierarchy at each level), and Corollary 7.2 (that translates this 
result down to 1N - Pk). The existence of a context-free language not in 
uk 1D - Pk is shown in Section 4 of Engelfriet and Vogler (1987). l 

In Damm and Goerdt (1986) (see also Engelfriet and Vogler, 1988) it is 
shown that 1N - Pk = k - 01, where k- 01 is the class of languages 
generated by k-level 01 macro grammars, i.e., the kth class in the well- 
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lD-P 1/ lN-P 

FIG. 6. The hierarchy of one-way iterated pushdown languages. 

known 01-hierarchy (Wand, 1975; Maibaum, 1974; Engelfriet and 
Schmidt, 1977/1978; Damm, 1982; Vogler, 1988). Damm (1982) proved 
that k - 01 s (2k + 1) - 01, by the method of rational index. Theorem 7.4 
shows that in fact k - 01s (k + 1) - 01, i.e., the 01-hierarchy is proper at 
each level. 

Let us now consider some of the other iterated storage types. For the 
nested stack the situation is clear, because, by Corollary 4.3, 1N - NSAk = 
1N - Pzk and 1D - NSAk = 1D - P2k. For the iterated stack automata it 
can be shown that 1N - SAk s 1N - SAk + ’ in exactly the same way as in 
the proof of Theorem 7.4, using the time complexity characterization of 
2N(multi) - SAk in Theorem 3.5(3). The relationship of the SA-hierarchy 
to the P-hierarchy is less clear, but the following can be said. From the fact 
that, for every X, P(X)<SA(X)< P(P(X)), see Lemma 3.1, it easily 
follows by induction (using the monotonicity of P) that Pk < SAk < PZk for 
every k B 1. Hence, by Theorem 1.2.4, IN - Pk G 1N - SAk G 1N - PZk. 
This shows, of course, that the l-way iterated stack languages are the same 
as the l-way iterated pushdown languages, i.e., uk 1N - SAk = Uk 1N - Pk. 
Our translation technique can be used to show that the inclusion 
1N - SAk G 1N - P2k is optimal, i.e., lN-SAk g 1N - P2k- ‘. In fact, even 
the inclusion 1D - SAk c 1N - P2k-1 would imply by Lemma 7.1 that 



AUTOMATA AND COMPLEXITY 65 

ZN(multi) - SAk c 2N(multi) - P2k ~ ‘, and hence (by Theorems 2.6 and 
3.5(3)) that DTIME(exp,,~ ,(poly)) E DTIME(exp,,~,(poly)), contradict- 
ing Proposition 7.3. It is not clear whether the inclusion 1N - Pk G 
1N - SAk is optimal. 

We wish to make an observation on the strength of our translation 
technique. Note that in the paragraph above we also proved (for k = 1) 
that 1N - SA g 1N - P, i.e., that 1N - Ps 1N - SA. This is of course 
using a sledge hammer to hit a mosquito: this proper inclusion can easily 
be proven by the pumping lemma for context-free languages (e.g., 
(anhnc” 1 n 3 1 } is in 1N - SA). However, we know no other way to prove 
the proper inclusion 1N - Pks 1N - Pk+’ than the one used in 
Theorem 7.4. It seems that techniques like pumping lemma’s become too 
complicated for such complicated storage types. 

In the remainder of this subsection we consider the iterated checking 
stack and CSPD automata. First the checking stack. Again we obtain the 
properness of the hierarchy of l-way iterated checking stack automata. 
Moreover, we show that there exist l-way iterated checking stack 
languages arbitrarily high in the hierarchy of l-way iterated pushdown 
languages. 

THEOREM 7.5. For every k 2 1, 

(1) lN-CSAks lN-CSAk+‘, 

(2) lN-CSAkc lN-PZk, 

(3) IN - CSAk @ lN- Pk-‘, and even 1D - CSAk g 1N - Pk-‘. 

Proof. (1) can be proven as in Theorem 7.4, using the space complexity 
characterization of 2N(multi) - CSAk in Theorem 5.2. The inclusion of (2) 
follows from 1N - CSAks 1N - SAk E 1N - P2k. To show (3), i.e. that 
there exist 1D - CSAk languages not in 1N - Pk- ‘, assume to the contrary 
that ID - CSAk z 1N - Pkp *. Then Theorem 7.1 implies that 2N(multi) - 
CSAk s 2N(multi) - Pkp ‘. Hence, by Theorems 5.2 and 2.6, DSPACE 
(expk_ ,(poly)) C DTIME(exp,-,(poly)). Since DTIME(exp,-,(poly)) c 
DSPACE(exp, _ ,(poly)), this contradicts Proposition 7.3. 1 

Actually, Theorem 7.5( 1) is already known in the literature because, as 
we will show now, the IN-CSAk hierarchy coincides with the 2GSM 
hierarchy. The 2GSM hierarchy (shown to be proper in Greibach, 1978c, 
and in Engelfriet, 1982, in a completely different way) consists of all classes 
2GSMk(REG), where 2GSM = 2N( 1) T: the class of 2-way nondeter- 
ministic finite transductions, and REG is the class of regular languages. In 
what follows we will use 2GSM instead of 2N( 1) T, and we will call a 
2N( 1) transducer a 2-way gsm (i.e., 2-way generalized sequential machine). 

The next lemma shows that lN-CSA(X) can be expressed in terms of 
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2GSM and 1N -X, for every storage type X. It is just a variant of the well- 
known relationship between checking stack automata and 2-way gsm’s 
(Rajlich, 1972; Kiel, 1975; Greibach, 1978a, b, c). 

LEMMA 7.6. For any storage type X, 1N - CSA(X) = 2GSM( 1N - X). 

Proof (i) We first show that 2GSM( 1N - X) E 1N - CSA(X). Let M 
be a l-way nondeterministic X automaton and G a 2-way gsm. We have to 
construct a l-way nondeterministic CSA(X) automaton M’ such that 
L(M’)=s(G)(L(M)). To find out whether its input string y belongs 
to r(G)(L(M)), M’ first guesses an input string x (for M and G) on its 
checking stack, simultaneously simulating M to check that XE L(M), 
and then simulates G to check that (x, y)~r(G). If c,, is the initial 
X-configuration of A4, then (e, cO) is the one of M’, where & is the left 
endmarker (of G). 

First M’ simulates M, in pushdown mode. At each moment, the top 
square of the checking stack contains the current X-configuration of M. If 
M can read an input symbol ~7 and execute instruction f on X-storage, then 
M’ can execute push(a, f). In case M can do a J-move and execute f, 44’ 
can execute an appropriate stay(y, f). Whenever M accepts the input, M’ 
can decide to execute push($, id), to move down to the bottom square of 
the checking stack, and to start the simulation of G, in reading mode. Note 
that up to now M’ did not read its input. M’ simulates G by treating its 
checking stack as the 2-way input tape of G, and its input tape as the 
l-way output tape of G. 

(ii) We have to show that lN-CSA(X) c 2GSM(lN - X). Let M be a 
l-way nondeterministic CSA(X) automaton. We may assume that M does 
not read any input while in pushdown mode. In fact, at each move it could 
nondeterministically guess the needed input symbols and store them in the 
symbol part of the stack square. Then, as soon as it enters reading mode, 
it could first read these symbols from the input. We may also assume, as 
observed in the beginning of Section 3, that every test test(t) is false in 
reading mode. 

With these assumptions it is easy to construct a l-way nondeterministic 
X automaton M’ and a 2-way gsm G such that r(G)(L(M’)) = L(M). M’ 
just simulates the pushdown mode phase of M. If (y, c,,) is the initial con- 
figuration of M, then M’ has initial configuration c,,, and starts by reading 
y from its input. When M executes a push(y, f) instruction, M’ reads y 
from the input and executes J Moreover, in order to simulate the sym = y 
tests of M, M’ always keeps the last input symbol in its finite control. 
When M goes into reading mode, M’ first reads its current state (viewed 
as a symbol) from the input tape, and then accepts. According to this last 
trick, the 2-way gsm G can start by walking to the right end of its input 
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and read the state of A4, in which it then continues to simulate MS reading 
mode phase, in the obvious way (note that G does not have to execute 
test(t) tests). 1 

It now easily follows by induction that the iterated CSA hierarchy and 
the 2GSM hierarchy are the same. 

COROLLARY 7.7. For every k 2 0, 1N - CSAk = 2GSM“(REG). 

Note that Theorem 7.5(2, 3) shows that the 2GSM hierarchy is 
contained in the 01-hierarchy, and that there exist languages in 
lJk 2GSMk(REG) that are arbitrarily high in the Or-hierarchy. 

Let K be a trio (i.e., a class of languages closed under intersection with 
regular languages, inverse homomorphisms, and J.-free homomorphisms; 
see Ginsburg, 1975). It is well known (see Greibach, 1978c, and p. 122 of 
Engelfriet, 1982) that either 2GSMk(K)=2GSM(K) for all k> 1, or 
2GSM”( K) s 2GSM k+1(K) for all k > 0. In other words, either the 
2GSM“(K) hierarchy collapses at the first level, or it is proper at each level. 
In Greibach (1978~) conditions on K are given that guarantee properness 
of the hierarchy. Here we give another such condition. 

THEOREM 7.8. Let K be a trio such that KG IN - P” for some n. Then 
2GSMk(K) 5 2GSMk’i(K) for every k b 0. 

Proof: By the discussion above it suffices to show that 
~GSM(K)S; 2GSMk(K) for some k. Thus, since REGsKs lN- P”, it 
suffices to show that 2GSMk(REG) @ 2GSM( 1N - P”) for some k. Now, 
by Corollary 7.7, 2GSMk(REG) = 1N - CSAk, and, by Lemma 7.6, 
2GSM(lN - P”) = 1N - CSA(P”). Since CSA(X) d P(P(X)) by 
Lemma 3.1, lN- CSA(P”) c 1N - P”+‘. Thus it suffices to show that 
lN-CSAk @ lN-P”+’ for some k. This holds for k=n+3 by 
Theorem 7.5( 3). 1 

Since 1N - X is a trio for every storage type X, this result holds in 
particular for 1N - P” itself. 

We now turn to iterated CSPD automata. Theorem 7.5 also holds for 
CSPD instead of CSA, by the space complexity characterization in 
Theorem 6.3, and by Lemma 6.1. As for CSA automata, the first two results 
obtained in this way are already known in the literature. As we will discuss 
next, this is because the lN-CSPDk hierarchy is in fact the ETOL 
hierarchy (see Asveld and van Leeuwen, 1975; Engelfriet, 1982). 

ETOL systems are one of the main classes of L-systems, a well-known 
type of parallel rewriting systems (see Rozenberg and Salomaa, 1980). 
For a class K of languages, ETOL(K) denotes the class of K-controlled 
ETOL languages, i.e., languages generated by ETOL systems of which the 
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derivations are controlled by the strings of a language from K (Asveld, 
1977). The ETOL hierarchy is obtained by iterating this mechanism of 
control on ETOL systems, i.e., it consists of all classes ETOLk( REG). It was 
shown in van Leeuwen (1976) that ETOL(REG) = 1N - CSPD, and, based 
on this, it was shown in Corollary 4.6 of Engelfriet, Rozenberg, and Slutzki 
(1980) that, under a few closure conditions on K, ETOL(K) = CSPDT(K), 
where CSPDT denotes the class of transductions realized by cspd trans- 
ducers, explained next. Thus, the ETOL hierarchy consists of all classes 
CSPDTk( REG). 

A cspd transducer is a 2N( 1) T- P transducer (i.e., a 2-way one-head 
pushdown transducer) of which the pushdown instructions are coupled to 
the movements of the input head in the following way. The transducer 
pushes a symbol on the pushdown when moving its input head to the right, 
and pops a symbol from the pushdown when moving one square to the left. 
Thus, the length of the pushdown always equals the number of squares to 
the left of (and including) the square of the input head. For more details 
see Engelfriet, Rozenberg, and Slutzki (1980). 

It should be clear from this description that a cspd transducer M acts in 
the same way as a CSPD automaton A in reading mode, viewing the input 
tape of M as the checking stack of A (with its top to the left) and the 
output tape of A4 as the input tape of A. Thus the next lemma should not 
come as a surprise. Recall that, for a class K of languages, KR denotes the 
class of all reverses of languages from K. 

LEMMA 7.9. For any storage type X, 1N - CSPD(X) = CSPDT 
((lN-X)R). 

Proof The proof is exactly the same as the one of Lemma 7.6, except 
that, as a moment of thought will reveal, the checking stack of the 
lN-CSPD(X) automaton corresponds to the reverse of the input tape of 
the cspd transducer. m 

We now show that the iterated CSPD hierarchy is the ETOL hierarchy. 

THEOREM 7.10. For every k 2 0, 1N - CSPDk = CSPDTk(REG). 

ProoJ This follows by induction on k from Lemma 7.9, if we can show 
that CSPDT’(REG) is closed under reversal. In fact, for any class K of 
languages, CSPDT(K) is closed under reversal. Let M be a cspd trans- 
ducer. Then a cspd transducer M’ can be constructed such that 
4M’) = ((4 YR) I (4 Y) E ef)}. w  e may assume that M accepts in a 
unique final state, with its input head on the left endmarker e. M’ simulates 
a computation of M in reverse. Thus, M’ starts in the final state of it4, at 
e. M’ then simulates the moves of M backwards until it arrives at e in an 
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accepting state of M. As an example, suppose that M, in state q, scanning 
u on its input tape and y on the top of its pushdown, can go into state q’, 
and move its input head to the right, pushing y’. Then M’, in state q’ and 
scanning y’ on top of its pushdown, can go into state q and move its input 
head to the left, after which it should check that it scans c on its input tape 
and y on top of its pushdown. In case M moves to the left, popping the 
pushdown, M’ moves to the right, guessing a symbol to push on the 
pushdown. 1 

Properness of the ETOL hierarchy (which was proved in Engelfriet, 
1982, by other means) now follows from properness of the hierarchy 
lN-CSPDk of iterated CSPD automata. In fact, since 2GSMk(REG) g 
CSPDTk-‘(REG) by Theorems 5.2 and 6.3, the counterexamples are 
already in the 2GSM hierarchy (as also shown in Theorem 4.7 of 
Engelfriet, 1982). The inclusion 1N - CSPDk E 1N - PZk proves that the 
ETOL hierarchy is contained in the 01-hierarchy (proven in Vogler, 1988, 
by showing that the 01-hierarchy is closed under control). It can be shown 
that the inclusion is proper for every k. This is well known for k = 1, and 
can be shown in a way similar to the proof of Theorem 7.5(3) for k b 2, 
using the fact that DSPACE(exp,- ,(poly)) 5 DTIME(exp,,- ,(poly)) for 
k 3 2. However, it is open whether uk IN - CSPDk 5 Uk 1N - Pk, i.e., 
whether the ETOL hierarchy is properly contained in the 01-hierarchy. 
Since it is shown in (Greibach, 1978~) that there is a context-free language 
not in Uk 2GSMk(REG), the 2GSM hierarchy is properly contained in the 
ETOL hierarchy (because 1 N - P c 1 N - CSPD). 

Thus, we have shown that the seemingly unrelated 2GSM hierarchy, 
ETOL hierarchy, and 01-hierarchy can be described in a uniform way by 
iterated X automata, where X is CSA, CSPD, and P (or P’), respectively. 

7.2. The Emptiness Problem for One- WaJj iterated Automata 

It is well known, for several storage types X, that the nonemptiness 
problem for one-way X automata is complete in the (complexity) class of 
languages accepted by the multi-head X automata (see, e.g., Jones, 1975, 
Jones and Laaser, 1977, Galil, 1977, and Hunt, 1976). In the next result we 
show that this is a general phenomenon. The proof is similar to those in 
the above references. A storage type X= (C, T, F, m, C,, id) is finitely 
encoded (see Chap. 5 of Ginsburg, 1975) if T and F are finite. 

THEOREM 7.11. Let X be a finitely encoded storage type. The non- 
emptiness problem for one-way nondeterministic X automata is log-space 
complete in 2N(multi) - X 

Proof Let A(X) denote the class of one-way nondeterministic X 
automata, and also, ambiguously, the set of strings that code these 
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automata over a fixed alphabet, in the usual way. In particular, the 
transition function of an automaton M in A(X) is specified as a sequence 
of tuples in 

and each such tuple is called a transition of M. 
We first construct a 2N(2) -X automaton N that accepts the language 

(~~4WIWOf121). G’ iven an input string M, N first checks that 
ME A(X), and then simulates M, guessing nondeterministically some input 
string for M that hopefully is accepted by M. N uses one head to point to 
the current transition of 44, simulates the execution of this transition 
(which is possible because X is finitely encoded), and uses the second head 
to find a new transition. The correct state behaviour of M is guaranteed by 
N checking equality of the (coded) states in the old and the new transition, 
using both heads. 

Next, let N be a 2N(r) -X automaton for some Y > 1. We have to show 
that L(N) is log-space reducible to the nonemptiness problem 
{MEA(X)IL(M)#IZI}. L t e w  be a given input string of N, of length n. 
We construct N,, E A(X) such that, independent of its input, N, simulates 
N on w  by keeping track of N’s head positions on w  in its finite control. 
Thus, N,. has states (q, i,, . . . . i,) whereqisastateofNand06ijdn+1 
for every 1 < j < r. Clearly w  E L(N) if and only if L(N,,) # 0. The trans- 
lation from w  into N,, can be realized by a DSPACE(log n) transducer. 
In fact, N,. contains for each (ii, . . . . i,) a set of transitions that is easily 
obtainable from the transitions of N. Thus, N,. has O(nr) transitions. To 
write down a sequence (i,, . . . . i, ) takes log n space, and it suffices to keep 
track of these sequences. Note that N,. is of length O(nr log n). 1 

We note that this theorem also holds if the one-way X automata are 
restricted to be deterministic: in this case N,,. should use its own input 
string to decide which transitions of N to choose. The theorem also 
holds for the “general membership problem,” i.e., the language 
((M, x)1 MEA(X), XEL(M)}. In fact, on the one hand, this language can 
easily be accepted by a 2N(multi) --X automaton. On the other hand, w  
can be translated into (N,., A), because w  E L(N) iff ,J E L(N,). Finally, it 
also holds for every nontrivial property of 1N - X languages that can be 
decided by a 2N(multi) -X automaton (cf. Hunt, 1976): after successful 
simulation of N on u’, N,, should simulate (on its own input) some 1N - X 
automaton M such that L(M) has or does not have the property, 
depending on whether @ does not have or has the property. 

To be able to use Theorem 7.11 we will assume in the remainder of this 
section (just as in Hunt, 1976) that the set r of pushdown or stack symbols 
is finite, or even that r= (0, 1 }. It is easy to see that, for every storage type 
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considered in this paper, this restriction results in an equivalent storage 
type (that will be denoted by the same name). This was discussed in 
Section 1.3 for the storage type P(X). Of course, the restriction gives a 
smaller class of one-way automata. 

With this restriction on r, all our storage types are finitely encoded. 
Thus, we immediately obtain from Theorem 7.11 (for X= P”) and from the 
complexity characterization of 2N(multi) - Pk in Theorem 2.6, that for 
k >, 1 the emptiness problem for 1N - Pk automata is log-space complete in 
DTIME(exp,- i(poly)), and that the same holds for 1D - Pk automata. 
This result can be sharpened as follows. 

THEOREM 7.12. For k 2 2, 

(1) the emptiness problem for 1N - Pk automata is in 
u DTIME(exp,- ,(dn’)), and 

(2) for every E > 0, the emptiness problem for 1D - Pk automata is not 
in u DTIME(exp,_ ,(dn2-“)). 

Proof. (1) This nonemptiness problem can be accepted by a 
2N(multi) - Pk automaton with one head rather than two, cf. Proposi- 
tion 4.5 of Hunt (1976). In fact (referring to the proof of Theorem 7.11), to 
check equality of the old and the new state, N stores the (coded) old state 
on its “outer” pushdown, by appropriate push(y, id) instructions, and then 
compares it to the new state, popping the pushdown. The result now 
follows from Theorem 3.3 with r = 1. 

(2) The second part of the proof of Theorem 7.11 shows that the log- 
space reduction of languages in 2N(l) - X produces strings of length 
O(n log n). The result now follows from the fact that, by the time hierarchy 
theorem, (Jd, 0 DTIME(exp, _ I(dn2-“(log n)‘-“)) is properly contained in 
DTIME(expkp,(dn2)) for every d. 1 

Decidability of this problem was first shown in (Damm, 1982), using 
algebraic methods, for the k-level 01 macro grammars. It is mentioned in 
(Greibach, 1970) as having been shown by Aho and Ullman. 

Theorem 7.12 gives some natural automata-theoretic decision problems 
of high intractability. By combining them, a nonelementary problem is 
obtained; cf. the result of Meyer and Stockmeyer in Section 11.4 of (Aho, 
Hopcroft, and Ullman, 1974). Recall that (Jk DTIME(exp,(poly)) is the 
class of elementary problems. Let an iterated pushdown automaton be a Pk 
automaton for any k (where the k is specified in the automaton). 

COROLLARY 7.13. The emptiness problem for one-way (non)deterministic 
iterated pushdown automata is decidable, but not elementary. 

643:95/l-6 
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Proof: Decidability follows from the fact that the appropriate multi- 
head Pk automaton can be computed from k, and from the effectiveness of 
all our results (in particular Theorem 2.6). 1 

It can be shown that Theorem 7.12 and Corollary 7.13 also hold for 
infinite I? For the lower bounds this is of course trivial. For the upper 
bounds one has to implement the binary encoding of the stack symbols, in 
the obvious way. 

It should be clear that similar results can be obtained for all other 
storage types considered. For iterated checking stack automata this implies 
the following result. By 2GSMk we denote the class of all relations that are 
compositions of k Z-way gsm’s. The emptiness problem for this class is the 
problem of deciding for given Z-way gsm’s M,, . . . . Mk whether the com- 
position of r(M,) to r(Mk) is the empty relation. 

THEOREM 7.14. For every k b 1, the emptiness problem for 2GSMK is 
fog-space complete in DSPACE(exp,_ l(poly)). 

Proof From Theorems 7.11 and 5.2 we obtain completeness of the 
emptiness problem for 1N - CSAk automata in DSPACE(exp,- r(poly)). It 
can be checked that all translations in Lemma 7.6 (and hence in 
Corollary 7.7) are DSPACE(log n) transductions (including a translation 
that changes the CSA(X) automaton into one that uses stack symbols 0 
and 1 only). This shows that the emptiness problem for 2GSMk(REG) is 
complete in DSPACE(exp,- i(poly)). Clearly, incorporating the regular 
language into the finite control of the first Z-way gsm, the same holds 
for the ranges of the relations in 2GSMk, and hence for the relations 
themselves. 1 

Since Uk DSPACE(exp,(poly)) is the class of elementary problems, we 
obtain the following intractable problem for Z-way nondeterministic finite 
state transducers. 

THEOREM 7.15. The emptiness problem for compositions of 2-way gsm’s 
is decidable, but not elementary. 

CONCLUSION 

Some remaining questions are the following. 

(1) What is the power (in terms of complexity classes) of deter- 
ministic r-head Pk automata? 

(2) What is the precise power of alternating multi-head CSAk 
automata? It is straightforward to show that U ASPACE(exp,(ds(n))) - 
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X s ASPACE(s(n)) - CSA(X) 5 ‘J ASPACE(exp,(ds(n))) - X. If the 
CSA(X) automaton is not allowed to branch universally in reading mode, 
U ASPACE(exp,(ds(n))) - X is obtained. For CSPD automata it is not 
difficult to show that ASPACE(s(n)) - CSPD(X) = U ASPACE(exp,(ds(n)) 
- x. 

(3) Are the 1N - Pk languages context-sensitive? This is mentioned 
in (Greibach, 1970) as having been shown by Aho and Ullman. 

(4) Questions like: is lN-SAk properly included in IN- Pzk? 
(5) Is it possible to find automaton-theoretic characterizations of 

complexity classes larger than the class of elementary languages? One idea 
is to define an iterated pushdown automaton with an arbitrary number of 
levels of pushdowns: it should have instructions to go up and down in 
level. Unfortunately, this automaton would be able to accept all recursively 
enumerable languages (each level would simulate one square of a Turing 
machine tape). One could think of bounding the number of levels in terms 
of the length of the input. 

(6) In general, which complexity classes can be characterized by 
2-way or multi-head automata (in particular NTIME classes), and, vice 
versa, for which storage types X are 2N( 1) - X and ZN(multi) - X com- 
plexity classes? 
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