
INFORMATION AND COMPUTATION 95, 2 1-75 (t 99 1)

Iterated Stack Automata and Complexity Classes

JOOST ENCELFRIET

Department of Computer Science, Leiden University.
P.O. Box 9.512, 2300 RA Leiden, The Netherlands

An iterated pushdown is a pushdown of pushdowns of . . . of pushdowns. An
iterated exponential function is 2 to the 2 to the to the 2 to some polynomial.
The main result presented here is that the nondeterministic 2-way and multi-head
iterated pushdown automata characterize the deterministic iterated exponential
time complexity classes. This is proved by investigating both nondeterministic and
alternating auxiliary iterated pushdown automata, for which similar characteriza-
tion results are given. In particular it is shown that alternation corresponds to one
more iteration of pushdowns. These results are applied to the l-way iterated
pushdown automata: (1) they form a proper hierarchy with respect to the number
of iterations, and (2) their emptiness problem is complete in deterministic iterated
exponential time. Similar results are given for iterated stack (checking stack, non-
erasing stack, nested stack, checking stack-pushdown) automata. ? 1991 Academic

Press. Inc

INTRODUCTION

It is well known that several types of 2-way and multi-head pushdown
automata and stack automata have the same power as certain time or
space bounded Turing machines; see, e.g., Chapter 14 of (Hopcroft and
Ullman, 1979), or Sections 13 and 20.2 of (Wagner and Wechsung, 1986).
For the deterministic and nondeterministic case such characterizations
were given by Fischer (1969) for checking stack automata, by Hopcroft
and Ullman (1967b) for nonerasing stack automata, by Cook (1971)
for auxiliary pushdown and 2-way stack automata, by Ibarra (1971) for
auxiliary (nonerasing and erasing) stack automata, by Beeri (1975) for
2-way and auxiliary nested stack automata, and by van Leeuwen (1976)
for auxiliary checking stack-pushdown automata. The alternating case was
considered by Chandra, Kozen, and Stockmeyer (1981), and was exten-
sively studied by Ladner, Lipton, and Stockmeyer (1984). The highest com-
plexity class reached by the 2-way or multi-head versions of these automata
is double exponential time: the class of languages recognized by alternating
multi-head stack automata (Ladner, Lipton, and Stockmeyer, 1984).
Higher complexity classes were characterized by Vogel and Wagner (1985).
Let exp,(n) be the k-iterated exponential function, where k is the number

21
0890~Ml/91 $3.00

Copyright ‘1 1991 by Academic Press. Inc
All rights of reproduction I” any form reserved

22 JOOST ENGELFRIET

of 2’s: exp,(n) = n, and exp,(n + 1) = 2 expk(n). It is shown in (Vogel and
Wagner, 1985) that DTIME(exp,(poly)) is the class of languages accepted
by deterministic multi-head automata with one pushdown and k (inde-
pendent) checking stacks. Similarly, for a nonerasing stack instead of a
pushdown, the class DSPACE(exp,(poly)) is obtained. In both cases the
corresponding nondeterministic automata of course accept all recursively
enumerable languages.

In this paper we present an alternative automaton-theoretic characteriza-
tion of DTIME(exp,(poly)), in terms of the nondeterministic multi-head
(k + 1)-iterated pushdown automata (where a l-iterated pushdown is an
ordinary pushdown, a 2-iterated pushdown is a pushdown of pushdowns,
etc.). According to Greibach (1970), iterated pushdown automata were first
considered by Aho and Ullman: they showed that the nondeterministic
l-way 2-iterated pushdown automata recognize the indexed languages of
(Aho, 1968); see (Parchmann, Duske, and Specht, 1980) for essentially the
same result. Greibach (1970) shows how pushdowns can be iterated by the
use of “nested AFA,” but only the special case of “well-nested AFA” is
studied there. Maslov (1974, 1976) defines the nondeterministic l-way
k-iterated pushdown automata, and shows that they correspond to the
k-level indexed grammars. Damm and Goerdt (1986) prove that they
correspond to the k-level 01 macro grammars. The classes of k-level 01
languages (and hence the classes of nondeterministic l-way k-iterated
pushdown languages) are often viewed as an alternative, more natural,
infinite, Chomsky hierarchy, called the 01-hierarchy; see, e.g., (Damm,
1982). Taking a O-iterated pushdown automaton to mean a finite
automaton, the first three classes in the 01-hierarchy consist of the regular,
the context-free, and the indexed languages.

Our main results on k-iterated pushdown automata (P” automata)
are given in the table of Fig. 1, where we consider nondeterministic or
alternating Pk automata which may be l-way, (2-way) r-head with r > 1,
(Zway) multi-head, or SPACE(s(n)) auxiliary Pk automata with s(n)>
log n. Note that the multi-head case follows from both the r-head and the
SPACE(log n) case; it is added for clearness sake. For k = 1 (k = 0), the
results are of course the known ones for pushdown automata (finite
automata, respectively). For k = 2, the results are those for stack automata:
we show that the mentioned types of 2-iterated pushdown automata are
equivalent to the corresponding stack automata. Since, moreover, almost
all reasonable types of 2-iterated pushdown automata are equivalent to the
corresponding nested stack automata (e.g., the l-way types both recognize
the indexed languages), this also fits with the results of (Beeri, 1975). In
fact, for iterated stack automata (SAk) and iterated nested stack automata
(NSAk) we show that the table of Fig. 1 holds with k replaced by 2k
everywhere. These complexity characterizations are applied to the l-way Pk

AUTOMATA AND COMPLEXITY 23

Pk nondeterministic alternating

l-way ----- uDTIHE(expk(dn))

k&l

I I

r-head uDTIME(expk-l(dn 2r) I uDTIME[enpk(dnr))

k,2 k>l

multi-head DTI14E(expk-l(poly)) DTIHE(expk(poly))

k&l k&O

SPACE(s(nl1 uDTIHE(expk(dsfn))) uDTIME(erpk+l(ds(n)ll

k>l k >O

FIG. 1. Characterization of k-iterated pushdown automata by time-bounded Turing
machines. In this table, IJ... d... abbreviates IJd,O... d ., and poly abbreviates
U ,,,O nd

automata: (1) they form a proper hierarchy, i.e., the (k + l)-iterated
pushdown automata are more powerful than the k-iterated pushdown
automata, and (2) their emptiness problem is complete in
DTIME(exp,-,(poly)). Similar results hold for SAk and NSAk automata.

Additionally we investigate (iterated) checking stack and nonerasing
stack automata, and stack-pushdown automata; for the latter, see
(van Leeuwen, 1976, Engelfriet, Schmidt, and van Leeuwen, 1980). In
particular, iterated checking stack automata characterize iterated
exponential space (rather than time) complexity classes. Since in the l-way
case these automata correspond to the 2GSM hierarchy (see Greibach,
1978c, Engelfriet, 1982), this gives an alternative proof of the properness of
that hierarchy. It also implies that the emptiness problem for arbitrary
compositions of 2-way gsm’s is nonelementary (i.e., is not in
Uk DTIME(exp,(poly)). A similar relationship holds between the iterated
checking stack-pushdown automata and the ETOL hierarchy; see (Asveld
and van Leeuwen, 1975, Engelfriet, 1982).

A preliminary version of this paper was presented in (Engelfriet, 1983).
It was recently shown in (Kowalczyk, Niwinski, and Tiuryn, 1989) that
deterministic SPACE(s(n)) auxiliary Pk automata have the same power as
nondeterministic ones (for space constructable s(n)), generalizing the result
of (Cook, 1971) for k= 1; this problem was left open in (Engelfriet, 1983).

24 JOOSTENGELFRIET

NOTATION

For a set A, P,,(A) denotes the set of all finite subsets of A. For a rela-
tion R, R- ’ is its inverse and R(A) is the image of A under R. For a class
S of relations and a class K of sets, S - ’ = {R -’ 1 R E S}, and S(K) =
{R(A) 1 R E S, A E K}. So(K) = K, and for k > 0, Sk+ ‘(K) = S(Sk(K)).

For a set A, A* is the set of finite sequences of elements of A, and A + =
A* - {A}, where A is the empty sequence. In case A is an alphabet, A* is
the set of strings over A, and 1. is the empty string. Let w = a, u2.. . a, be
a string with ai E A. Then 1 WI is its length n. The reverse of w is the string
wR = a, . . . alal . For a language L, LR = (wR) w E L}, and for a family K of
languages KR = { LR 1 L E K}. REG denotes the family of regular languages.

We use u... d.‘.. for Ud,O... d and . . . poly . . . for Ud,O... nd... (as in
Fig. 1).

For the notation of time and space complexity classes, see Chapter 12 of
(Hopcroft and Ullman, 1979).

1. BASIC DEFINITIONS AND FACTS

In this section we describe the iterated pushdown automata which are
the main subject of this paper. Since we will consider many variations of
iterated pushdown automata, and also of other automata, we need some
general terminology on automata with an arbitrary storage type, explained
in Section 1.1. In order to cope with essentially equivalent ways of
describing the same kind of automaton, we also discuss the notion of
equivalent storage types, in Section 1.2. In Section 1.3, finally, the iterated
pushdown automata are defined. In fact, for any storage type X (such as
pushdown, stack, etc.), we consider pushdown-of-X automata, i.e.,
automata of which the storage consists of a pushdown of storage contigura-
tions of an X automaton. Our main technique in dealing with the rather
complex iterated pushdown automata is to generalize known results for
pushdown automata to pushdown-of-X automata, for arbitrary X, and
then to iterate the “pushdown-of” operation, in order to obtain similar
results for iterated pushdown automata. The same approach was used in
(Engelfriet and Vogler, 1987) for deterministic l-way Pk automata, in
(Engelfriet and Vogler, 1988) for iterated pushdown tree transducers, and
in (Vogler, 1986) for iterated one-turn pushdown automata.

1.1. Automata and Storage Types

Let X be a storage type of an automaton (e.g., X= pushdown). We
assume the reader to be familiar with

AUTOMATA AND COMPLEXITY 25

l-way X automata,

2-way multi-head X automata, and

auxiliary SPACE(s(n)) X automata (for s: N -+ N),

and with the corresponding automata with output, i.e., transducers. Recall
that an auxiliary SPACE(s(n)) X automaton has, in addition to its
X-storage, a 2-way read-only input tape and a Turing machine worktape
with space restricted to s(n), where n is the length of the input. The above-
mentioned automata may be deterministic, nondeterministic, or alternating
(except that transducers cannot be alternating). All storage types X
investigated in this paper (such as X= pushdown, k-iterated pushdown,
stack, checking stack, etc.) will be explained in due course; for more details
on the corresponding X automata see, e.g., Hopcroft and Ullman (1979),
Cook (1971), Ladner, Lipton, and Stockmeyer (1984), and Ibarra (1971).
In the special case that there is no internal storage X, we put “finite”
instead of X, i.e., we have the usual l-way finite automata and 2-way multi-
head finite automata. The auxiliary SPACE(s(n)) finite automata are of
course the usual s(n)-space bounded Turing machines.

Notation. The class of languages accepted by alternating l-way (2-way
r-head, 2-way multi-head, auxiliary SPACE(s(n))) X automata is denoted
1A -X (2A(r) - X, 2A(multi) - X, ASPACE(s(n)) - X, respectively),
where r 2 1 and s: N -+ N. For the deterministic and nondeterministic
automata, the leading A is replaced by D and N, respectively. The class of
transductions realized by nondeterministic (deterministic) l-way X trans-
ducers is denoted INT -X (1DT - X, respectively), and similarly for the
other variations (adding T before “-X”). In case X= “finite”, the suffix
“-X” is dropped; thus 2D(r) denotes the class of languages accepted by
2-way deterministic r-head finite automata, and NSPACE(s(n)), as usual,
the class of languages accepted by nondeterministic SPACE(s(n)) Turing
machines. We finally note that the heads of a 2-way r-head automaton may
be sensing or non-sensing: our results do not depend on this distinction.

We will use Y as a metavariable ranging over the set (lA, 2A(r),
2A(multi), ASPACE(s(n)), lN, lNT, lD, lDT, . ..} of all variations
of X automata mentioned above. An element of this set will be called an
automaton type. Thus, for an automaton type Y and a storage type X, we
may consider the class of Y-X automata, and the corresponding class
Y - X of languages (or transductions).

For the investigation of X automata (or, rather, pushdown-of-X
automata) for arbitrary storage type X, we need some precise terminology
on storage types. Our definition of storage type (as in Engelfriet and Vogler
(1987); see also Engelfriet (1986), Engelfriet and Vogler (1986, 1988),

26 JOOST ENGELFRIET

Engelfriet and Hoogeboom (1989)) is based on those of Ginsburg (1975),
Scott (1967), Hopcroft and Ullman (1967a), and Goldstine (1977).

DEFINITION. A storage type is a tuple X= (C, T, F, m, C,, id), where C
is the set of (X-) configurations, CO s C is the set of initial configurations,
T is the set of tests, F is the set of instructions, id E F is the identity instruc-
tion, and m is the meaning function that associates with every t E T a
mapping m(t): C-P {true, false}, and with every f~ F a partial function
m(f): C+ C, such that m(id) is the identity on C.

The sets C, T, F, and CO may all be infinite.
A test t or instruction f is “executed” by an X automaton by applying

the function m(t) or m(f), respectively, to its X-configuration. Note
that the execution of id has no effect on storage (it may be pronounced
as “idle”). To model the execution of several instructions f,, f, E F,
in that order, we extend m to F+, by defining m(fif2 . ..fn)(c)=
m(f,)(. ..m(f2)(m(fi)(c)) ...) for every CE C.

As an example, the usual pusdown storage type P is defined by taking
c=r+ for some fixed, infinite, set of pushdown symbols, CO = r,
T = {top = y I y E r} such that m(top = y)(w) = true iff the right-most
symbol of w E r + is y, and F={push(y)ly~r}u{pop,id} such that
m(pusUy)) = I(w,wy)Iw~r+), m(pop)={(wy,w)lwET+,yET}, and
m(id) = ((w, w) 1 w E f + }, Note that there is no empty pushdown; this
simplifies things when generalizing to pushdown-of-X.

To be able to treat automata without internal storage as a special case
of X automata (i.e., X= “finite”), we use the trivial storage type, denoted X0
and defined by X0= ((co), a, {id], m, {co>, id), where cO is an arbitrary
object and m(id) is the identity on {co}. Thus, X0 automata are finite
automata (and the suffix “ - X,,” can be dropped, see Notation).

In the rest of this subsection we want to fix some more terminology on
the way Y - X automata work, and in particular the way they manipulate
storage, so that the reader can check that everything is as usual. Let
X= (C, T, F, m, CO, id) be a storage type.

We first need a notion formalizing the test information that an
automaton can obtain from its storage. For a finite subset T, of T, the set
of test results for T, , denoted R(T,), is the set R(T,) = (p) p is a mapping
T1 -+ {true, false} }. For c E C, the test result of c for T,, denoted by
p(T,, c), is the element of R(T,) that satisfies p(T,, c)(t) = m(t)(c) for
every t E T, . Note that R(G) is a singleton.

Next we discuss the specification of X automata. Let Y be an automaton
type. A Y-X automaton M is specified by a set of states Q (divided into
existential and universal states in case M is alternating), an initial state
q,, E Q and a set of final states QH E Q, an input alphabet Z, an output

AUTOMATA AND COMPLEXITY 27

alphabet 52 (in case M is a transducer), a worktape alphabet @ (in case M
is an auxiliary automaton), a transition function 6 (the most important
part), an initial X-configuration c0 E C,, a linite subset T, of T, and a
finite subset F, of F (the tests and instructions used by M, respectively).
The transition function 6 is a mapping of the form

6: A x R(T,) + P,,,(B x FM)

where A = Q x A’ and B = Q x B’, and the precise form of the sets A’
and B’ depends on the precise type Y of the automaton M. If M is a
l-way X automaton, then A’ = C u {A} and B’ is trivial, i.e., 6:
Q x (,Z u {A}) x R(TM) + P,,(Q x F,). In case it is a transducer, B’ = 52*,
i.e., 6 maps into Pfin(Q x sZ* x F,). If M is a 2-way r-head automaton, then
A’= (Cu ($, $1,’ and B’ = (- 1, 0, + 1 >‘, where e and S are the left and
right endmarkers, respectively, and - 1, 0, + 1 indicate the motions of
the heads, as usual (note that here we assume for convenience that the
heads are non-sensing; this is, however, not essential). If M is an
auxiliary SPACE(s(n)) X automaton, then A’ = (C u {e, $}) x @ and
B’= { - 1, 0, + 1 } x { - LO, + 1) x @; note that M has one input head
and one worktape head. For the corresponding transducers, sZ* is added
to B’.

In the 2-way multi-head case and the auxiliary SPACE@(n)) case, A4 is
deterministic if 6 is a partial function, i.e., 6(x) is a singleton or empty for
every x in its domain. In the l-way case it is additionally required that if
6(q, ,%, p) # @ for some q E Q and p E R(T,), then 6(q, c, p) = $3 for all
u E Z (in words, if M can do a i-move, then it cannot do a reading move).

Finally we discuss the computations of our automaton M. An instan-
taneous description (ID) of M is a pair (a, c), where c E C is an
X-configuration, and a consists of the usual things: a state q E Q, an input
string w E Z*, the position of the input head(s) on w (or on ew%), possibly
an output string in Q*, and possibly a worktape string in @* together with
the position of the worktape head. If M is alternating, then (a, c) is a
universal (existential) ID if q is a universal (existential, respectively) state.
Let (a, c) and (/I, d) be two ID’s of M where c, de C, and a, /? represent
the rest of the ID’s. Suppose that &a, p) contains (b, S) with UE A,
pcR(T,+,), beB, andfEFM.ThenMcando themove(a,c)t-(p,d)ifa
satisfies a (in the usual way), p =p(T,, c), the test result of c for T,,
/I is obtained from a by b (in the usual way), m(f)(c) is defined, and
m(f)(c) =.d. (p, d) is called a SUccessor of (a, c). As usual, t- * denotes the
transitive, reflexive closure of t.

The initial ID of M for an input string w E Z* is (aO, cO) where c0 is the
initial X-configuration of M, and a0 consists of the initial state qo, the input
string w, all input heads positioned to the left of w, an empty output string,

28 JOOST ENGELFRIET

and a blank worktape. Acceptance is by final state, i.e., an accepting ID of
A4 is an ID of which the state belongs to & (thus there are no
requirements on the X-configuration of the ID).

For a nondeterministic (or deterministic) automaton M, a string w E C*
is in the language L(M) accepted by M if there is a computation, i.e., a finite
sequence of consecutive moves of M, that starts with the initial ID for
w and ends with an accepting ID. In other words, WE L(M) iff
(a,, cO) t- * (~1, c), where (cQ,, cO) is the initial ID for w and (a, c) is an
accepting ID. Moreover, for an auxiliary SPACE(s(n)) automaton all
worktape strings of all ID’s in the computation should be of length at most
s(n), where n = 1~1. Similarly, for a transducer, (w, v) EC* x Q* is in the
transduction z(M) realized by M if moreover the accepting ID contains u
as output string. Note that, for a deterministic transducer M, z(M) is not
necessarily a partial function. For an alternating automaton M, a computa-
tion tree is a finite tree of which the nodes are labeled by ID’s of M, such
that the children of a nonleaf labeled by a universal (existential) ID are
labeled by all successors (one successor, respectively) of that ID (and,
as above, in the auxiliary case all ID’s in the tree should satisfy the
corresponding length restriction). A string w E C* is in the language L(M)
accepted by M if there is a computation tree of which the root is labeled
by the initial ID for w, and all leaves are labeled by accepting IDS.

The class of all languages accepted (or translations realized) by Y-X
automata is denoted Y - X.

Two automata M and M’ are equivalent if L(M) = L(M’), or
z(M) = t(M’) if they are transducers.

1.2. Simulation and Equivalence of Storage Types

This subsection can be glanced at on first reading; it is only necessary to
read Definition 1.2.1 (of < and =) and to believe Theorem 1.2.4.

One of the basic notions related to data types is that of one data type
simulating another: e.g., a pushdown of integers can be simulated by an
array of integers, in the usual way, and a similar statement of course holds
for a pushdown of booleans. Since a storage type of an automaton is a data
type, the same notion of simulation applies to storage types: e.g., a Turing
machine tape can be simulated by two pushdowns (and vice versa).

We will need a formal definition of this concept of simulation. In
Engelfriet and Vogler (1986) such a definition was given, based on the idea
of stepwise simulation of Hoare (1972): roughly, each instruction or test of
the first storage type is replaced by a procedure that simulates it in the
second storage type. Although this definition is intuitively clear, it is quite
long, and difficult to handle. Therefore, in this paper (and in Engelfriet and
Hoogeboom, 1989), we propose a more manageable definition. It is weaker

AUTOMATA ANDCOMPLEXITY 29

than the one in (Engelfriet and Vogler, 1986), but can serve the same
purposes, for the restricted kind of storage type we have defined here.

DEFINITION 1.2.1. Let X, and X, be two storage types. X, simulates X, ,
denoted X, d X,, if 1DT - X, s 1DT - X,. X, and X2 are equiualent,
denoted X,3X2, if lDT-Xi= lDT-X,.

Obviously, the simulation relation < is reflexive and transitive;
moreover, X, = X, if and only if X, < X, and X, Q X,.

In words, two storage types are equivalent if they define the same class
of l-way deterministic transductions. Now this is certainly something one
would require of (intuitively) equivalent storage types, but we claim that it
also suffices. One way to convince the reader of this unprovable claim is to
prove that if X, = X, then Y-X, = Y-X, for every automaton type Y
(which one would also expect of intuitively equivalent storage types). The
proof of this will be based on another, intuitive, argument that the above
definition captures the intuitive notion of equivalence: intuitively a storage
type may be viewed as a transduction (for a given fixed initial conligura-
tion), as follows. Suppose A4 is an X automaton with its storage in a
certain configuration, reached from the initial configuration. What can h4
do with its storage? At one of its moves, M feeds an instruction into
storage, as a result of which storage changes configuration. Then h4
obtains from storage the test result of the new configuration, upon which
the choice of its next move will be based. Thus, storage receives informa-
tion, changes configuration, and returns information. In this way storage
acts as a transducer. We now formalize the corresponding transductions.
They are analogous to the AFL generators obtained from an AFA
representation of an AFL (see Section 5.2 of Ginsburg, 1975).

DEFINITION 1.2.2. Let X= (C, T, F, m, CO, id) be a storage type. Let
T1 and F, be finite subsets of T and F, respectively, and let c0 E C,, be
an initial X-configuration. The X-transduction corresponding to T, ,
F,, and co, denoted T(T,, F,, co), is the relation in F: x R(T,)*
defined by T(T,, F,, cd= {(fi . ..fk. ~1 ...P~II~~O, fi EF,, PiER(T,),
m(fi . . .fk)(co) is defined, and pi = p(T,, m(fi . .L.)(c,,)) for every i,
1 <id/c}.

In fact t(T,, F,, co) is a partial function F: + R(T,)*. Its domain is
{fl . ..fkIm(fl . ..fk)(co) is defined}. Note that if m(fi . ..fk)(co) is defined,
then so is m(fi . ..f.)(co) for 1 < iQ k. When f,, f2, fk are “fed,” one by
one, “into” ~(7’,, F,, co), it “produces,” one by one, the test results of
m(fi)(coh m(fifd(c0h m(f, fi ... fk)(co) for T,. We now show that
these X-transductions are in 1DT -X.

30 JOOSTENGELFRIET

LEMMA 1.2.3. Let X = (C, T, F, m, CO, id) be a storage type. For every
T, s T, F, E F (both finite), and c,, E C,, r(T,, F,, cO) E 1DT - X.

Proof The l-way deterministic X transducer A4 that realizes
r(T,, F,, cO) has initial configuration cO, and uses T, = T, and F, = F, .
A4, when reading fe F,, executes f and then outputs the test result of
the resulting X-configuration. Formally, M has transition function 6:
Qx(.ZLJ{~L))XR(T~)+QX~~* xF,, with Q= {q1,q2), and a(q,,f,p)=
(q2, kf), @q,, 4 p)=(ql, P, id) for all PENT,) andfEFl, where q1 is
the,initial state and the only final state. Note that C = F, and Sz = R(T,). 1

We use the X-transductions in the proof of the following “Justification
Theorem” (it justifies our definition of equivalent storage types; see also
Corollary 3.9 of (Engelfriet and Hoogeboom, 1989) and Theorem 4.18 of
(Engelfriet and Vogler, 1986)).

THEOREM 1.2.4. Let X, and X2 be storage types, and let Y be an
automaton type.

ZfX,<Xx,, then Y-X,E Y-X?.

ZfX1rX2, then Y-X,= Y-X,.

Proof. Obviously the second statement follows from the first. Let Xi =
(Ci, Ti, F,, mi, Coi, idi) for i= 1,2, and assume that X, <X,. We have to
show that Y-X, E Y-X,. For Y = 1DT this holds by definition of <.
We now give the proof simultaneously for all other Y. Let A4 be a Y-X,
automaton with initial configuration cM E Cal, set of tests T,,,, E T,, and
set of instructions F, G I;,. The use that M makes of its storage is fully
determined by the X,-transduction T = r(T,, FM, c,,,,). Since z E 1DT - X,
(by Lemma 1.2.3) and X, <X,, also r E 1DT - X,. Let N be a l-way deter-
ministic X, transducer realizing r. We have to show the existence of a
Y-X, automaton M’ equivalent to M. Intuitively, M’ is obtained from M
and N by a variation of the usual product construction. In fact M’ imitates
the behaviour of A4, using N instead of X,-storage. Whenever A4 executes
an instruction f of F,, M’ instead feeds f into N, simulates N until it
produces a test result p, and stores p in its finite control, using it to
simulate the next move of M.

Formally, let 6,: QM xA’xR(T,)-+Pfi,(QMxB’xF,) and 6,:
QN x (F, u {A}) x R(TN) + QN x R(TM)* x F, be the transition functions
of A4 and N, respectively, where QM and QN are the set of states of M and
N, respectively, and T, and F, are the finite subsets of T, and F2 used by
N. The precise form of A’ and B’ depends on Y.

Clearly we may assume that N produces at most one symbol at a time.
Moreover, it is not difficult to argue that we may also assume that in any

AUTOMATA AND COMPLEXITY 31

successful computation of N, translating fi ... fk into pr ... pk, pi is not
produced before fi is read.

We now describe M’. It has the same initial configuration as N, and it
also uses TN and FN. The set of states of M’ is Q = Q,+, x Q,+. x R(T,), and
the initial state is (qo, p,,, p,,) where q. and p. are the initial states of A4
and N, respectively, and pO = p(T,,,, c,+,). A state (q, p, p) of M’ is final
whenever q and p are. In case M is alternating, a state (q, p, p) is existen-
tial or universal whenever q is. M’ has the same input (worktape, output)
alphabet as M. It remains to specify the transition function 6:
Q x A’ x R(TN) -+ P,,(Q x B’ x F,,,) of M’. Let bb E B’ be such that it leaves
the involved devices invariant (i.e., no output, no heads moving, etc.).
Moreover, in what follows, q, q’e QM, p, P’E QN, p, p’ E R(T,), f E F,,
fi E R(TN), g E FN, a’ E A’, and b’ E B’. First we treat the A-moves of N.

~ If 6,(p, 4 P) = (P’, A, gh then &(q, p, P>, a’, B) =

(((a ~‘1 P), 4, 8)).

- Similarly, if 6,(p, 1, 8) = (p’, p’, g), then the new state of M’
is (4, P’, P’>.

Second we treat the other moves of N, together with the moves of M.

- If 6,(p, .L B) = (P’, 2, g) and 6dq, a’, PI contains (4, b’, f), then

6((4, P, P >, a’, P) contains ((q’, P’, P >, b’, g).
- Similarly, again, if d,(p, f, /?) = (p’, p’, g), then the new state of

M’ is (q’, p’, p’).

This ends the description of M’. It easily follows from this description
that M’ is deterministic if M is.

In a state (q, p, p), p represents the test result of the configuration of
M. After simulating a move of M, M’ first simulates the I-moves of N until
N waits for input (an instruction of FM). In the meantime, M’ has received
from N the test result p’ of the new configuration of M, and has stored p’
in its finite control. This enables M’ to simulate the next move of M. Note
that, initially, M’ starts by executing I-moves of N (and already has the
correct test result). From these observations it should be clear that
s(W) = z(M). 1

It is quite obvious that this theorem also holds for many other
automaton types Y not used in this paper (e.g., l-way multi-head
automata, multi-tape automata, etc.). However, it obviously does not
hold for time-restricted automata; in that case the notion of simulation
should be adapted, putting appropriate time restrictions on the 1DT -X
transducers too (cf. Engelfriet and Hoogeboom, 1989).

32 JOOST ENGELFRIET

1.3. Pushdowns and Iterated Pushdowns

The easiest way to define the storage type of an iterated pushdown is to
view the pushdown as an operation on storage types, and to iterate this
operation; see Greibach (1970), Engelfriet (1986), Engelfriet and Vogler
(1986, 1987, 1988), and Vogler (1986). We will discuss several equivalent
ways of defining this operation, and we will show that it preserves
equivalence.

Let X= (C, T, F, m, C,, id) be a storage type. Let r be a fixed, infinite
set of pushdown symbols. The storage type pushdown of X, denoted P(X),
has configurations that are pushdowns of which each square contains a
pair (y, c), where y is a pushdown symbol and c an X-configuration. As
usual, a P(X) automaton M has access to the top-most square (y, c) of its
pushdown only. It can test which symbol y is in that square, and it can
apply the tests from T to c. Also as usual, M can change the pushdown by
popping the top-most square or by pushing a new square. The push
instruction contains the symbol of the new square, and contains an instruc-
tion from F that should be applied to c in order to obtain the
X-configuration of the new square.

Formally, P(X) = (C’, T’, F’, m’, C’& id’), where

C’=(TxC)+ and Cb=rxCo,

T’={top=yIy~r}u{test(t)lt~T),

F’ = {PuW, f) I Y E C f E F> u {pop, id’},

and, for every c’ = b(p, c) with /I E (TX C)*, p E r, and c E C:

m’(top = y)(c’) = (P = Y),
m’(test(t))(c’) = m(t)(c),

m’(push(y,f))(c’)= j?(p, c)(y, m(f)(c)) if m(f) is defined on c, and
undefined otherwise,

m’(pop)(c’) = /I if /I # I and undefined otherwise, and

m’(id’)(c’) = c’.

Remarks. (1) The top of the pushdown is to the right. For reasons of
simplicity there is no empty pushdown.

(2) Whenever no confusion can arise, the prime is dropped from id’.

(3) A pushdown alphabet PM E r is specified for every P(X)
automaton M. In fact it is always possible to take rM to contain the y that
occurs in the initial P(X)-configuration of M, and all y’s that occur in
push(y, f) instructions used by M (as determined by FL).

AUTOMATA AND COMPLEXITY 33

(4) For a pushdown c’=(y,,, c,)(y,, c,)...(y,, c,)E(~x C)‘, we
will call yOyl ... y, the symbol part and c,,cl ... c, the X-configuration part
of c’.

The operation P(X) on storage types can now be iterated: for a storage
type X, P”(X) =X, and, for k> 1, Pk+ ‘(X) = P(P”(X)). For k 30, the
k-iterated pushdown is the storage type Pk(Xo), also denoted Pk. Any Pk
automaton is called an iterated pushdown automaton. One-way iterated
pushdown automata were considered in, e.g., Maslov (1976), Damm and
Goerdt (1986), Engelfriet and Vogler (1987), and Vogler (1986). Note that
the l-iterated pushdown P(X,) is equivalent to the usual pushdown P (as
defined in Section 1.1); i.e., P(X,) = P. In fact, P(X,) just has the additional
X,-configuration co in each square of the pushdown, which has no
influence on the computation of any P(X,) automaton.

It is possible to strengthen P(X) by allowing an additional test “bottom”
that is true for one-square pushdowns, and additional instructions
“stay(y, f)” with y E r and fe F that transform B(p, c) into fl(y, m(f)(c)).
Let the resulting storage type be denoted by P,(X): pushdown of X with
stay instructions. In fact, P,(X) is not really stronger than P(X) because they
are equivalent storage types: P,(X) = P(X). Clearly P(X) < P,(X) is trivial.
Let us show now that P,(X) d P(X). Let A4 be a l-way deterministic P,(X)
transducer. We have to show that M can be changed into an equivalent
l-way deterministic P(X) transducer. It is easy for M to get rid of the
bottom test: it just marks the bottom square symbol and keeps it marked.
The stay(y, f) instruction can be simulated by a push(jj,f) instruction,
where the bar means that the square below this one is garbage; thus, each
pop instruction should be replaced by a subroutine

while the top symbol is barred do pop;
POP.

In this way it should be clear that P,(X) z P(X).
On the other hand P(X) can be weakened, e.g., by taking two pushdown

symbols instead of infinitely many, say 0 and 1. We will denote by
P{,,](X) the storage type that is defined in exactly the same way as P(X)
except that (0, 1 } is used instead of IY It is well known that ordinary
pushdown automata only need two pushdown symbols, and this also holds
for P(X) automata because P,, 1,(X) = P(X). Again, P,, I;(X) d P(X) is
trivial. To see that P(X) d PC,.,)(X), let rM = (y,, yz, y,}, and simulate
a pushdown square (y,, c) by the piece of pushdown (1, c)(O, c)j. Then
push(y,, f) is simulated by a push (1, f) followed by i times push(0, id),
and pop is simulated by while top =0 do pop followed by one pop, and
test(t) remains the same. Finally, the top symbol can be determined (in the
finite control) by first executing while top = 0 do pop, meanwhile counting

34 JOOST ENGELFRIET

the number i of iterations, and then executing i push(O, id) instructions to
restore the old pushdown.

Thus we can feel at ease that several of the usual variations for
pushdowns can also be used for P(X). But what about iterated pushdowns?
E.g., is Pr = Pk? In other words, can we use stay instructions at all levels
of the iterated pushdown? To show this we need the fact that the operation
P(X) preserves =, or better, that P(X) is monotonic with respect to < (cf.
Theorem 4.22 of Engelfriet and Vogler, 1986). Note that this is a very
natural requirement for any operation on storage types.

THEOREM 1.3.1. Let X, and X, be two storage types.

IfX, <X2, then P(X,)<P(X,).

If X, E X2, then P(X,) = P(X,).

Proof The proof is similar to that of Theorem 1.2.4. Let Xi =
(Ci, T,, F,, mi, Coi, idi) for i= 1,2, and assume that X, <X1, i.e.,
lDT-X,slDT-X,. We have to show that lDT- P(X,)c
1DT - P(X,). Since, as discussed above, P&X,) E P(X,), it suffices to show
that 1DT - P(X,) E 1DT - P,(X,). Let A4 be a l-way deterministic P(X,)
transducer with initial configuration (y,,, cO) E r x C,, . Let TM denote the
set of all t E T, that occur in the tests test(t) used by M, and let F, denote
the set of all f E F, that occur in the instructions push(y, f) used by M. As
in the proof of Theorem 1.2.4, the use that M makes of the storage X,
(through its P(X,) storage) is fully determined by the X,-transduction
r=$T,w, F,, co). Let N be a l-way deterministic X, transducer realizing
r. We will give an informal description of a l-way deterministic P,(X,)
transducer M’ that simulates M; the formal construction is left to the
reader. M’ has the same states, initial state, and final states as M (and, of
course, the same input and output alphabets as M). M’ simulates a
pushdown square (y, c) of M, with y E r and c E C,, by a pushdown square
((y, p, p), d), where p is a state of N, p is the test result of c for T,, and
dE C,. This clearly allows M’ to obtain the test result of (y, c) for the
P(X,) tests used by M. M’ simulates a pop instruction of A4 by a pop
instruction. Thus, it only remains to explain the simulation by M’ of a
push(y, f) instruction of M. Consider a pushdown (yO, c,)(y,, c,) ...
(yn, c,) arisen during a computation of M. Clearly, this pushdown was
built up from the initial P(X,)-configuration (yO, cO) by applying instruc-
tions pusNyl, h 1, PWy,, LA in that order, such that ci = m,(fi)(c,+ i)
for 1~ i < n. When simulating M, M’ has a corresponding pushdown

AUTOMATA AND COMPLEXITY 35

where pi and dj are the state of N and the X,-configuration of N, respec-
tively, that are obtained when the stringf, . ..f. is fed into N (executing the
maximal number of i-moves of N); note that N then produces output
PI . . . pi, and, as in the proof of Theorem 1.2.4, we may assume that pi is
not produced by N before it reads fi. A push(y, f) instruction of M is
simulated by M’ by first executing a push((y, p, p), g) instruction where
p and g are the new state of N and the instruction executed by N when
feeding the symbol f into N (in state p, and configuration d,); in case N
produces output during this move, p is this output, otherwise p = pn. The
simulation of push(y, f) is then continued by simulating all following
A-moves of N, storing output of N (if it occurs) at the third position of the
pushdown symbol; to do this M’ executes instructions of the form
stay((y, P’, P’>, g’).

Finally we note that the initial P(X,)-configuration of M’ is
((yO, pb, po), db), where J& is the initial state of N, po=p(T,, c,), and
db is the initial X,-configuration of N. M’ should start its work by
executing all A-moves of N, thus changing ((yO, pb, po), db) into
((~0, PO> po>,do). I

From this theorem it can easily be concluded, e.g., that P$(X,) = P”(X,),
i.e., that stay instructions can be used at all levels of the k-iterated
pushdown, The proof is by induction: the case k = 0 is trivial; assuming
that Pt(X,) = Pk(Xo), application of P to both sides is allowed by the
previous theorem and gives P(P:(X,)) = P” ‘(X0); using the equivalence
P(X) E P,(X) for X= Pt(X,) then gives P(Pt(X,)) E P,(P$(X,)) =
Pf’ ‘(X0). This simple proof illustrates our technique of dealing with
iterated pushdown automata, as mentioned in the introduction to this
section. First we show that stay instructions can be used in all P(X)
automata, generalizing an obvious property of ordinary pushdown
automata. Then we iterate the P(X) operation, thus obtaining that stay
instructions can be used in all Pk automata.

Let us draw two other easy conclusions from Theorem 1.3.1. First, we
already argued that P(X,) = P. Repeated application of Theorem 1.3.1 now
gives that Pk(Xo) = Pk- ‘(P) for every k 3 1. Thus we may assume that the
innermost pushdown squares of an iterated pushdown just contain
pushdown symbols. Second, it is easy to see that, for every storage type X,
X< P(X). In fact, every instruction f can be simulated by a push(y, f),
and every test t by test(l). Thus, iterated application of Theorem 1.3.1
gives that Pk < Pk + ’ for every k > 0. Hence, by Theorem 1.2.4, Y - Pk E
Y - Pk+ ’ for every k > 0 and every automaton type Y.

Later we will consider other operations U(X) on storage types. For such
an operation we always define U’(X) = X and Ukf ‘(X) = U(U”(X)), and
we denote Uk(Xo) by Uk. For every such U, it can be shown that X< U(X)

36 JOOST ENGELFRIET

for every X, and that U is monotonic with respect to 6. Hence, as above,
Uk < Uk+ ’ for all k. We usually leave it to the reader to prove these facts;
the proof of monotonicity is always similar to that of Theorem 1.3.1.

2. ITERATED PUSHDOWN AUTOMATA

In this section we show the results in Fig. 1, except for the nondeter-
ministic r-head case. As remarked before, these results will be shown by
induction on the number k of iterations of the pushdown operation. In all
cases, the basis of the induction is obtained from Cook’s well-known
characterization of the nondeterministic auxiliary pushdown automata by
time complexity classes.

PROPOSITION 2.1 (Cook, 1971). For s(n) 2 log n, NSPACE(s(n)) - P=
u DTIME(2d”‘“‘).

The induction step is obtained by “taking” two results of Ladner,
Lipton, and Stockmeyer (1984) and Ruzzo (1980) on auxiliary pushdown
automata, and generalizing them to auxiliary P(X) automata in a
straightforward way. Thus, in a certain sense, we obtain our results “for
free.” In the first of these two results (stated in Theorems 2.2 and 2.3) alter-
nating auxiliary pushdown (of X) automata are considered, and it is shown
that the pushdown is equivalent to exponentially more space.

THEOREM 2.2. For any storage type X and s(n) > log n, ASPACE(s(n)) -
P(X) = u ASPACE(2d”‘“‘) - X.

Proof. The proof is a rather straightforward generalization of the proof
of Theorem 3.1 of (Ladner, Lipton, and Stockmeyer, 1984), where it is
shown that ASPACE(s(n)) - P = u ASPACE(2d”‘“‘), i.e., the result for
X= X0. Nevertheless we will discuss the proof here, so that it can be
adapted to proofs of later theorems. Let X= (C, T, F, m, C,,, id).

(i) We have to show that, for any d>O, ASPACE(2d”‘“‘) - XG
ASPACE(s(n)) - P(X). Let M be an alternating auxiliary SPACE(2d”‘“‘) X
automaton. As in Ladner, Lipton, and Stockmeyer (1984) we may assume
that d> 1 and that M has only one tape, i.e., a worktape and no input
tape. Thus, an ID of M can be viewed as a pair (CX, c) such that c E C and
cr~@*(Q x @)@* with 11~1 =2d”‘“‘, where @ is the worktape alphabet and Q
the set of states of M. As usual, in u, the pair (q, 4) E Q x @ indicates that
M is in state q scanning 4. Moreover we may assume that each ID of M
has at most two successors. Thus the transition function of M is a partial
function 6: Q x @ x R(T,) + (Q x { - 1, 0, + 1) x @ x FM)*, where T, and

AUTOMATA AND COMPLEXITY 37

F, are the tests and instructions used by M to manipulate its X-storage.
This is just as in Ladner, Lipton, and Stockmeyer (1984), with R(T,) and
FM added.

The ASPACE(s(n))- P(X) automaton M’ that simulates IV, starts by
laying off a block of s(n) squares on its worktape (assuming that s(n) is
space constructable; otherwise M’ just guesses s(n) nondeterministically).
In general, M’ simulates M by storing a computation (a,, cO) k
(a,, c,) k ... t- (a,, ck) of M on its pushdown, where (IX,, ck) is the
current ID of M (note that a computation is a path in a computation
tree). To be more precise, the symbol part of the pushdown of M’ contains
the string aom,a,m2a2 ...rnkak, where m, E { 1,2} indicates whether
(cl;, ci) is the first or second successor of (tli- r, cjp,). Furthermore, each
square of CI~ contains co, and each square of miai contains ci, 1 6 i< k.
Thus the X-configuration part of the pushdown contains cO, cr, ck with
ci appearing Irnjail times. Note that as soon as ci appears (by some
push(m,,f) instruction), it can be duplicated for all squares of ai by
appropriate push(y, id) instructions. Moreover, M’ keeps the element of
Q x @ of the topmost ID (ak, ck) in its finite control. Since the test result
of the pushdown includes the test result of ck for T, (due to the tests of the
form test(t), t E TM, of M’), we may in fact assume that M’ keeps the element
of Q x @ x R(T,) in its lin$e control that corresponds to the current
ID (ak, ck) of M, i.e., an element x of the domain of the transition function
6 of M. A next move of M is now simulated by M’ as follows. First the
symbol mk+ i E { 1,2} is chosen universally (existentially) by M’ if (a,, ck)
is a universal (existential, respectively) ID of M. Now, x and mk + , together
determine the next move of M, including an instruction f E F,. Thus, M’
executes the push(m, + r, f) instruction, and then nondeterministically (i.e.,
existentially) pushes the symbols of a new ak+ , , one by one, executing
push(y, id) instructions. M’ can count to 2’Y(n’ (the length of LX~+ ,) using
its s(n)-bounded worktape. M’ ensures that (ak+ i, ck+ i) is the correct
successor of (ak, c,), according to x and mk + , , by a universal branch after
each push of a symbol of ak + 1. In this universal branch it compares this
symbol with the corresponding one(s) in ak by popping (roughly) 2ds(n)
symbols, again using its worktape as a counter. Note that, as usual, the jth
symbol of elk+ I is determined by x, mk+ , , and the (j- 1) th, jth, and
(j+ 1)th symbols of ak.

Initially M’ installs the initial ID (ao, cO) of M by copying the input
string (of length n) to the pushdown, extending it with blanks to length
2ds(n’, and duplicating the initial X-configuration cO of M (M’ has an initial
P(X)-configuration (y, cO) for some y). M’ accepts whenever (a,, ck) is an
accepting ID of M.

For more details see Ladner, Lipton, and Stockmeyer (1984). Note that
in fact the mi are superfluous (M’ only needs mk + 1, which it may as well

38 JOOST ENGELFRIET

keep in its finite control). However, they are useful in later variations of
this proof.

(ii) We have to show that ASPACE(s(n)) - P(X) E IJ ASPACE(2d”(“‘)
-X. In this direction the proof is based on ideas of Cook, in his
proof of Proposition 2.1. In Ladner, Lipton, and Stockmeyer (1984) it
is unfortunately shown in this direction that ASPACE(s(n)) - Ps
u DTIME(exp,(ds(n))), which equals U ASPACE(2d”‘“‘) by a well-known
result of Chandra, Kozen, and Stockmeyer (1981). However, the largest
and most important part of that proof can be taken over.

Let M be an alternating auxiliary SPACE(s(n)) P(X) automaton. As in
Ladner, Lipton, and Stockmeyer (1984), we may assume that M behaves
deterministically while it is either pushing or popping; in other words, if,
for the transition function 6 of M, &a, p) contains more than one element,
then all elements of &a, p) contains more than one element, then all
elements of &a, p) are of the form (b, id), where id is the identity instruc-
tion of P(X). As a consequence (as in Ladner, Lipton, and Stockmeyer,
1984), each ID of M may be thought of as being in one of three possible
modes: PUSH, POP, or IDLE (depending on whether the appropriate
&a, p) contains push(y, f), pop, or id instructions, respectively). The IDLE
ID’s are partitioned into U-IDLE and E-IDLE ID’s, depending on whether
they are universal or existential, respectively.

The notion of a (s(n)-bounded) surface ID can be defined as in Ladner,
Lipton, and Stockmeyer (1984); it now also involves an X-configuration.
Thus, a surface ID is an ID (a, (y, c)) of M, where (y, c) is a one-square
P(X)-configuration, and a is the rest of the ID, containing a worktape of
length s(n). Define top(a, (y, c)) = (y, c). Intuitively (y, c) is the top square
of a pushdown in an ordinary ID: every ID of M has an associated surface
ID, obtained by replacing the pushdown by its top square. For an ID w we
denote the associated surface ID by surf(w). It would now be possible to
define a surface computation just as in Ladner, Lipton, and Stockmeyer
(1984), where the top square now plays the role of the top symbol in
Ladner, Lipton and Stockmeyer (1984). For our purposes it suffices to
use the following simplified notion of surface computation: a surface
computation is a computation tree of A4 of which both the root and the
leaves are labeled by ID’s with one-square pushdowns, i.e., by surface ID%.
Obviously, the root ID and the leaf ID’s have the same pushdown square
(because there are no stay(y, f) instructions in P(X)), and in particular the
same X-configuration. For surface ID’s r, z,, zk we write r + (z,, zk}
if there is a surface computation whose root is labeled r and whose leaf
labels are contained in the set {z,, z,}; thus we may assume that
top(r) = top(z,) for all 1 < id k.

For every input string x there is an initial (surface) ID Z(x) =
(aO, (yO, co)) of ikf, where a,, contains x. Clearly we may also assume that

AUTOMATA AND COMPLEXITY 39

there is exactly one accepting (surface) ID with input string x, say, A(x) =
(/lo, (yO, c,)), where PO differs only from c(,, in its state; thus, M accepts by
(unique) final state, one-square pushdown, and blank worktape. Conse-
quently, x is accepted by M iff Z(x) -+ {A(x)).

In Ladner, Lipton, and Stockmeyer (1984) a “proof system,” consisting
of six “proof rules,” is given in which “terms” of the form r -+ {z, , zk)
can be “proven,” where r, zl, zk are surface ID%. Exactly the same proof
system can be used here, except that we restrict all terms r + {z, , zk} to
those that satisfy top(r) = top(z,) for all 1 < id k. This restriction could
also have been made in Ladner, Lipton, and Stockmeyer (1984), where it
is only mentioned in proof rule 4. For completeness’s sake we list the proof
rules below:

1. If true, then r -+ {r}.

2. (a) If r-+ Wand WG V, then r+ V.

(b) Ifr+Wu{w}andw+V,thenr-+WuV.

3. (a) If r is in E- IDLE mode and r t-- w, then r -+ {w}.

(b) If r is in U-IDLE mode and {wl, wk} = {w 1 r t w}, then
r + (wl, wkj.

4. If r is in PUSH mode,

r t w’,
w = surf(w’),
w -+ (v1, QJ,
for every 1 didk

ui is in POP mode,
u(k zi,
surf(ul) = oi,

then r + {z,, zk).

In these rules, lower case letters stand for surface ID’s, primed lower case
letters stand for ID’s with two-square pushdowns, and upper case letters
stand for finite sets of surface ID’s. Note that each proof rule consists of
zero, one, or two antecedents (between “if” and “then”) and one conse-
quent (after “then”), together with some application conditions (also
between “if” and “then”). As an example, rule 2(a) has antecedent r + W,
application condition Ws V, and consequent r -+ V. In Lemma 3.2 of
Ladner, Lipton, and Stockmeyer (1984) it is shown that the proof system
is sound and complete, i.e., that r + { z1 , zk} can be proven iff it is true.
The proof of that Lemma 3.2 stays valid here (in Ladner, Lipton, and
Stockmeyer, 1984, a more involved notion of surface computation is used,

40 JOOST ENGELFRIET

to facilitate the proof of Lemma 3.2; this notion can easily be adapted to
our case).

It remains to show that there is an alternating auxiliary SPACE(2d”‘“‘)
X automaton M’, for some d > 0, that checks whether Z(x) + {A(x)} for a
given input X. To do this, M’ guesses a “proof tree” for Z(x) + {A(x)}. As
usual, such a proof tree is a tree whose nodes are labeled by terms
r + {z, , zk} an w d h ose root is labeled by Z(x) -+ {.4(x)}. Moreover, for
each nonleaf node, its label and the labels of its children are the consequent
and the antecedents (respectively) of an instance of a proof rule. M’ guesses
the proof tree top-down, using the proof rules in a backward fashion, in
such a way that its computation tree mirrors the proof tree. More precisely,
at each moment of its computation the current ID of M’ contains a coded
version of a term r -+ {zl, zk }. M’ chooses existentially an instance of a
rule whose consequent is r + {z-] , zk >, and then branches universally to
check each of the antecedents of the rule; it accepts in case there are no
antecedents (proof rules 1 and 3). Note that actually M’ branches univer-
sally in proof rule 2(b) only.

M’ stores a term r -b (2,) zk} by keeping the X-configuration of r,
7
b 1, ..‘, zk as its own X-configuration (recall that top(r) = top(z,) for all i),
and keeping everything else on its worktape. Since “everything else” mainly
consists of the worktape contents of r, ;i, zk (which are of length s(n)),
it is easy to see that M’ only needs workspace 2ds(n) for some d (note that
z,, zk are all different). Clearly this workspace also suffices to construct
an antecedent out of a consequent (and to test the application conditions).
Note that, in the construction of such an antecedent, if A4 tests its
pushdown (as needed to obtain an instance of proof rule 3 or 4), M’ can
test the corresponding top square; in particular, a test test(t) of M is
simulated by the test t of M’. Furthermore, if M executes a push(y,f)
instruction (as needed for an instance of proof rule 4), M’ just applies f;
this results in the X-configuration of the surface ID’s w, u,, uk of the
antecedent w + {v I, uk}. Note that, when using proof rule 4, M’ does
not have to construct the ID’s w’, o’,, ok explicitly. Initially, M’ stores the
term Z(x) + {A(x)}, with Z(x) = (a,, ho, cd) and A(x) = U&, (yoy cd)
where (yO, c,,) is the initial configuration of M. Thus M’ has initial
configuration cO. This ends the description of M’. 1

Since it is easy to see that 2A(multi)-X= ASPACE(log n)- X,
generalizing the well-known equivalence of multi-head automata and
SPACE(log n) Turing machines, it follows from Theorem 2.2 that
2A(multi) - P(X) = ASPACE(poly) - X. In the next theorem we show that
the number of heads of the multi-head automaton corresponds to the expo-
nent of the polynomial. Moreover, in the case of one head, it may be
restricted to be one-way.

AUTOMATA AND COMPLEXITY 41

THEOREM 2.3. For any storage type X,

(1) for every Y > 1, 2A(r) - P(X) = ASPACE - X, and

(2) 1A -P(X) = 2A(1) - P(X) = ASPACE - X.

Proof (i) The proof that ASPACE(XE 2A(r) - P(X) is exactly
the same as in part (i) of the proof of Theorem 2.2. This is because r heads
can be used to count to n’.

In case r = 1, the head only needs to move one way to count to
n. However, since the head cannot be reset, care should be taken that
counting is done only in universal side branches. Thus, the fact that
(g k+l, ck+ i) is of the correct length should be checked after guessing
elk+ 1. Similarly, c(~ should first be guessed and then compared to the
input; to permit this, the symbol part of the pushdown should contain
cc,Rm,af ...rnkuf rather than cfOmluI...rnkClk, where ci R is the reverse
of CI. For details see the proof of Theorem 5.4 of Chandra, Kozen, and
Stockmeyer (1981), where it is shown that ASPACE E 1A -P.

(ii) The proof that 2A(r)- P(X) GASPACE(X is the same as
in part (ii) of the proof of Theorem 2.2. The only difference is in the
construction of the ASPACE(X automaton M’ that simulates the
2A(r)- P(X) automaton M. M’ should be able to store a term
ZO + {z,, zk), where ro, pi, ;k are surface ID’s of M. The
X-configuration of ro, z,, zk is no problem. For fixed X-configuration,
M has O(nr) possible surface ID’s. Since they are of size O(log n), not
counting the input, M’ does not have enough worktape to store them all.
However, they can be generated by M’ in a systematic order. Thus, to store
zo -+ {zl, z,}, M’ keeps z. directly on its worktape, and for z,, zk it

keeps a boolean array A of length O(nr) on its worktape, where A[i]
indicates whether or not the ith surface ID, in the above order, is in the
set {zi, zk}. Whenever M’ needs the ith surface ID, M’ can generate it
and keep it on its worktape. In this way M’ can compute antecedents from
consequents (and test application conditions), as required by the proof
rules. [

In the second result that is needed for our induction step, we show the
equivalence of alternation and an auxiliary pushdown (Theorem 2.4). This
equivalence was first established in Chandra, Kozen, and Stockmeyer
(1981), where it is shown that ASPACE(s(n)) = u DTIME(2d”(“‘) and
hence that ASPACE(s(n)) = NSPACE(s(n)) - P, by Cook’s result
(Proposition 2.1). In Theorem 1 of Ruzzo (1980) a direct proof of the latter
equality is given, in order to show that time on the pushdown automaton
corresponds to (computation) tree size on the alternating automaton. In
this way Ruzzo (1980) strengthens the equivalence alternation = pushdown.
Here we strengthen it by generalizing it to X automata.

42 JOOST ENGELFRIET

THEOREM 2.4. For any storage type X and s(n) >, log n, NSPACE(s(n)) -
P(X) = ASPACE(-X.

Proof. (i) We have to show that ASPACE(s(n)) - Xc NSPACE(s(n)) -
P(X). This could be done as in the proof of Theorem 1 of Ruzzo (1980).
Here we adapt part (i) of the proof of Theorem 2.2; compared to that
proof, when simulating an ASPACE(s(n)) - X automaton by an auxiliary
P(X) automaton, we have space s(n) rather than space log(s(n)), but we do
not have alternation. The construction of M’ from M is the same as in
Theorem 2.2 except for two differences, to get rid of universal branching.

First, to ensure that (c++ , , ck +,) is the correct successor of (a,, c,),
Q+, is computed from CQ on the worktape of M’ (where there is enough
space now).

Second, M’ does not simulate a universal move of M by a corresponding
universal move, but executes the two universal branches one after another.
Thus, rather than mirroring the computation tree of A4, M’ does “a simple
depth first search of MS computation tree, using its stack to backtrack
through the universal nodes” (Ruzzo, 1980). More precisely, if the top ID
(elk, CJ is a universal ID of M, then M’ pushes mk + i = 1 and pushes the
first successor of (a,, ck). When the top ID is an accepting ID of M, M’
pops ID’s until the top ID is a universal ID (elk, ck) with mk+ i = 1. It then
pushes mk+ i = 2 and pushes the second successor of (ak, ck). Note that to
find out that (Q, ck) is universal, and to compute its second successor, M’
can copy c(~ to its worktape. M’ accepts if it reaches the bottom of its
pushdown.

This second change could also have been used in part (i) of the proof of
Theorem 2.2. In other words, in that proof, alternation was needed only to
check that (Q + , , ck + ,) is a successor of (ak, ck).

(ii) We have to show that NSPACE(s(n)) - P(X) E ASPACE(s(n))
- X. The proof is exactly the same as part (ii) of the proof of Theorem 2.2.
The only difference is that all computation trees and hence all surface
computations consist of one path only, and thus have one leaf only. This
means that the proof system can be restricted to terms r + {z}, i.e., to pairs
of surface ID’s, just as in Cook’s original proof of Proposition 2.1 (see also
the second part of the proof of Theorem 1 of Ruzzo, 1980). Clearly such
terms can be stored in space U(s(n)) rather than O(2d”‘“‘). 1

These generalizations now allow us to prove the main results of this
section: all results of Fig. 1, except for the 2N(r) - Pk automata. The proofs
are by straightforward inductions.

THEOREM 2.5. For any k> 1 and s(n) >log n, NSPACE(s(n))- Pk=
ASPACE(s(n)) - Pkpl = U DTIME(exp,(ds(n))).

AUTOMATA ANDCOMPLEXITY 43

Proof Since the first equality is just Theorem 2.4, for X= Pkp I, it
remains to show that this class equals U DTIME(expk(ds(n))). The proof
is by induction on k. For k = 1 this is Cook’s theorem (Proposition 2.1)
and the induction step is immediate from Theorem 2.2. 1

THEOREM 2.6. For an-v k > 1, 2N(multi) - Pk = 2A(multi) - Pk-’ =
DTIME(exp,~ ,(poly)).

ProoJ This is just Theorem 2.5 for s(n)= log n, using the obvious
facts that 2N(multi) -X= NSPACE(log n) - X and 2A(multi) -X=
ASPACE(log n) -X. h

It is shown in Kowalczyk, Niwinski, and Tiuryn (1989), by a more
careful analysis, that DSPACE(s(n)) - Pk = NSPACE(s(n)) - Pk (for space
constructable s(n)), and thus 2D(multi) - Pk = 2N(multi) - Pk.

The reader who is interested in the application of Theorem 2.6 to one-
way automata can jump directly to Section 7 and read Section 7.1 up to
Theorem 7.5 and Section 7.2 up to Theorem 7.14.

THEOREM 2.7. For any k > 1,

(1) for eoery r b 1, 2A(r) - Pk = U DTIME(exp,(dn’)), and

(2) 1A - Pk = U DTIME(exp,(dn)).

Proof: (1) By Theorem 2.3(l), for X=Pkp’, 2A(r)-Pk=ASPACE(n’)
- Pkp ‘. By Theorem 2.5, for s(n) = n’, this equals U DTIME(exp,(dn’)).

(2) By Theorem 2.3(2), for X=Pk-‘, lA-Pk = 2A(l)-Pk. i

In the remainder of this section we prove one half of the characteri-
zation of the 2N(r) - Pk automata, viz. the inclusion 2N(r)- Pk E
U DTIME(exp,~ l(dn2’)) f or k 3 2. This result would follow from
Theorem 2.7(1) if we could prove that 2N(r) - P(X) c2A(2r)-X. One
could believe this inclusion to be true by looking at the proof of
NSPACE(s(n)) - P(X) 5 ASPACE(s(n)) -X in Theorem 2.4. Since only
pairs of surface ID’s have to be stored by the new automaton, twice as
many heads as the original automaton suffice. Unfortunately this does not
suffice to simulate proof rule 2(b) backwards: a term u + (u} has to be
replaced (universally) by two terms u + (w) and w -+ (u}. Thus, the alter-
nating automaton has to guess an arbitrary new surface ID w and use this
in both universal branches. For this it would need 3r heads. To solve this
problem we extend the power of 2A(r) - X automata in an ad hoc fashion,
calling them 2A + (r) - X automata.

A 2A+(r) - X automaton is a 2A(r) - X automaton with the following
additional features. First, any head may nondeterministically jump to an
arbitrary position on the input tape. To this end the set (- 1, 0, + 1) in the

44 JOOST ENGELFRIET

transition function is replaced by { - 1, 0, + 1, jump}. Clearly, this feature
alone would not strengthen the power of 2A(r) - X automata. Second, in
a universal move of the automaton with, say, two universal branches, a
finite number of relationships between the jumping heads in the first
branch and those in the second branch may be specified. Such a rela-
tionship is of the form (i, 1) = (j, 2), meaning that only those pairs of
successors of the current ID are considered in which head i in the first
branch is on the same position as head j in the second branch. This rela-
tionship can be required only if both i and j are jumping heads. We leave
the formalization of this type of automaton to the reader.

First we show that this extension does not increase the power of
alternating multi-head pushdown automata.

LEMMA 2.8. For any storage type X and r > 1, 2A +(r) - P(X) =
2A(r) -P(X).

Proof Let A4 be a 2A+(r) - P(X) automaton. A 2A(r)- P(X)
automaton M’ can simulate A4 as follows. Just before a universal move
with, say, two branches, M’ guesses nondeterministically the new positions
of the jumping heads in each branch, by pushing them in unary notation
on the pushdown, using appropriate push(y, id) instructions. Then M’
simulates the universal move of M, without executing the pushdown
instruction involved. Next, M’ resets the jumping heads of M to the left
endmarker e and puts them on their correct position by popping the
pushdown. Finally, with the pushdown back in its configuration before the
move, M’ executes the pushdown instruction of M. 1

Next we show that the extension solves the above-mentioned problem.

LEMMA 2.9. For any storage type X and r 3 1, 2N(r) - P(X) E
2A + (2r) -A’.

Proof: The proof is the same as in part (ii) of the proofs of
Theorems 2.2 and 2.4. The new automaton M’ only has to store terms
u + {u >, i.e., two surface ID’s of the old automaton M. Clearly M’ can do
this with 2r heads, say, heads 1 to r for U, and heads r + 1 to 2r for u. When
simulating proof rule 2(b) backwards, u -+ (u) has to be replaced univer-
sally by u + { > w an d w + {u} for an arbitrary surface ID w. Thus, for the
first branch M’ jumps with heads r + 1 up to 2r, and for the second branch
with heads 1 up to r. The relationships between the jumping heads in both
branches are (r + i, 1) = (i, 2) for all 1 < i < r; this ensures that heads
r + 1 to 2r in the first branch guess the same surface ID w as heads 1 to r
in the second branch. 1

These two lemmas together give us the following partial characterization.

AUTOMATA AND COMPLEXITY 45

LEMMA 2.10. For any storage type X and r> 1, 2N(r) -P(P(X)) c
ASPACE -X.

Proof: 2N(r) - P(P(X)) G 2A + (2r) - P(X) by Lemma 2.9. The latter
class equals 2A(2r) - P(X) by Lemma 2.8, which equals ASPACE - X
by Theorem 2.3(1). 1

In the next section we will show that the inclusion in this
lemma is in fact an equality (Theorem 3.2). Note that, taking X= P”- *,
Lemma 2.10 together with Theorem 2.5 show that 2N(r)- Pk G
lJ DTIME(exp,- ,(dn*‘)), for k > 2.

3. ITERATED STACK AUTOMATA

The results of this section can be stated in one sentence: for 2-way multi-
head automata and for auxiliary SPACE(s(n)) automata, a stack has the
same power as a pushdown of pushdowns. This implies that for iterated
stack automata all results in Fig. 1 hold with k replaced by 2k.

A stack automaton is a pushdown automaton with the additional ability
of reading in the stack (Ginsburg, Greibach, and Harrison, 1967; Hopcroft
and Ullman, 1979). Thus the storage type stuck of X, denoted SA(X), can
be defined similarly to P(X), with two additional instructions for moving
its stack pointer up and down the stack: move-up and move-down, respec-
tively. The reading tests of SA(X) are called sym = y (for y E r) rather than
top =y, and the elements of f are now called stack symbols. A storage
configuration of SA(X) consists of a sequence (yO, c,)(y,, ci). . . (y,, c,) of
“squares” (just as in P(X)), together with a number i (0 d i<n) that
indicates the position of the stack pointer (or stack head). If i= n, the
configuration is said to be in pushdown mode (because only then the push
and pop instructions are defined). If i < n, the configuration is said to be in
reading mode. The move-down instruction decreases i by 1, and the move-
up instruction increases i by 1. The test sym = y tests whether yi = y, and
the test test(t) with t E T tests t on ci. We leave it to the reader to give a
more formal definition of SA(X). It should also be clear that there exist
several equivalent variations of SA(X), where “equivalent” is meant in the
formal sense of Section 1.2 (cf. the variations of P(X) in Section 1.3). Thus,
one could add tests “bottom” and “top” and instructions “stay(y, f)” with
their obvious meanings. One could also restrict the set of stack symbols to
(0, 1 }. As a final example, one could require test(t) always to be false in
reading mode: just after pushing, the test result of the new X-configuration
can be stored in the symbol part of the new square (by an appropriate
stay(y, id) instruction). To guarantee that these variations can also be used

46 JOOST ENGELFRIET

when SA(X) is iterated, it should be proved that SA(X) is monotonic with
respect to < . This can be shown in exactly the same way as Theorem 1.3.1.
Note finally that, trivially, P(X) < SA(X).

The operation SA on storage types can be iterated just as P. For k 2 0,
k-iterated stack is the storage type SAk(XO), also denoted SAk. Any SAk
automaton is called an iterated stack automaton.

As remarked before, for multi-head and auxiliary automata, a stack has
the same power as a pushdown of pushdowns. In fact, in one direction, a
stack ‘can be simulated by a pushdown of pushdowns.

LEMMA 3.1. For every storage type X, SA(X) 6 P(P(X)).

Proof. Let X= (C, T, F, m, C,,, id). We have to show that 1DT -
SA(X)s IDT- P(P(X)). It s&ices to show that lDT-SA(X)c
lDT- P,(P(X)), cf. Section 1.3 (Ps is P with stay instructions). Let M be
a l-way deterministic SA(X) transducer. An equivalent l-way deterministic
P,(P(X)) transducer M’ can be constructed as follows. The SA(X)-con-
figuration of M in Fig. 2(a) is simulated by the P(P(X))-configuration of
M’ shown in Fig. 2(b). In Fig. 2, each blank square represents a pair (y, c)
with y E r and CE C. Each square with p or r, together with the “inner”
pushdown above it, is a square of the “outer” pushdown in Fig. 2(b)
(where the outer pushdown grows horizontally, and each inner pushdown
grows vertically). The symbols p and r (with p, r E r but $ r,,,) stand for
“pushdown mode” and “reading mode,” respectively. Each inner pushdown
is a prefix of the inner pushdowns to the left of it, and the number of inner
pushdowns equals the number of squares in Fig. 2(a) that are above the . I , , 1 _I Y

(al (bl

FIG. 2. Simulation of a stack by a pushdown of pushdowns.

AUTOMATA AND COMPLEXITY 47

stack pointer (including the square pointed at). The left-most inner
pushdown (above p) has the same contents as the stack in Fig. 2(a).

The simulation of M by M’ is easy. A move-down instruction of M is
simulated by a push(r, pop) instruction of M’. This instruction adds
another step to the “staircase’ of Fig. 2(b). A move-up instruction of M is
simulated by a pop instruction of M’. A push(y, f) instruction, with y E r
and f E F, is simulated by stay(p, push(y, f)) provided top = p (and
undefined otherwise). Similarly, a pop is simulated by stay(p, pop)
provided top = p. A test sym = y, with y E r, of A4 is simulated by the test
test(top =y) of M’, and test(r), with t E T, is simulated by test(test(t)). Of
course, M’ simulates the state behaviour and the input and output of M in
the obvious way. Finally, if (yO, c,,) is the initial configuration of M, then
(p, (yO, c,,)) is the initial configuration of M’. i

In general, a pushdown of pushdowns cannot be simulated by a stack
(see next section). We now show that, for auxiliary and multi-head
automata, the P*(X) automata can be simulated by the corresponding
SA(X) automata. First we discuss the nondeterministic case, including the
missing part of the nondeterministic r-head pushdown automata.

THEOREM 3.2. For any storage type X, s(n) 3 log n, and r > 1,

(1) NSPACE(s(n)) - SA(X) = NSPACE(s(n)) - P(P(X))
= lJ ASPACE(2d”‘“‘) -X, and

(2) 2N(r) - SA(X) = 2N(r) - P(P(X)) = ASPACE - X.

Proof: (1) By Lemma 3.1 and Theorem 1.2.4, NSPACE(s(n)) - SA(X) E
NSPACE(s(n)) - P(P(X)). By Theorems 2.4 and 2.2, NSPACE(s(n)) -
P(P(X)) = u ASPACE(2d”‘“‘) - X. Thus, it remains to show that, for every
d> 0, ASPACE(2d”‘“‘) - XL NSPACE(s(n)) - SA(X). This is shown again
by adapting part (i) of the proof of Theorem 2.2. Universal branching is
avoided by the following two changes.

First, to ensure that (CQ + , , ck + ,) is the correct successor of (ak, c,), the
stack automaton M’ goes into reading mode each time a new symbol y of
ak+ I is pushed. It moves down to the corresponding symbols in ak (using
space s(n) as a counter), compares those symbols to y, and then moves up
to the top again, to continue pushing ak + i. This is the only use M’ makes
of its reading facility. Note that M’ may as well first guess ak + I completely,
and then compare it to ak, symbol for symbol. Second, M’ backtracks
through the computation tree of M, as explained in part (i) of the proof of
Theorem 2.4.

(2) By Lemma 3.1 and Theorem 1.2.4, 2N(r)- SA(X)c2N(r)-
P(P(X)). By Lemma 2.10, 2N(r) - P(P(X)) G ASPACE - X. Thus
it remains to show that ASPACE(Xc2N(r)- SA(X). This can be

48 JOOST ENGELFRIET

proven as in (1) above, where the only problem is how to ensure that
(a k+l? Ck+l) is the correct successor of (a,, ck) using r heads only (it
would seem that, as in part (i) of the proof of Theorem 2.3, 2r heads are
needed to count to racy). In Theorem 5 of (Hopcroft and Ullman, 1967b) it
is explained how a 2-way one-head stack automaton can compare strings
of length n* (see also Lemma 3 of Cook, 1971). The basic idea is to divide
such strings into n blocks of length n each. In exactly the same way r heads
can compare strings of length n”, by dividing them into n’ blocks of length
n’ each (and using the heads to count to nr). Obviously this method also
works for SA(X) automata. 1

With the next result the proof of Fig. 1 (for iterated pushdown
automata) is completed.

THEOREM 3.3. For any ka 2 and r 2 1, 2N(r)- Pk = lJ DTIME
texpk- Adn2’N.

Proof: Both classes equal ASPACE(n2’) - Pk-‘, by Theorems 3.2(2)
and 2.5, respectively. h

Next we discuss alternating stack automata, including alternating non-
erasing stuck automata. A stack automaton is nonerasing if it does not use
its pop instruction. The corresponding storage type NESA(X) is obtained
from SA(X) by simply dropping the pop instruction from the set of instruc-
tions. Thus, trivially, NESA(X) < SA(X). Also, NESA is monotonic with
respect to 6.

THEOREM 3.4. For any storage type X, s(n) > log n, and r 2 1,

(1) ASPACE(s(n)) - NESA(X) = ASPACE(s(n)) - SA(X)
= ASPACE(s(n)) - P(P(X)) = U ASPACE(exp,(ds(n)) - X,

(2) 2A(r) - NESA(X) = 2A(r) - SA(X) = 2A(r) - P(P(X))
= lJ ASPACE(exp,(dn’)) - X, and

(3) lA-NESA(X)=lA-SA(X)=lA-P(P(X))
= U ASPACE(2d”) - X.

Proof. (1) All inclusions “ c ” follow from NESA(X) d SA(X) d
P(P(X)) (Lemma 3.1) and from Theorem 2.2. Thus it remains to show
that, for every d>O, ASPACE(exp,(ds(n)) - XE ASPACE(s(n)) -
NESA(X). For X=X, this is proven in Lemma 5.2 of Ladner, Lipton, and
Stockmeyer (1984), and it is obvious that the proof generalizes to arbitrary
X (another “free” result). In fact, the proof is very similar to part (i) of the
proof of Theorem 2.2; note that the pushdown automaton in that proof
uses pop instructions only when comparing successor ID’s in its universal

AUTOMATA AND COMPLEXITY 49

side branches. This comparison is done here in reading mode. The extra
exponential can be handled “by preceding each symbol of an ID by a
binary address” (Ladner, Lipton, and Stockmeyer, 1984) of length 2ds(n),
and comparing addresses using s(n)-worktape as a counter. For details see
Ladner, Lipton, and Stockmeyer (1984).

(2) As in (1). The addresses are of length rir, and the r heads can be
used to count to nr.

(3) As in (2) observing that, in the proof of Lemma 5.2 of Ladner,
Lipton, and Stockmeyer (1984), all comparisons of addresses are done in
universal side branches. Note that, upon initialization, the symbols of the
first worktape configuration can first be guessed, and then checked against
the input in a universal branch. 1

These results imply the characterizations of iterated stack automata by
time complexity classes.

THEOREM 3.5. For any k> 1, s(n)>log n, and r>, 1,

(1) NSPACE(.r(n)) - SAk = U DTIME(exp,,(&(n))),

(2) ASPACE(s(n)) - SAk = ASPACE(s(n)) - NESAk
= U DTIME(ewk+ ,(&n))),

(3) 2N(multi) - SAk = DTTME(exp,,- i(poly)),

(4) 2A(multi) - SAk = ZA(multi) - NESAk = DTIME(exp,,(poly)),

(5) 2N(r) - SAk = U DTIME(exp,,- ,(dn*‘)),

(6) 2A(r) - SAk = 2A(r) - NESAk = U DTIME(exp,,(dn’)), and

(7) 1A - SAk = 1A - NESAk = lJ DTIME(exp,,(dn)).

ProojY (2) follows from repeated application of Theorem 3.4(1), ending
with an application of Theorem 2.4 and Proposition 2.1 that show that
ASPACE(s’(n)) = U DTIME(exp,(ds’(n))). Using this, all other equalities
follow directly from Theorem 3.2 and Theorem 3.4(2, 3). 1

The advantage of our “iterated pushdown approach” is that to prove
these results we did not have to find any efficient simulation of stack
automata (such as in Lemma 5.3 of Ladner, Lipton, and Stockmeyer,
1984). Instead, we simulated stack automata by P2 automata in a
straightforward fashion (Lemma 3.1), and then we just made use twice of
the efficient simulation of pushdown automata.

Finally we observe that automata with a storage that is obtained by a
mixed application of the operations P(X) and SA(X) can also be charac-
terized by time complexity classes, using the general theorems on X
automata. Thus, e.g., NSPACE(s(n)) - SA(P) = NSPACE(s(n)) - P(SA) =

50 JOOST ENGELFRIET

ASPACE(s(n)) - SA = NSPACE(s(n)) - P3 = lJ DTIME(exp,(ds(n))). The
“rule” is: each P gives an exponential jump, alternation (A) gives an
exponential jump, and each SA gives a double exponential jump.

4. ITERATED NESTED STACK AUTOMATA

(This section can be skipped by the reader who is not interested in
nested stacks.)

A nested stack automaton (Aho, 1969) is a stack automaton that can
create (and destroy again) new stacks that are nested inbetween two
squares of the old stack. In this way stacks can get nested to any depth.
The nested stack can be formalized as a storage type NSA, and, adding an
X-configuration to each stack square as usual, as a storage type operation
NSA(X). In this section we show that the nested stack is equivalent to the
pushdown of pushdowns. This means that any kind of NSA automaton is
equivalent to the corresponding P* automaton. In particular it shows that
all results on stack automata in the previous section also hold for nested
stack automata (thus re-proving and extending some results of Beeri,
1975).

Although we assume the reader to be more or less familiar with
nested stack automata, we will give a rather precise, but not too formal,
description of the storage type nested stack of X, denoted NSA(X); see
Engelfriet and Vogler (1986) for a more formal definition. Let
X= (C, T, F, m, C,, id).

An NSA(X)-configuration consists of stack squares of the form (y, p, c)
with y E r, c E C, and ~1 c {e, $, t }, where e, $, and t are symbols not in
r. Intuitively, t E p means that the stack pointer points to the square, L E p
means that it is a bottom square (of one of the nested stacks), and $ EP
means that it is a top square. To be more precise, an NSA(X)-configura-
tion c’ is a sequence

of such stack squares (with n 2 0), satisfying the following requirements:

(i) espy and SEA,
(ii) there is exactly one j, 0 d j< n, such that t E pj; this unique

integer will be indicated by i in what follows (thus the stack pointer points
to square (ri, pi, ci)), and

(iii) $#pj for all O<j<i.

Another requirement on c’ that will automatically be satisfied for any

AUTOMATA AND COMPLEXITY 51

NSA(X)-configuration that is actually used by an automaton is that all
occurrences of e and $ in c’ are well nested, viewing e as a left parenthesis
and $ as a right parenthesis (and if pj contains both e and $, then & is sup-
posed to occur before $). This requirement in fact expresses the nested
stack structure: every pair of matching parentheses e and $ corresponds to
a stack.

In Fig. 3(a) a picture is shown of a nested stack configuration (y,,
{e>, C,)(Ym {e, t >Y Cd(Yl,~ w C,,)(Y2? a C&Y99 {e, $L C,)(Y,, b4, c5)
(ye5 Ek cd(~,, {e, $1, c,)(Y,, {S>, Q)(Y~, ~3, c3)(y4, {S>, c4). The reason
for this numbering will appear below. In each square (yj, /J, c,) of Fig. 3(a),
p and j are shown. The lines underneath indicate the nesting structure of
the live stacks involved; in parentheses this structure is (()()(())). Taken
apart, these live stacks are

sl=(Yl, {e), C,)(Y,, a C,)(Y,, a C,)(Y,, PI? c4L

$2 = (Y5, {!a C,)(Y,, a CdY,, {VT C,)?

s3= (Ys, ($7 rs>, cd,

s4= (rg, {e, $1, ~1, and

s5 = (YKI, ($3 t 19 C,,)(Y,,, {Q Cl,).

The initial NSA(X)-configurations are of the form (yO, (e, S, t }, cO)
with your and CUE C,. Apart from the identity, the instructions of
NSA(X) are push(y, f), pop, move-down, move-up, create(y), and destroy.
We now discuss the effect of their execution on the above NSA(X)-
configuration c’. Let c” denote the resulting NSA(X)-configuration (if it is
defined). Recall that i is the number of the square pointed at by the stack
pointer.

- push(y,f) is defined on c’ only if $ l pi and m(f)(c;) is defined.
To obtain C” from c’, replace (y,, pi, ci) by (y,, pLi - {$, t), ci)(y, {S, T },
4f)(c,)).

- pop is defined on c’ only if $ E pi and & #pi (there are no empty
stacks). TO obtain C” from c’, replace (yi-,, pi- Ir c;-~)(Y~, pi, ci) by
(Yi-13Fi-l”{$9 t>2Ci--l).

- move-down is defined only if i> 0. Replace (yip 1, pi-i, ci- ,)
(Yi, Pi, Ci) by (Yi- 19 Pi- 1 ” { T }, Ci- l)(Yi, Pi - { t >, Ci).

- move-up is defined only if $4 pi. Replace (yi, pi, ci)(yi+, , pi+, ,
Ci+,)bY (Yit Pi-it >, Ci)(Yi+ly Pi+l”{T >, Ci+l).

- create(y) is always defined. Replace (yi, pi, ci) by (y, {e, $, t },
c,)(y,, pi, cJ. Thus, a new one-square stack is nested below the square
pointed at, with stack symbol y, and with the same X-configuration. The
stack pointer moves to the new stack.

52 JOOST ENGELFRIET

1 10 11 2 9 5 6 8 7 3 4

c et $ 6s e cs $ $

FIG. 3. Simulation of a nested stack by a pushdown of pushdowns.

- destroy is defined only if ,u, = {e, $, T } and n > 0. Replace
(Yi9 P-i, ci)(Y~+ 19 Pi+,, ci+l) by (Yi+l, Pi+Iu { t 1, ci+l). Thus, the nested

stack is destroyed, and the stack pointer returns to the square the stack
was created from.

The tests of NSA(X) are sym = y and test(r), where sym = y tests whether
yi = y, and test(t) tests whether m(r)(c,) = true.

In the example of Fig. 3(a), s2 was created from square 3 of s,, s3 from
square 7 of s2, s4 from square 5 of s2, and s5 from square 2 of s, . Any
nested stack automaton necessarily has to create these stacks in this order,
due to the fact that it cannot move-up past a $ (thus, the order of creation
of stacks is the order, from right to left, of their top squares). This means
that the squares are numbered in the order in which they have come into
life during the computation of an NSA(X) automaton.

This ends the description of NSA(X). Since SA(X) is obtained by

AUTOMATA AND COMPLEXITY 53

dropping the create(y) and destroy instructions from NSA(X), SA(X) 6
NSA(X). The definition of NSAk(X) and NSAk is as for P and SA.

The equivalence of NSA(X) and P(P(X)), extending Lemma 3.1, was
already proven in Section 7 of Engelfriet and Vogler (1986)(and, as noted
in the introduction, the original idea came from Aho and Ullman). Here
we give a proof that is easier to read, due to our simpler definition of
equivalence (in Section 1.2). Note that we have to reprove this
equivalence anyway, because the “Justification Theorem” (Theorem 1.2.4)
was not proven for the automaton types of this paper in Engelfriet and
Vogler (1986).

THEOREM 4.1. For ever-v storage type X, NSA(X) = P(P(X)).

Proof: We have to show that NSA(X) 6 P(P(X)) and P(P(X))<
NSA(X).

(1) Let us start with the simulation of a nested stack storage by a
pushdown of pushdowns, extending the proof of Lemma 3.1. Let M be
a l-way deterministic NSA(X) transducer, with stack alphabet rM G IY
A l-way deterministic P,(P,(X)) transducer M’ equivalent to M can be
constructed as follows (note that we allow M’ to use stay(y, f) instruc-
tions on both levels). As in Engelfriet and Vogler (1986), the simulation
of a nested stack by a pushdown of pushdowns is based on the obvious fact
that every NSA(X)-configuration used by M can be built up from the
initial configuration (yO, {e, $, r }, cO) of M by a sequence of push,
move-down, and create instructions. This sequence is unique (apart from
possible nonuniqueness caused by the instructions f in push(y, f) instruc-
tions). The P(P(X)) -configuration used by M’ to simulate this NSA(X)-
configuration is obtained by executing a corresponding sequence of
P(P(X)) instructions to the initial configuration (p, (yO, co)) of M’, where
push(y, f) corresponds to stay(p, push(y, f)), move-down to push(r, pop),
just as for SA(X) in Lemma 3.1, and create(y) to push(p, stay(y, id)). As
in Lemma 3.1, we use p and r on the “outer” pushdown to indicate the
pushdown mode ($ E pi) and the reading mode ($ $ pi) of M, respectively.
Moreover, in the inner pushdowns we use barred symbols 7 to indicate
bottom squares of the NSA(X)-configuration (for every y E r,,,,, 7 is a new
symbol in f). As an example, Fig. 3(b) pictures the P(P(X))-configuration
corresponding to the NSA(X)-configuration of Fig. 3(a). It is shown
in each square of the P(P(X))-configuration whether or not the stack
symbol is barred. The number of a square indicates that the (unbarred)
stack symbol and the X-configuration are the same as those in the
corresponding square of the NSA(X)-configuration. Note also that the
concatenation of all top squares of all inner pushdowns equals the reverse

54 JOOST ENGELFRIET

of all squares of the NSA(X)-configuration to the right of (and including)
the square pointed at.

This description should s&ice to understand that M’ can simulate the
instructions and tests of M as follows. Each NSA(X) instruction or test to
the left is simulated by P(P(X)) instructions and tests as indicated on the
right.

pushty, f)

POP

move-down

move-up

create(y)

destroy

sym=y

test(t)

SW p, pushty, f)) provided top = p

Wt P, POP) provided top = p and
test(top = y) for some (unbarred) y E rM

pushtr, POP)

POP provided top = r

pushtp, stay(7, id))

POP provided top = p and
test(top = 7) for some y E rM

test(top = y) or test(top = 7)

test(test(t))

As noted before, if (yO, {e, $, r }, cO) is the initial configuration of M, then
(p, (TV, co)) is the one of M’. The state behaviour and the input and output
of M are simulated by M’ in the obvious way.

(2) Next we show how to simulate a pushdown of pushdowns by a
nested stack. Let M be a l-way deterministic P(P(X)) transducer. To start
with we observe that M can be transformed in such a way that the symbols
on its “outer” pushdown are all the same. In fact it is easy to code each
symbol of the outer pushdown into the symbol part of the top square of
the corresponding inner pushdown (note that empty pushdowns do not
exist). The top = y test can be simulated by appropriate test(top = y’) tests.

Thus we may assume that M just uses one symbol on its outer
pushdown. We will denote this symbol by “-“. The simulation of M by a
l-way deterministic NSA(X) transducer M’ is based on the fact that every
P(P(X))-configuration c used by M can be built up from the initial con-
figuration (-, (yO, co)) by a sequence of push(-, push(y, f)), push(-, pop),
and push(-, id) instructions. As in part (1) of this proof, this sequence is
unique (apart from the fs). M’ simulates this P(P(X))-configuration by
the NSA(X)-configuration that is obtained from its initial configuration
(y,,, cO) by executing the corresponding sequence of NSA(X) instructions.
In this sequence push(-, push(y, f)) corresponds to (create(/3); push(y, f)),
push(-, pop) to move-down, and push(-, id) to create(B), where fi is the

AUTOMATA AND COMPLEXITY 5.5

symbol such that test(top =p) holds before execution of the P(P(X))
instruction. In this way the top-most inner pushdown of the P(P(X))-con-
figuration contains precisely all squares of the NSA(X)-configuration that
are to the left of (and including) the square pointed at. As an example, the
P(P(X))-configuration of Fig. 4(a) is built up from the initial configuration
by a sequence of instructions of the form push(-, push(y,, fi));
push(-, push(y,, fi)); push(-, id); push(-, pop). The corresponding
NSA(X)-configuration is shown in Fig. 4(b). Two squares in Fig. 4 are
given the same number to represent that they contain the same stack
symbol and the same X-configuration. Note that the stacks s,, s2, s3,
and sq correspond to the first four inner pushdowns (i.e., those that are not
obtained by a push(-, pop) instruction). Note also that all stacks are of size
1 or 2 (without the inner stacks).

Of course, M’ simulates the above-mentioned push instructions of M as
indicated above. The only remaining P(P(X)) instruction is pop. This can
be simulated by M’ because it can reverse the effect of a simulated
push(-, . ..) instruction by distinguishing between the above three
possibilities. To do this, it needs additional tests “bottom” and “top” that
are true iff the square pointed at is a bottom square or a top square,
respectively. It should be clear that we may allow these tests (formally, it
can be shown that the resulting storage type is equivalent to NSA(X)). The
pop instruction of M is now simulated by M’ as follows:

if not top then move-up
else if not bottom then (pop; destroy)
else destroy.

The three lines in this program correspond to the case that the last
P(P(X)) instruction in the sequence discussed above is a push(-, pop),
push(-, push(y, f)), or push(-, id) instruction, respectively.

(a) (b)

FIG. 4. Simulation of a pushdown of pushdowns by a nested stack.

56 JOOST ENGELFRIET

Finally, a test test(top = y) is simulated by the test sym = y, and a
test test(test(t)) by the test test(t). Note that the test top = - needs no
simulation.

This should convince the reader that M’ can simulate M. 1

It would not be diflicult to prove the monotonicity of the operation
NSA(X) with respect to <, along the lines of the proof of Theorem 1.3.1.
However, monotonicity of NSA(X) follows directly from Theorem 4.1 and
the monotonicity of P(X) (shown in Theorem 1.3.1). Theorem 4.1 also
implies the following two corollaries.

COROLLARY 4.2. For every k > 0, NSAk = P2k.

Proof: Assume NSAk 5 P2k. Then, since P(X) preserves equivalence
(Theorem 1.3.1), P(P(NSAk)) z P2k+2. By Theorem 4.1, for X= NSAk,
P(P(NSAk)) E NSAk+ ‘. 1

COROLLARY 4.3. For every automaton type Y and every k> 1,
Y - NSAk = Y - P2k.

Proof. By Corollary 4.2 and Theorem 1.2.4. g

Note that this corollary includes one-way nondeterministic automata
and deterministic automata (and transducers).

It can be concluded that in all results of Section 3, SA may be replaced
by NSA. Thus, for those types of automata, stacks, nested stacks, and
pushdowns of pushdowns all have the same power.

We observed before that SA cannot always be replaced by P2 because it
is not true that P2 d SA. Indeed, it is not true that NSA GSA, because
1N - SA 5 1N - NSA (see p. 27 of Greibach, 1970).

5. ITERATED CHECKING STACK AUTOMATA

A checking stack automaton (Greibach, 1969) is a nonerasing stack
automaton that is not allowed to push after it has executed a move-down
instruction. Thus, it is not allowed to change from reading mode to
pushdown mode. It is easy to define this formally as a storage type CSA,
by adding an extra component to the configurations of NESA that
indicates whether the configuration is in pushdown mode or in reading
mode. We leave the details to the reader. Similarly, the operation CSA(X)
can be defined, and it can easily be shown that CSA(X) ,<NESA(X). As
usual, CSA(X) is monotonic, and CSAk(X) and CSAk are defined as usual.

In this section we show that nondeterministic multi-head iterated
checking stack automata characterize iterated exponential space complexity

AUTOMATA AND COMPLEXITY 57

classes (as one would expect from Fischer, 1969, and Ibarra, 1971). The
results of this section will be applied to the one-way languages in Section 7.
Moreover, they give more information on NESA automata.

The characterization will follow from the next result, by induction.

THEOREM 5.1. For an,~ storage type Xands(n) 2 log n, NSPACE(s(n)) -
CSA(X) = NSPACE(s(n)) -NESA(X) = u NSPACE(2d”‘“‘) - X.

Proof Let X = (C, T, F, m, CO, id).
(i) We first show that for any d > 0 NSPACE(2”“‘“‘) - X c

NSPACE(s(n)) -CSA(X). This is again a variation of the proof of
Theorem 2.2, or more precisely of the proof of Theorem 3.2(l), where it is
shown that ASPACE(2d”‘“‘) - XG NSPACE(s(n)) - SA(X). Note that in
our case, since there is no alternation, there is no need to backtrack
(through the computation tree of M). Hence the stack is nonerasing, which
already shows that NSPACE(2d”‘“‘) - XG NSPACE(s(n)) - NESA(X).
However, M’ may as well start by guessing nondeterministically the whole
ultimate contents of its stack (after it has copied the input to the stack,
initially), and then check that (elk+, , ck+ r) is the correct successor of
(a,, ck) for all k, from left to right. Note that M’ can count to 2ds(n’ using
its worktape, and thus can walk back and forth between two consecutive
configurations of M. In order to check that the X-configuration part of the
checking stack corresponds to the moves of M, M’ should record the
instructions f E F which it has applied during the guessing phase. Thus, M’
should use instructions push((m,, f), f) rather than push(m,, f), where
(m,, f) is a stack symbol. Tests on X-configurations can of course still be
executed by M’ during the checking phase. This shows that M’ can be
constructed as an NSPACE(s(n)) - CSA(X) automaton.

(ii) Second, we have to show that NSPACE(s(n))-NESA(X) c
U NSPACE(2d”‘“‘) -X. “Unfortunately,” we are now forced to simulate a
stack automaton, without help from our results on pushdown automata
(cf. the end of Section 3). Fortunately, however, we only need the standard
technique of transition tables (Section 14.2 of Hopcroft and Ullman, 1979).
Let M be an NSPACE(s(n)) - NESA(X) automaton. We may assume that
M accepts when the stack pointer is at the top of the stack. We have to
construct an NSPACE(2d”‘“’)-X automaton M’ equivalent to M. M’
simulates M by keeping track of the top square of the stack of M, and
keeping track of a transition table to represent the rest of that stack. The
symbol part of the top square can of course be kept in the finite control of
M’, whereas the X-configuration part is kept as the X-configuration of M’.
The transition table is kept on the worktape, together with the worktape
contents of M.

We now explain the notion of transition table. For fixed input string, let

58 JOOST ENGELFRIET

us call the part c1 of an ID (tl, c’) of M, where c’ is a NESA(X)-conligura-
tion, the “worktape configuration” of M; c(includes the worktape contents
and position of the worktape head, and also the state and the position of
the input head, but not the input tape. Thus, tl can be coded as a string of
size O(s(n)). Now, if c’ is a NESA(X)-configuration with the stack‘pointer
at the top square, then the corresponding transition table R(c’) is the set
of pairs of worktape configurations, defined as follows: (c(, b) E R(c’) if
and only if there is a computation (c(, c;) k * (p, c’) of M such that c’
occurs in the last ID of the computation only, where c; is obtained from
c’ by executing one move-down instruction. Thus the transition table com-
pletely characterizes all the computations that M can do in reading mode.
If M’ knows R(c’), it additionally only needs to keep the top square of c’
to be able to simulate the behaviour of M. As soon as A4 executes a move-
down instruction, 44’ consults R(c’) and shortcuts the reading mode com-
putation of M. Clearly, the size of the transition table is O(2d”‘“‘) for some
d> 0, and thus fits into the workspace of M’. M’ can keep track of the
current worktape configuration of M by marking it in the transition table.
It remains to discuss how M’ simulates a push(y, f) instruction of M. First
it updates its transition table. The new transition table can be computed
from the old transition table and the old top square, by checking nondeter-
ministically, for every pair of worktape configurations, whether there exists
a computation from one to the other as described above. As soon as the
computation becomes longer than the number of worktape configurations
(where each application of the old transition table counts as a step), M’
can stop the check because a repetition occurred. It should be clear that
M’ can do all this in space O(2d”‘“‘). S econd, M’ updates the top square by
storing y in its finite control, and executingfon its X-storage. This ends the
description of M’. We repeat that the above is just a standard technique
that turns out to work line also for X automata. 1

For r-head automata the proofs are more subtle. It may not be sufficient
to use transition tables (for CSA), and if it is (for NESA), it is more
difficult to see that they can be updated within the proper space (see
Hopcroft and Ullman, 1967b).

From this theorem the characterization of the iterated exponential space
complexity classes by iterated checking stack automata follows.

THEOREM 5.2. For any k > 1, 2N(multi) - CSAk = 2N(multi) - NESAk
= DSPACE(exp,- ,(poly)).

Proof. Iterated appliation of Theorem 5.1 gives that NSPACE(log n) -
CSAk = NSPACE(log n) - NESAk = NSPACE(exp,- ,(poly)). The result
now follows from the fact that NSPACE(log n) - X= 2N(multi) -X

AUTOMATA AND COMPLEXITY 59

for every storage type X, and from Savitch’s theorem (NSPACE(s(n))c
DSPACE(s(n)‘); see Hopcroft and Ullman, 1979). 1

A comparison with Theorem 3.5(4) shows that alternation gives a big
jump in power to multi-head NESAk automata.

Note that, by Theorem 5.1, Proposition 2.1, and Theorem 2.5,
NSPACE(s(n)) - CSAk(P) = NSPACE(s(n)) - Pkf ‘. One would not
expect this when considering the storage types CSAk(P) and Pk+’ on their
own (CSA and P are incomparable storage types, with respect to <).

6. ITERATED STACK-PUSHDOWN AUTOMATA

(This section can be skipped by the reader, who should then also skip
the part of Section 7.1 following Theorem 7.8.)

Checking stack-pushdown automata were introduced in van Leeuwen
(1976), where the corresponding auxiliary automata were used to obtain a
uniform characterization of certain well-known complexity classes. In
Engelfriet, Schmidt, and van Leeuwen (1980) they were generalized in the
obvious way to stack-pushdown automata (and compared to macro
grammars; see also Engelfriet and Slutzki, 1984).

A stack-pushdown (SPD) automaton is a stack automaton with an addi-
tional pushdown. The stack and the pushdown are not independent, but
should satisfy the restriction that the length of the pushdown is equal to the
number of squares above the stack pointer (including the square pointed
at). Thus, if one imagines the pushdown upside down with its bottom next
to the top of the stack, the top of the pushdown has to follow the
movements of the stack pointer, cf. Fig. 5. This restriction is formalized by
giving the storage type SPD the same instructions as SA except that move-
down is replaced by move-down(y), where y is a pushdown symbol that
should be pushed on the pushdown. Execution of the move-up instruction
automatically involves a pop of the pushdown. SPD has tests sym = y and
top = y, where sym refers to the stack symbol and top to the pushdown
symbol (both taken from r). Thus, the pushdown can only be used in
reading mode. In pushdown mode it always contains one square. An initial
configuration of SPD consists of a one-square stack and a one-square
pushdown.

We now define the storage type operation stack-pushdown of X, denoted
SPD(X), by adding X-configurations to the stack squares only; the
pushdown just has symbols in its squares. (This is just the opposite of, and
should not be confused with, the storage type operation of the same name
studied in Engelfriet and Slutzki, 1984). Thus SPD(X) has instructions
push(y, f), pop, move-down(y), move-up, and id, and it has tests sym = y,

60 JOOST ENGELFRIET

pushdown

top l-l T-T- bottom . L . .
toe

stack

FIG. 5. A stack-pushdown configuration.

top = y, and test(t). The details are left to the reader. We stress again that
push and pop operate on the stack (when in pushdown mode), whereas
move-down(y) and move-up push and pop the pushdown, respectively. By
appropriately restricting the stack of SPD(X), the storage type CSPD(X)
is obtained: the checking stack-pushdown of X. Note that CSA(X) 6
CSPD(X) and SA(X) < SPD(X).

LEMMA 6.1. For every storage type X, SPD(X) < P(P(X)).

ProoJ: The simulation is exactly the same as in Lemma 3.1. The
symbols of the pushdown can be stored in the symbol part of the “outer”
pushdown, in addition to the p and r markers. 1

Since SA(X) < SPD(X) d P(P(X)), it follows from Section 3 that all
results stated there for SA also hold for SPD. This takes care of iterated
SPD automata.

Next we show that the analogues of Theorems 5.1 and 5.2 hold for
CSPD automata.

THEOREM 6.2. For any storage type X and s(n) B log n, NSPACE(s(n)) -
CSPD(X) = U NSPACE(2d”‘“‘) - X.

ProojI Since CSA(X) < CSPD(X), it suffices to generalize part (ii) of
the proof of Theorem 5.1. Let M be an NSPACE(s(n)) -CSPD(X)
automaton. An NSPACE(2d”‘“‘) - X automaton M’ that simulates M can

AUTOMATA AND COMPLEXITY 61

be constructed in exactly the same way. M’ keeps track of the top square
of the stack, now including the bottom square of the pushdown (in its finite
control). The rest of the stack can be represented by a finite set of transition
tables, one for each y ET (used in the first move-down(y) instruction).
Thus, taking over the notation in the proof of Theorem 5.1, if c’ is a
CSPD(X)-configuration with the stack pointer at the top square, then, for
each y E r, the corresponding transition table R&c’) is defined by
(a, /I) E R,(c’) iff there is a computation (a, ci,) k * (/I, c’) of M such that c’
occurs in the last ID of the computation only, where ci is obtained from
c’ by executing move-down(y). The rest of the proof is analogous. 1

As a corollary we obtain the analogue of Theorem 5.2.

THEOREM 6.3. For any k > 1, 2N(multi) - CSPDk = DSPACE

(eXpkd~ol~)).

7. APPLICATIONS TO ONE-WAY AUTOMATA

In this final section we apply our results to formal language theory.
Characterizations of multi-head automata (as obtained in the previous
sections) can be used to prove proper inclusions between classes of
languages accepted by one-way automata, and to provide (upper and
lower) bounds on the complexity of the emptiness problem for one-way
automata. These two applications will be discussed one by one.

7.1. Hierarchies of One- Wa.v Iterated Automata

The first application consists in particular of showing that the one-way
iterated pushdown automata form a proper hierarchy at each level, i.e.,
that one-way (k + 1)-iterated pushdown automata are more powerful than
one-way k-iterated pushdown automata for every k 3 1 (and similarly for
iterated stack, checking stack, etc., automata). The time/space complexity
characterization of the 2-way multi-head iterated X automata (where
X= pushdown, stack, checking stack, etc.) implies (by the usual time/space
hierarchy theorems) that these automata form a proper hierarchy at
each level of iteration. The following straightforward result allows us
to “translate” these hierarchies “down” to l-way iterated X automata.
The “translation” is performed by 2N(multi) transducers, i.e., by non-
deterministic log-space reductions. For a class of transductions YT and
a class of languages K we denote by YT- ‘(K) the class of languages
{t-‘(L)lze YT, LEK}.

62 JOOST ENGELFRIET

LEMMA 7.1. For every storage type X, 2N(multi) - X = 2N(multi)
TP’(lN-X)=2N(multi) TP’(lD-X).

Proof The proof uses standard techniques from automata theory. Let
X = (C, T, F, m, CO, id).

(i) To show that 2N(multi) -XcZN(multi) T-‘(lD- X), let M be a
2-way nondeterministic multi-head X automaton, that uses tests T, c T
and instructions F, c F, and has the initial X-configuration cO. The idea
of the decomposition of M (familiar from AFA theory, Ginsburg, 1975) is
to turn M into a transducer M’ that does not execute the tests and instruc-
tions of M on storage, but rather prints them on its output tape. A l-way
deterministic X automaton N is then used to check the “executability” of
that sequence of tests and instructions. This is a variation of the proof of
Theorem 1.2.4.

The 2-way nondeterministic multi-head finite transducer M’ has the
same states, initial state, final states, input alphabet, and number of heads
as M. The output alphabet of M’ is 52 = R(T,) u FM. If the transition
function 6 of M has the form 6: A x R(T,) + P,,(B x F,), cf. Section 1.1,
then the transition function 6’ of M’ has the form 6’: A + P,,(B x Q*). In
fact, for a E A, 6’(a) = ((b, pf) 1 &a, p) contains (b, f)), where pf is a string
of length 2 over the alphabet !Z Thus, M’ simulates M by guessing the test
results of its X-configurations. These guesses will be checked by feeding
the output of M’ into the automaton N. N has input alphabet B and
initial X-configuration cO, and it accepts a string p,fr p2fz ... p,f, if
and only if m(fi . ..f.,)(cO) is defined and m(p,)(cO)= true and m(p,+l)
(m(fi . . .fi)(cO)) = true for all 1 6 i < n - 1. The transition function of N is
a partial function 6,: Q x Sz x R(TM) --) Q x FM, where Q consists of one
(initial and final) state q. For every p E R(T,) and f E FM, h,(q, p, p) =
(q, id) and 6,(q, f, p) = (q, f). The other values of 6, are undefined. It
should now be clear that L(M) = r(M’))’ (L(N)).

(ii) To show that 2N(multi) T-‘(1N - X) E 2N(multi) -X, let M be a
2N(multi) transducer and N a 1N - X automaton. A 2N(multi)- X
automaton M’ such that L(M’) = z(M)-’ (L(N)) can be obtained from M
and N by a straightforward product construction. We may assume that M
outputs strings of length at most one at each step. M’ simulates all output-
less moves of M and all input-less moves of N separately. As soon as M
produces an output symbol, M’ feeds this symbol into N; thus, in this case,
it simulates a move of M and a move of N simultaneously. 1

This theorem holds in fact for any nondeterministic automaton type Y
(without T): Y-X= YT-‘(lN-X)= YT-‘(lD-XX). It might be called
the “inverse law” of automata theory, and it enables us to translate proper
inclusions between Y- X automata down to proper inclusions between

AUTOMATA AND COMPLEXITY 63

one-way X automata. In our case we use this law to translate the fact that
“k + 1 iterations are more than k” from multi-head to one-way automata.

COROLLARY 1.2. Let U he an operation on storage types, such that
Uk < Uk+’ for every k > 1 (where, as usual, Uk abbreviates U”(X,)).
For every k 3 1, if 2N(multi) - Uk 5 2N(multi) - Ukf ‘, then
lN- U”s lN- U”+‘, and even lD- Ukfl @ lN- Uk.

Proof Assume that 1D - Uk+’ E 1N - Uk. Then 2N(multi)
T-‘(1D - U”+‘) c 2N(multi) T-‘(IN - U”). Hence, by Lemma 7.1,
2N(multi) - Uk+’ c 2N(multi) - Uk. 1

As we have seen, for all operations U considered, 2N(multi) - Uk is a
time or space complexity class. Since it is well known that these complexity
classes are properly included in each other (for growing k), Corollary 7.2
implies that the 1N - Uk automata form a proper hierarchy. Note that the
proper inclusion of complexity classes is proven by a diagonalization argu-
ment. Thus, in a way, we prove 1N - Uk 5 1N - Uk+ ’ also by diagonaliza-
tion, which is a technique that usually does not work for one-way
automata! For completeness’s sake we state the needed proper inclusions of
complexity classes (which follow from the time and space hierarchy
theorems, see Hopcroft and Ullman, 1979).

PROPOSITION 7.3. For every k > 0, DTIME(exp,(poly)) 5 DTIME
cexpk+ l(~ol~)), and DSPACE(evk(poly))G DSPACE(exp,+,(poly)).

We are now able to state the first main result of this section: properness
of the hierarchy of one-way iterated pushdown languages.

THEOREM 7.4. The diagram of Fig. 6 is correct (i.e., ascending lines
denote proper inclusions, and classes that are not connected by ascending
lines are incomparable). In formulas this means that, for every k > 1,
lN-Pk 5 lN-Pk+’ and even 1D - Pk” G 1N - Pk. Moreover,
lN-P @ Uk lD-Pk.

Proof The inclusions are obvious. The noninclusion 1D - Pk + ’ @
1N - Pk follows from Theorem 2.6 (the time complexity characterization of
2N(multi) - Pk), Proposition 7.3 (which implies that { 2N(multi) - P”} is a
proper hierarchy at each level), and Corollary 7.2 (that translates this
result down to 1N - Pk). The existence of a context-free language not in
uk 1D - Pk is shown in Section 4 of Engelfriet and Vogler (1987). l

In Damm and Goerdt (1986) (see also Engelfriet and Vogler, 1988) it is
shown that 1N - Pk = k - 01, where k- 01 is the class of languages
generated by k-level 01 macro grammars, i.e., the kth class in the well-

64 JOOST ENGELFRIET

uklN-P k

UklbP k

lN-Pk+'

lD-Pk+' lN-Pk

lD-Pk

lD-P 1/ lN-P

FIG. 6. The hierarchy of one-way iterated pushdown languages.

known 01-hierarchy (Wand, 1975; Maibaum, 1974; Engelfriet and
Schmidt, 1977/1978; Damm, 1982; Vogler, 1988). Damm (1982) proved
that k - 01 s (2k + 1) - 01, by the method of rational index. Theorem 7.4
shows that in fact k - 01s (k + 1) - 01, i.e., the 01-hierarchy is proper at
each level.

Let us now consider some of the other iterated storage types. For the
nested stack the situation is clear, because, by Corollary 4.3, 1N - NSAk =
1N - Pzk and 1D - NSAk = 1D - P2k. For the iterated stack automata it
can be shown that 1N - SAk s 1N - SAk + ’ in exactly the same way as in
the proof of Theorem 7.4, using the time complexity characterization of
2N(multi) - SAk in Theorem 3.5(3). The relationship of the SA-hierarchy
to the P-hierarchy is less clear, but the following can be said. From the fact
that, for every X, P(X)<SA(X)< P(P(X)), see Lemma 3.1, it easily
follows by induction (using the monotonicity of P) that Pk < SAk < PZk for
every k B 1. Hence, by Theorem 1.2.4, IN - Pk G 1N - SAk G 1N - PZk.
This shows, of course, that the l-way iterated stack languages are the same
as the l-way iterated pushdown languages, i.e., uk 1N - SAk = Uk 1N - Pk.
Our translation technique can be used to show that the inclusion
1N - SAk G 1N - P2k is optimal, i.e., lN-SAk g 1N - P2k- ‘. In fact, even
the inclusion 1D - SAk c 1N - P2k-1 would imply by Lemma 7.1 that

AUTOMATA AND COMPLEXITY 65

ZN(multi) - SAk c 2N(multi) - P2k ~ ‘, and hence (by Theorems 2.6 and
3.5(3)) that DTIME(exp,,~ ,(poly)) E DTIME(exp,,~,(poly)), contradict-
ing Proposition 7.3. It is not clear whether the inclusion 1N - Pk G
1N - SAk is optimal.

We wish to make an observation on the strength of our translation
technique. Note that in the paragraph above we also proved (for k = 1)
that 1N - SA g 1N - P, i.e., that 1N - Ps 1N - SA. This is of course
using a sledge hammer to hit a mosquito: this proper inclusion can easily
be proven by the pumping lemma for context-free languages (e.g.,
(anhnc” 1 n 3 1 } is in 1N - SA). However, we know no other way to prove
the proper inclusion 1N - Pks 1N - Pk+’ than the one used in
Theorem 7.4. It seems that techniques like pumping lemma’s become too
complicated for such complicated storage types.

In the remainder of this subsection we consider the iterated checking
stack and CSPD automata. First the checking stack. Again we obtain the
properness of the hierarchy of l-way iterated checking stack automata.
Moreover, we show that there exist l-way iterated checking stack
languages arbitrarily high in the hierarchy of l-way iterated pushdown
languages.

THEOREM 7.5. For every k 2 1,

(1) lN-CSAks lN-CSAk+‘,

(2) lN-CSAkc lN-PZk,

(3) IN - CSAk @ lN- Pk-‘, and even 1D - CSAk g 1N - Pk-‘.

Proof. (1) can be proven as in Theorem 7.4, using the space complexity
characterization of 2N(multi) - CSAk in Theorem 5.2. The inclusion of (2)
follows from 1N - CSAks 1N - SAk E 1N - P2k. To show (3), i.e. that
there exist 1D - CSAk languages not in 1N - Pk- ‘, assume to the contrary
that ID - CSAk z 1N - Pkp *. Then Theorem 7.1 implies that 2N(multi) -
CSAk s 2N(multi) - Pkp ‘. Hence, by Theorems 5.2 and 2.6, DSPACE
(expk_ ,(poly)) C DTIME(exp,-,(poly)). Since DTIME(exp,-,(poly)) c
DSPACE(exp, _ ,(poly)), this contradicts Proposition 7.3. 1

Actually, Theorem 7.5(1) is already known in the literature because, as
we will show now, the IN-CSAk hierarchy coincides with the 2GSM
hierarchy. The 2GSM hierarchy (shown to be proper in Greibach, 1978c,
and in Engelfriet, 1982, in a completely different way) consists of all classes
2GSMk(REG), where 2GSM = 2N(1) T: the class of 2-way nondeter-
ministic finite transductions, and REG is the class of regular languages. In
what follows we will use 2GSM instead of 2N(1) T, and we will call a
2N(1) transducer a 2-way gsm (i.e., 2-way generalized sequential machine).

The next lemma shows that lN-CSA(X) can be expressed in terms of

66 JOOST ENGELFRIET

2GSM and 1N -X, for every storage type X. It is just a variant of the well-
known relationship between checking stack automata and 2-way gsm’s
(Rajlich, 1972; Kiel, 1975; Greibach, 1978a, b, c).

LEMMA 7.6. For any storage type X, 1N - CSA(X) = 2GSM(1N - X).

Proof (i) We first show that 2GSM(1N - X) E 1N - CSA(X). Let M
be a l-way nondeterministic X automaton and G a 2-way gsm. We have to
construct a l-way nondeterministic CSA(X) automaton M’ such that
L(M’)=s(G)(L(M)). To find out whether its input string y belongs
to r(G)(L(M)), M’ first guesses an input string x (for M and G) on its
checking stack, simultaneously simulating M to check that XE L(M),
and then simulates G to check that (x, y)~r(G). If c,, is the initial
X-configuration of A4, then (e, cO) is the one of M’, where & is the left
endmarker (of G).

First M’ simulates M, in pushdown mode. At each moment, the top
square of the checking stack contains the current X-configuration of M. If
M can read an input symbol ~7 and execute instruction f on X-storage, then
M’ can execute push(a, f). In case M can do a J-move and execute f, 44’
can execute an appropriate stay(y, f). Whenever M accepts the input, M’
can decide to execute push($, id), to move down to the bottom square of
the checking stack, and to start the simulation of G, in reading mode. Note
that up to now M’ did not read its input. M’ simulates G by treating its
checking stack as the 2-way input tape of G, and its input tape as the
l-way output tape of G.

(ii) We have to show that lN-CSA(X) c 2GSM(lN - X). Let M be a
l-way nondeterministic CSA(X) automaton. We may assume that M does
not read any input while in pushdown mode. In fact, at each move it could
nondeterministically guess the needed input symbols and store them in the
symbol part of the stack square. Then, as soon as it enters reading mode,
it could first read these symbols from the input. We may also assume, as
observed in the beginning of Section 3, that every test test(t) is false in
reading mode.

With these assumptions it is easy to construct a l-way nondeterministic
X automaton M’ and a 2-way gsm G such that r(G)(L(M’)) = L(M). M’
just simulates the pushdown mode phase of M. If (y, c,,) is the initial con-
figuration of M, then M’ has initial configuration c,,, and starts by reading
y from its input. When M executes a push(y, f) instruction, M’ reads y
from the input and executes J Moreover, in order to simulate the sym = y
tests of M, M’ always keeps the last input symbol in its finite control.
When M goes into reading mode, M’ first reads its current state (viewed
as a symbol) from the input tape, and then accepts. According to this last
trick, the 2-way gsm G can start by walking to the right end of its input

AUTOMATA AND COMPLEXITY 67

and read the state of A4, in which it then continues to simulate MS reading
mode phase, in the obvious way (note that G does not have to execute
test(t) tests). 1

It now easily follows by induction that the iterated CSA hierarchy and
the 2GSM hierarchy are the same.

COROLLARY 7.7. For every k 2 0, 1N - CSAk = 2GSM“(REG).

Note that Theorem 7.5(2, 3) shows that the 2GSM hierarchy is
contained in the 01-hierarchy, and that there exist languages in
lJk 2GSMk(REG) that are arbitrarily high in the Or-hierarchy.

Let K be a trio (i.e., a class of languages closed under intersection with
regular languages, inverse homomorphisms, and J.-free homomorphisms;
see Ginsburg, 1975). It is well known (see Greibach, 1978c, and p. 122 of
Engelfriet, 1982) that either 2GSMk(K)=2GSM(K) for all k> 1, or
2GSM”(K) s 2GSM k+1(K) for all k > 0. In other words, either the
2GSM“(K) hierarchy collapses at the first level, or it is proper at each level.
In Greibach (1978~) conditions on K are given that guarantee properness
of the hierarchy. Here we give another such condition.

THEOREM 7.8. Let K be a trio such that KG IN - P” for some n. Then
2GSMk(K) 5 2GSMk’i(K) for every k b 0.

Proof: By the discussion above it suffices to show that
~GSM(K)S; 2GSMk(K) for some k. Thus, since REGsKs lN- P”, it
suffices to show that 2GSMk(REG) @ 2GSM(1N - P”) for some k. Now,
by Corollary 7.7, 2GSMk(REG) = 1N - CSAk, and, by Lemma 7.6,
2GSM(lN - P”) = 1N - CSA(P”). Since CSA(X) d P(P(X)) by
Lemma 3.1, lN- CSA(P”) c 1N - P”+‘. Thus it suffices to show that
lN-CSAk @ lN-P”+’ for some k. This holds for k=n+3 by
Theorem 7.5(3). 1

Since 1N - X is a trio for every storage type X, this result holds in
particular for 1N - P” itself.

We now turn to iterated CSPD automata. Theorem 7.5 also holds for
CSPD instead of CSA, by the space complexity characterization in
Theorem 6.3, and by Lemma 6.1. As for CSA automata, the first two results
obtained in this way are already known in the literature. As we will discuss
next, this is because the lN-CSPDk hierarchy is in fact the ETOL
hierarchy (see Asveld and van Leeuwen, 1975; Engelfriet, 1982).

ETOL systems are one of the main classes of L-systems, a well-known
type of parallel rewriting systems (see Rozenberg and Salomaa, 1980).
For a class K of languages, ETOL(K) denotes the class of K-controlled
ETOL languages, i.e., languages generated by ETOL systems of which the

68 JOOST ENGELFRIET

derivations are controlled by the strings of a language from K (Asveld,
1977). The ETOL hierarchy is obtained by iterating this mechanism of
control on ETOL systems, i.e., it consists of all classes ETOLk(REG). It was
shown in van Leeuwen (1976) that ETOL(REG) = 1N - CSPD, and, based
on this, it was shown in Corollary 4.6 of Engelfriet, Rozenberg, and Slutzki
(1980) that, under a few closure conditions on K, ETOL(K) = CSPDT(K),
where CSPDT denotes the class of transductions realized by cspd trans-
ducers, explained next. Thus, the ETOL hierarchy consists of all classes
CSPDTk(REG).

A cspd transducer is a 2N(1) T- P transducer (i.e., a 2-way one-head
pushdown transducer) of which the pushdown instructions are coupled to
the movements of the input head in the following way. The transducer
pushes a symbol on the pushdown when moving its input head to the right,
and pops a symbol from the pushdown when moving one square to the left.
Thus, the length of the pushdown always equals the number of squares to
the left of (and including) the square of the input head. For more details
see Engelfriet, Rozenberg, and Slutzki (1980).

It should be clear from this description that a cspd transducer M acts in
the same way as a CSPD automaton A in reading mode, viewing the input
tape of M as the checking stack of A (with its top to the left) and the
output tape of A4 as the input tape of A. Thus the next lemma should not
come as a surprise. Recall that, for a class K of languages, KR denotes the
class of all reverses of languages from K.

LEMMA 7.9. For any storage type X, 1N - CSPD(X) = CSPDT
((lN-X)R).

Proof The proof is exactly the same as the one of Lemma 7.6, except
that, as a moment of thought will reveal, the checking stack of the
lN-CSPD(X) automaton corresponds to the reverse of the input tape of
the cspd transducer. m

We now show that the iterated CSPD hierarchy is the ETOL hierarchy.

THEOREM 7.10. For every k 2 0, 1N - CSPDk = CSPDTk(REG).

ProoJ This follows by induction on k from Lemma 7.9, if we can show
that CSPDT’(REG) is closed under reversal. In fact, for any class K of
languages, CSPDT(K) is closed under reversal. Let M be a cspd trans-
ducer. Then a cspd transducer M’ can be constructed such that
4M’) = ((4 YR) I (4 Y) E ef)}. w e may assume that M accepts in a
unique final state, with its input head on the left endmarker e. M’ simulates
a computation of M in reverse. Thus, M’ starts in the final state of it4, at
e. M’ then simulates the moves of M backwards until it arrives at e in an

AUTOMATA AND COMPLEXITY 69

accepting state of M. As an example, suppose that M, in state q, scanning
u on its input tape and y on the top of its pushdown, can go into state q’,
and move its input head to the right, pushing y’. Then M’, in state q’ and
scanning y’ on top of its pushdown, can go into state q and move its input
head to the left, after which it should check that it scans c on its input tape
and y on top of its pushdown. In case M moves to the left, popping the
pushdown, M’ moves to the right, guessing a symbol to push on the
pushdown. 1

Properness of the ETOL hierarchy (which was proved in Engelfriet,
1982, by other means) now follows from properness of the hierarchy
lN-CSPDk of iterated CSPD automata. In fact, since 2GSMk(REG) g
CSPDTk-‘(REG) by Theorems 5.2 and 6.3, the counterexamples are
already in the 2GSM hierarchy (as also shown in Theorem 4.7 of
Engelfriet, 1982). The inclusion 1N - CSPDk E 1N - PZk proves that the
ETOL hierarchy is contained in the 01-hierarchy (proven in Vogler, 1988,
by showing that the 01-hierarchy is closed under control). It can be shown
that the inclusion is proper for every k. This is well known for k = 1, and
can be shown in a way similar to the proof of Theorem 7.5(3) for k b 2,
using the fact that DSPACE(exp,- ,(poly)) 5 DTIME(exp,,- ,(poly)) for
k 3 2. However, it is open whether uk IN - CSPDk 5 Uk 1N - Pk, i.e.,
whether the ETOL hierarchy is properly contained in the 01-hierarchy.
Since it is shown in (Greibach, 1978~) that there is a context-free language
not in Uk 2GSMk(REG), the 2GSM hierarchy is properly contained in the
ETOL hierarchy (because 1 N - P c 1 N - CSPD).

Thus, we have shown that the seemingly unrelated 2GSM hierarchy,
ETOL hierarchy, and 01-hierarchy can be described in a uniform way by
iterated X automata, where X is CSA, CSPD, and P (or P’), respectively.

7.2. The Emptiness Problem for One- WaJj iterated Automata

It is well known, for several storage types X, that the nonemptiness
problem for one-way X automata is complete in the (complexity) class of
languages accepted by the multi-head X automata (see, e.g., Jones, 1975,
Jones and Laaser, 1977, Galil, 1977, and Hunt, 1976). In the next result we
show that this is a general phenomenon. The proof is similar to those in
the above references. A storage type X= (C, T, F, m, C,, id) is finitely
encoded (see Chap. 5 of Ginsburg, 1975) if T and F are finite.

THEOREM 7.11. Let X be a finitely encoded storage type. The non-
emptiness problem for one-way nondeterministic X automata is log-space
complete in 2N(multi) - X

Proof Let A(X) denote the class of one-way nondeterministic X
automata, and also, ambiguously, the set of strings that code these

70 JOOST ENGELFRIET

automata over a fixed alphabet, in the usual way. In particular, the
transition function of an automaton M in A(X) is specified as a sequence
of tuples in

and each such tuple is called a transition of M.
We first construct a 2N(2) -X automaton N that accepts the language

(~~4WIWOf121). G’ iven an input string M, N first checks that
ME A(X), and then simulates M, guessing nondeterministically some input
string for M that hopefully is accepted by M. N uses one head to point to
the current transition of 44, simulates the execution of this transition
(which is possible because X is finitely encoded), and uses the second head
to find a new transition. The correct state behaviour of M is guaranteed by
N checking equality of the (coded) states in the old and the new transition,
using both heads.

Next, let N be a 2N(r) -X automaton for some Y > 1. We have to show
that L(N) is log-space reducible to the nonemptiness problem
{MEA(X)IL(M)#IZI}. L t e w be a given input string of N, of length n.
We construct N,, E A(X) such that, independent of its input, N, simulates
N on w by keeping track of N’s head positions on w in its finite control.
Thus, N,. has states (q, i,, i,) whereqisastateofNand06ijdn+1
for every 1 < j < r. Clearly w E L(N) if and only if L(N,,) # 0. The trans-
lation from w into N,, can be realized by a DSPACE(log n) transducer.
In fact, N,. contains for each (ii, i,) a set of transitions that is easily
obtainable from the transitions of N. Thus, N,. has O(nr) transitions. To
write down a sequence (i,, i,) takes log n space, and it suffices to keep
track of these sequences. Note that N,. is of length O(nr log n). 1

We note that this theorem also holds if the one-way X automata are
restricted to be deterministic: in this case N,,. should use its own input
string to decide which transitions of N to choose. The theorem also
holds for the “general membership problem,” i.e., the language
((M, x)1 MEA(X), XEL(M)}. In fact, on the one hand, this language can
easily be accepted by a 2N(multi) --X automaton. On the other hand, w
can be translated into (N,., A), because w E L(N) iff ,J E L(N,). Finally, it
also holds for every nontrivial property of 1N - X languages that can be
decided by a 2N(multi) -X automaton (cf. Hunt, 1976): after successful
simulation of N on u’, N,, should simulate (on its own input) some 1N - X
automaton M such that L(M) has or does not have the property,
depending on whether @ does not have or has the property.

To be able to use Theorem 7.11 we will assume in the remainder of this
section (just as in Hunt, 1976) that the set r of pushdown or stack symbols
is finite, or even that r= (0, 1 }. It is easy to see that, for every storage type

AUTOMATA AND COMPLEXITY 71

considered in this paper, this restriction results in an equivalent storage
type (that will be denoted by the same name). This was discussed in
Section 1.3 for the storage type P(X). Of course, the restriction gives a
smaller class of one-way automata.

With this restriction on r, all our storage types are finitely encoded.
Thus, we immediately obtain from Theorem 7.11 (for X= P”) and from the
complexity characterization of 2N(multi) - Pk in Theorem 2.6, that for
k >, 1 the emptiness problem for 1N - Pk automata is log-space complete in
DTIME(exp,- i(poly)), and that the same holds for 1D - Pk automata.
This result can be sharpened as follows.

THEOREM 7.12. For k 2 2,

(1) the emptiness problem for 1N - Pk automata is in
u DTIME(exp,- ,(dn’)), and

(2) for every E > 0, the emptiness problem for 1D - Pk automata is not
in u DTIME(exp,_ ,(dn2-“)).

Proof. (1) This nonemptiness problem can be accepted by a
2N(multi) - Pk automaton with one head rather than two, cf. Proposi-
tion 4.5 of Hunt (1976). In fact (referring to the proof of Theorem 7.11), to
check equality of the old and the new state, N stores the (coded) old state
on its “outer” pushdown, by appropriate push(y, id) instructions, and then
compares it to the new state, popping the pushdown. The result now
follows from Theorem 3.3 with r = 1.

(2) The second part of the proof of Theorem 7.11 shows that the log-
space reduction of languages in 2N(l) - X produces strings of length
O(n log n). The result now follows from the fact that, by the time hierarchy
theorem, (Jd, 0 DTIME(exp, _ I(dn2-“(log n)‘-“)) is properly contained in
DTIME(expkp,(dn2)) for every d. 1

Decidability of this problem was first shown in (Damm, 1982), using
algebraic methods, for the k-level 01 macro grammars. It is mentioned in
(Greibach, 1970) as having been shown by Aho and Ullman.

Theorem 7.12 gives some natural automata-theoretic decision problems
of high intractability. By combining them, a nonelementary problem is
obtained; cf. the result of Meyer and Stockmeyer in Section 11.4 of (Aho,
Hopcroft, and Ullman, 1974). Recall that (Jk DTIME(exp,(poly)) is the
class of elementary problems. Let an iterated pushdown automaton be a Pk
automaton for any k (where the k is specified in the automaton).

COROLLARY 7.13. The emptiness problem for one-way (non)deterministic
iterated pushdown automata is decidable, but not elementary.

643:95/l-6

72 JOOSTENGELFRIET

Proof: Decidability follows from the fact that the appropriate multi-
head Pk automaton can be computed from k, and from the effectiveness of
all our results (in particular Theorem 2.6). 1

It can be shown that Theorem 7.12 and Corollary 7.13 also hold for
infinite I? For the lower bounds this is of course trivial. For the upper
bounds one has to implement the binary encoding of the stack symbols, in
the obvious way.

It should be clear that similar results can be obtained for all other
storage types considered. For iterated checking stack automata this implies
the following result. By 2GSMk we denote the class of all relations that are
compositions of k Z-way gsm’s. The emptiness problem for this class is the
problem of deciding for given Z-way gsm’s M,, Mk whether the com-
position of r(M,) to r(Mk) is the empty relation.

THEOREM 7.14. For every k b 1, the emptiness problem for 2GSMK is
fog-space complete in DSPACE(exp,_ l(poly)).

Proof From Theorems 7.11 and 5.2 we obtain completeness of the
emptiness problem for 1N - CSAk automata in DSPACE(exp,- r(poly)). It
can be checked that all translations in Lemma 7.6 (and hence in
Corollary 7.7) are DSPACE(log n) transductions (including a translation
that changes the CSA(X) automaton into one that uses stack symbols 0
and 1 only). This shows that the emptiness problem for 2GSMk(REG) is
complete in DSPACE(exp,- i(poly)). Clearly, incorporating the regular
language into the finite control of the first Z-way gsm, the same holds
for the ranges of the relations in 2GSMk, and hence for the relations
themselves. 1

Since Uk DSPACE(exp,(poly)) is the class of elementary problems, we
obtain the following intractable problem for Z-way nondeterministic finite
state transducers.

THEOREM 7.15. The emptiness problem for compositions of 2-way gsm’s
is decidable, but not elementary.

CONCLUSION

Some remaining questions are the following.

(1) What is the power (in terms of complexity classes) of deter-
ministic r-head Pk automata?

(2) What is the precise power of alternating multi-head CSAk
automata? It is straightforward to show that U ASPACE(exp,(ds(n))) -

AUTOMATA AND COMPLEXITY 73

X s ASPACE(s(n)) - CSA(X) 5 ‘J ASPACE(exp,(ds(n))) - X. If the
CSA(X) automaton is not allowed to branch universally in reading mode,
U ASPACE(exp,(ds(n))) - X is obtained. For CSPD automata it is not
difficult to show that ASPACE(s(n)) - CSPD(X) = U ASPACE(exp,(ds(n))
- x.

(3) Are the 1N - Pk languages context-sensitive? This is mentioned
in (Greibach, 1970) as having been shown by Aho and Ullman.

(4) Questions like: is lN-SAk properly included in IN- Pzk?
(5) Is it possible to find automaton-theoretic characterizations of

complexity classes larger than the class of elementary languages? One idea
is to define an iterated pushdown automaton with an arbitrary number of
levels of pushdowns: it should have instructions to go up and down in
level. Unfortunately, this automaton would be able to accept all recursively
enumerable languages (each level would simulate one square of a Turing
machine tape). One could think of bounding the number of levels in terms
of the length of the input.

(6) In general, which complexity classes can be characterized by
2-way or multi-head automata (in particular NTIME classes), and, vice
versa, for which storage types X are 2N(1) - X and ZN(multi) - X com-
plexity classes?

ACKNOWLEDGMENT

I thank Werner Damm for stimulating discussions.

RECEIVED June 12, 1989; FINAL MANUSCRIPT RECEIVED April 6, 1990

REFERENCES

AHO, A. V. (1968), Indexed grammars, an extension of context-free grammars, 1. Assoc.
Comput. Mach. 15, 641-671.

AHO, A. V. (1969), Nested stack automata, J. Assoc. Compur. Mach. 16, 383406.
AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. (1974), “The Design and Analysis of

Computer Algorithms,” Addison-Wesley, Reading, Ma.
ASVELD, P. R. J. (1977), Controlled iteration grammars and full hyper-AFL’s, Inform. and

Control 34, 248-269.
ASVELD, P. R. J., AND VAN LEEUWEZN, J. (1975), “Infinite Chains of Hyper-AFL’s,” Memoran-

dum 99, Twente University of Technology.
BEERI, C. (1975), Two-way nested stack automata are equivalent to two-way stack automata,

J. Comput. System Sci. 10, 317-339.
CHANDRA, A. K., KOZEN, D. C., AND STOCKMEYER, L. J. (1981), Alternation, J. Assoc.

Comput. Mach. 28, 114-133.

74 JOOST ENGELFRIET

COOK. S. A. (1971). Characterizations of pushdown machines in terms of time-bounded
computers, J. Assoc. Comput. Mach. 18, 418.

DAMM, W. (1982), The IO- and 01-hierarchies, Theoret. Comput. Sci. 20, 95-206.
DAMM, W., AND GOERDT, A. (1986) An automata-theoretical characterization of the

O&hierarchy, Inform. and Control 71, l-32.
ENGELFRIET, J. (1982) Three hierarchies of transducers, Math. Systems Theory 15, 955125.
ENGELFRIET, J. (1983), Iterated pushdown automata and complexity classes, in “Proceedings,

15th STOC, Boston,” pp. 365-373.
ENGELFRIET, J. (1986) “Context-Free Grammars with Storage,” Report 86-11, Leiden

University.
ENGELFRIET, J., AND HOOGEBOOM, H. J. (1989), “X-Automata on w-words,” Report 89-06,

Leiden University. See also “Proceedings 16th ICALP, Lecture Notes in Computer
Science,” Vol. 372, Springer-Verlag, Berlin, 1989, 289-303.

ENGELFRIET, J., ROZENBERG, G.. AND SLUTZKI, G. (1980) Tree transducers. L systems, and
two-way machines, J. Comput. System Sci. 20, 150-202.

ENGELFRIET, J., AND SCHMIDT, E. M. (1977/1978), IO and 01, I, J. Compur. Sysrem Sci. 15,
328-353; II, J. Comput. System Sri. 16, 67-99.

ENGELFRIET, J., SCHMIDT. E. M., AND VAN LEEUWEN, J. (1980) Stack machines and classes
of nonnested macro languages, J. Assoc. Comput. Mach. 21, 96117.

ENGELFRIET, J., AND SLUTZKI, G. (1984), Extended macro grammars and stack controlled
machines, J. Comput. System Sci. 29, 366408.

ENGELFRIET, J., AND VOGLER, H. (1986), Pushdown machines for the macro tree transducer,
Theoret. Comput. Sci. 42, 251-368.

ENGELFRIET, J., AND VOGLER. H. (1987) Look-ahead on pushdowns, Inform. and Comput. 73,
2455279.

ENGELFRIET, J., AND VOGLER, H. (1988) High level tree transducers and iterated pushdown
tree transducers, Acta Inform. 26, 131-192.

FISCHER, M. J. (1969), Two characterizations of the context-sensitive languages, in “IEEE
Conference Record of 10th Annual Symposium on Switching and Automata Theory,”
pp. 149-165.

GALIL, Z. (1977) Hierarchies of complete problems, Acta Inform. 6, 77-88.
GINSBURG, S. (1975) “Algebraic and Automata-Theoretic Properties of Formal Languages,”

North-Holland, Amsterdam.
GINSBURG, S., GREIBACH, S. A., AND HARRISON. M. A. (1967). Stack automata and

compiling, J. Assoc. Compuf. Mach. 14, 389418.
GOLDSTINE, J. (1977) Automata with data storage, in “Proceedings of a Conference on

Theoretical Computer Science, Waterloo,” pp. 239-246.
GREIBACH, S. A. (1969), Checking automata and one-way stack languages, J. Compuf. System

Sci. 3, 196217.
GREIBACH, S. A. (1970) Full AFLs and nested iterated substitution, Inform. and Control 16,

7-35.
GREIBACH, S. A. (1978a), Visits, crosses, and reversals for nondeterministic ON-line machines.

Inform. and Control 36, 174216.
GREIBACH, S. A. (1978b), One-way finite visit automata, Theoret. Comput. Sci. 6, 1755221.
GREIBACH, S. A. (1978~) Hierarchy theorems for two-way finite state transducers, Acta

Inform. 11, 89-101.
HOARE, C. A. R. (1972), Proof of correctness of data representations, Acfa Inform. 1, 271-281.
HOPCROFT, J. E., AND ULLMAN, J. D. (1967a). An approach to a unified theory of automata,

Bell System Tech. J. 46, 1793-1829.
HOPCROFT, J. E., AND ULLMAN, J. D. (1967b), Nonerasing stack automata, J. Comput. System

sci. 1, 166186.

AUTOMATA AND COMPLEXITY 75

HOPCROFT, J. E., AND ULLMAN. J. D. (1979), ‘Introduction to Automata Theory, Languages,
and Computation,” Addison-Wesley, Reading, MA.

HUNT III, H. B. (1976), On the complexity of finite, pushdown, and stack automata, Murh.
Systems Theory 10, 33-52.

IBARRA, 0. H. (1971). Characterizations of some tape and time complexity classes of Turing
machines in terms of multi-head and auxiliary stack automata, J. Comput. System Sci. 5,
88-l 17.

JONES, N. D. (1975), Space-bounded reducibility among combinatorial problems, J. Comput.
S.vstem Sci. 11, 68-85.

JONES, N. D., AND LAASER. W. T. (1977) Complete problems for deterministic poiynomial
time, Theoret. Compuf. Sci. 3, 1055117.

KIEL, D. I. (1975). Two-way a-transducers and AFL, J. Compur. Sysfem Sci. 10, 88-109.
KOWALCZYK. W., NIWINSKI, D., AND TIURYN, J. (1989), A generalization of Cooks auxiliary-

pushdown-automata theorem, Fund. Inform. 12, 497-506.
LADNER, R. E., LIPTON, R. J., AND STOCKMEYER, L. J. (1984) Alternating pushdown and

stack automata, SIAM J. Compur. 13, 135-155.
MAIBAUM. T. S. E. (1974), A generalized approach to formal languages, J. Comput. System

Sci. 8, 409439.
MASLOV, A. N. (1974), The hierarchy of indexed languages of an arbitrary level. Soviet Math.

Dokl. 15, 117&1174.
MASLOV, A. N. (1976) Multi-level stack automata, Problems Inform. Transmission 12, 38-43.
PARCHMANN, R., DUSKE, J., AND SPECHT, J. (1980), On deterministic indexed languages,

Inform. and Control 45, 48-67.
RAJLICH, V. (1972), Absolutely parallel grammars and two-way finite state transducers,

J. Comput. System Sri. 6, 324-342.
ROZENBERG, G.. AND SALOMAA, A. (1980). “The Mathematical Theory of L Systems,”

Academic Press, New York.
RUZZO, W. L. (1980), Tree-size bounded alternation, J. Comput. Sysrem Sci. 21, 218-235.
SCOTT, D. (1967). Some definitional suggestions for automata theory, J. Comput. System Sci.

1, 187-212.
VAN LEEUWEN. J. (1976), Variations of a new machine model, in “Proceedings, 17th FOCS.”
VOGEL, J., AND WAGNER, K. (1985), Two-way automata with more than one storage medium,

Theoret. Comput. Sci. 39, 267-280.
VOGLER. H. (1986) Iterated linear control and iterated one-turn pushdowns, Math. Syst.

Theory 19, 117-133.
VOGLER, H. (1988). The 01-hierarchy is closed under control, Inform. and Compw. 78,

187-204.
WAGNER, K., AND WECHSUNG, G. (1986) “Computational Complexity,” Reidel, Dordrecht.
WAND, M. (1975), An algebraic formulation of the Chomsky-hierarchy, in “Category Theory

Applied to Computation and Control,” Lecture Notes in Computer Sci., Vol. 25,
Springer-Verlag, Berlin, pp. 20992 13.

