

Extending the WMSO+U Logic
with Quantification over Tuples

Paweł Parys

University of Warsaw

CSL 2024

Anita Badyl

higher-order recursion schemes

● boundedness questions
● WMSO+U

this work

Higher-order recursion schemes – what is this?

Definition
Recursion schemes = simply-typed lambda-calculus + recursion

In other words:
● programs with recursion
● higher-order functions (i.e., functions taking other functions as

parameters)
● every function/parameter has a fixed type
● no data values, only functions

Higher-order recursion schemes – example

fun f(x) {
a(x);
if * then f(x);
b(x);

}
f(x)

recursion

branching (we are not sure what
 will be chosen)

uniterpreted constants
(unknown functions)

Higher-order recursion schemes – example

fun f(x) {
a(x);
if * then f(x);
b(x);

}
f(x)

 a
if

 b a

....

 if
 b a

 if
 a b
 if

 b a

 b

 b

 b
 b
 b
 b

We are interested in trees representing
the control flow of such programs.

Observation: these trees need not
 to be regular

⊥

⊥

⊥

⊥

Higher-order recursion schemes – example

fun A(f,x) {
 if * then A(D(f),x) else f(x);
}
fun D(f)(x) {
 f(x); f(x);
}
fun P(x) {
 b(x);
}
A(P,x)

if

if

b
b

bb
b

b
b

b
b

b
b

b
b

b
b

...

⊥

⊥

⊥

⊥

if

if

This program uses higher-order recursion
(passes functions as parameters)

k

2k

Model-checking

Theorem [Ong 2006]
MSO model-checking on trees generated by recursion schemes
is decidable.

Input: MSO formula f, recursion scheme G
Question: is f true in the (infinite) tree generated by G?

Model-checking
● a program in a functio-

nal programming lan-
guage (e.g. OCAML)

● a property y

does the program
satisfy y?

Model-checking
● a program in a functio-

nal programming lan-
guage (e.g. OCAML)

● a property y

● a recursion scheme G
● a formula f

is f true in the tree
generated by G?

ignore some details,

simulate some details
using functions

Approximation

decidable

does the program
satisfy y?

Model-checking
● a program in a functio-

nal programming lan-
guage (e.g. OCAML)

● a property y

● a recursion scheme G
● a formula f

is f true in the tree
generated by G?
● yes
● no

ignore some details,

simulate some details
using functions

does the program
satisfy y?
● yes
● ?

Approximation

decidable

There exist tools that take (short) programs in Ocaml and can
verify some useful properties.

Can we go beyond MSO?

What about checking properties not expressible in MSO,
e.g., talking about boundedness?

Can we go beyond MSO?

What about checking properties not expressible in MSO,
e.g., talking about boundedness?

Input: recursion scheme G, symbol a
Question: In the tree generated by G,
 are there (finite) branches
 with arbitrarily many occurrences
 of symbol a?

(∀n ∃branch with >n occurrences of a)

Notice:
There may be no path with infinitely many „a”.
This property is not regular!!!
(the result [Ong – LICS 2006] does not help here)

Unboundedness – basic problem

a

a
a

a
a

a

a

a
a

aa

a

a
…

a

Can we go beyond MSO?

What about checking properties not expressible in MSO,
e.g., talking about boundedness?

Input: recursion scheme G, symbols a1,…,ak

Question: In the tree generated by G,
 are there (finite) branches
 with arbitrarily many occurrences

 of all symbols from a1,…,ak?

Simultaneous unboundedness

a

a
a

a
a

a

a

a
a

aa

a

a
…

b b

b

b

b
b

b

b

b

b

b

bb

a
(∀n ∃branch ∀i there are >n
 occurrences of ai on the branch)

Thm. This is decidable [Clemente, P., Salvati, Walukiewicz 2016]

We consider the WMSO+U logic.

“+U” = we add a new quantifier „U” [Bojańczyk, 2004]

UX.f(X)
f(X) holds for finite sets of arbitrarily large size

n∈ℕ X (n<|X|< ∧ f(X))

Can we go beyond MSO?

What about checking properties not expressible in MSO,
e.g., talking about boundedness?

General approach - logic

“W” = weak – we can quantify only over finite sets
(X /X means: exists a finite set X / for all finite sets X)

(...)

a
b

b

b

N !−1 copies of S1,1

N !−1 copies of S1,1

S1,1

S2,1

S1,2

S3,1

S1,3

a
a

a
a

b

b

on each interval

on each interval

(...)

(...
)

(...
)

S1,1

S2,2

S3,3

S4,4

S5,5

a
nd

nd

nd

nd

nd

nd

nd

nd

nd

nd

a

a

b

b

b

Contribution 1
Can WMSO+U express the simultaneous unboundedness?

Thm. NO, it cannot. WMSO+U cannot distinguish the following trees:

WMSO+Utup – We add „U” quantification for tuples of sets

U(X1,…,Xk).f(X1,…,Xk)
f(X) holds for tuples of arbitrarily large finite sets

n∈ℕ X1…Xk (n<|X1|,...,|Xk|< ∧ f(X1,...,Xk))

Contribution 2 – more expressive logic

Note: This is different from saying UX1…UXk.f(X1,…,Xk)

WMSO+Utup – We add „U” quantification for tuples of sets

U(X1,…,Xk).f(X1,…,Xk)
f(X) holds for tuples of arbitrarily large finite sets

n∈ℕ X1…Xk (n<|X1|,...,|Xk|< ∧ f(X1,...,Xk))

Contribution 2 – more expressive logic

Note: This is different from saying UX1…UXk.f(X1,…,Xk)

Thm. The following problem is decidable:
Input: recursion scheme G, WMSO+Utup sentence f
Question: Is f true in the tree generated by G?

About the proof
Theorem – the following problem is decidable:
input: formula f, recursion scheme G,
question: is f true in the tree generated by G?

Key ingredients:
● decidability of “simultaneous unboundedness” for HORSes:

input: recursion scheme G, letters a1,…,ak

question: are there paths with arbitrarily many occurrences of
 all letters from a1,…,ak in the tree generated by G?
[Hague, Kochems, Ong 2016, Clemente, P., Salvati, Walukiewicz 2016]

● „reflection” for simultaneous unboundedness: [P. 2017]
input: recursion scheme G, letters a1,…,ak

output: recursion scheme H, generating the same tree as G, but with
 additional labels – in each node it is written whether

 simultaneous unboundedness wrt a1,…,ak holds in this node

About the proof
Theorem – the following problem is decidable:
input: formula f, recursion scheme G,
question: is f true in the tree generated by G?

Key ingredients:
● „reflection” for simultaneous unboundedness: [P. 2017]

input: recursion scheme G, letters a1,…,ak

output: recursion scheme H, generating the same tree as G, but with
 additional labels – in each node it is written whether

 simultaneous unboundedness wrt a1,…,ak holds in this node
● „reflection” for (W)MSO: [Broadbent, Carayol, Ong, Serre 2010]

input: recursion scheme G, formula y(x)ÎWMSO
output: recursion scheme H, generating the same tree as G, but with
 additional labels – in each node it is written whether
 y holds in this node

● additionally: recursion schemes can be composed with
 finite tree transducers

About the proof
Theorem – the following problem is decidable:
input: formula f, recursion scheme G,
question: is f true in the tree generated by G?

Key ingredients:
● translation: formula ⇒ sequence of operations O1, O2, ..., Ok
● Three kinds of operations:

➔ apply reflection for simultaneous unboundedness
➔ apply reflection for an MSO formula
➔ apply finite tree transducer

About the proof
Theorem – the following problem is decidable:
input: formula f, recursion scheme G,
question: is f true in the tree generated by G?

Key ingredients:
● translation: formula ⇒ sequence of operations O1, O2, ..., Ok
● Three kinds of operations:

➔ apply reflection for simultaneous unboundedness
➔ apply reflection for an MSO formula
➔ apply finite tree transducer

How to deal with the U(X1,…,Xk) quantifier?
Step 1: Create a variant of the tree “with all possible choices for X1,…,Xk”
 (on additional new branches below every node) - transducer
Step 2: Apply reflection for sim. unb. - check which choices are “good”
Step 3: Move the information to a correct place in the tree
Step 4: Remove additional branches

Proof: by induction on the formula

About the proof
Theorem – the following problem is decidable:
input: formula f, recursion scheme G,
question: is f true in the tree generated by G?

Key ingredients:
● translation: formula ⇒ sequence of operations O1, O2, ..., Ok
● Three kinds of operations:

➔ apply reflection for simultaneous unboundedness
➔ apply reflection for an MSO formula
➔ apply finite tree transducer

Then: For every Oi and rec. scheme Gi generating a tree ti we create
a rec. scheme Gi+1 generating ti+1=Oi(ti) (the effect of applying Ai to ti),
using appropriate theorem

About the proof
Theorem – the following problem is decidable:
input: formula f, recursion scheme G,
question: is f true in the tree generated by G?

Conclusion of the proof:
● The proof consists of a few (clearly separated) steps
● The technical difficulty is hidden in the “simultaneous

unboundednes reflection” theorem

 Thank you!

Summary

● Thm 1. WMSO+U can not express simultaneous unboundedness
● We introduce WMSO+Utup, a logic which can express simultaneous

unboundedness
● Thm 2. Given an WMSO+Utup sentence f and a recursion scheme G,

we can decide whether f holds in the tree generated by G

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24

