The Probabilistic Rabin Tree Theorem

Damian Niwiński, **Paweł Parys**, Michał Skrzypczak University of Warsaw

Theorem

We can compute the probability that a random infinite tree belongs to a given regular language L.

Theorem

We can compute the probability that a <u>random infinite tree</u> belongs to a given regular language L.

given by, e.g.

- an MSO formula
- a nondeterministic parity automaton

full binary tree, each label chosen independently in random

- the result is an algebraic number
- can be computed in 3-EXPTIME
- ullet can be compared with a given rational q in 2-EXPSPACE

Context

Decidable

- some results for ω -words (probability always rational)
- infinite trees: the probability exists (not clear because regular languages of infinite trees need not to be Borel) [Gogacz, Michalewski, Mio, Skrzypczak 2017]
- determ. top-down parity autom. [Chen, Dräger, Kiefer 2012]
- game automata [Michalewski, Mio 2015]
- weak MSO [Niwiński, Przybyłko, Skrzypczak 2020]

<u>Undecidable</u>

- nonemptiness for probabilistic automata (exists a finite word accepted with probability >0.5)
- value-1 for probabilistic automata (exists a sequence of finite words where acceptance probability tends to 1)
- exists a ω -word accepted by a probabilistic Büchi automaton with probability >0.

<u>Open</u>

Satisfiability of PCTL*

Two worlds

Languages → Probabilities

Two worlds

Languages Probabilities

Key difficulty:

Two worlds

Languages

Probabilities

Key difficulty:

Another aspect:

(random variables)

distribution of X, distribution of Y

distribution of $X \times Y$ distribution of F(X,Y)

Nondeterministic automata $\longrightarrow \mu$ -calculus / powersets

Nondeterministic automata \rightarrow μ -calculus / powersets

Basic objects: profiles

 τ : trees $\rightarrow P(Q)$

Profile τ_A corresponding to automaton A: $\tau_A(t)$ = states from which t can be accepted

Proposition: $\tau_A(t) = \mu x_1.\nu x_2.\mu x_3.\nu x_4...\mu x_{d-1}.\nu x_d.\delta(x_1,x_2,...,x_d)$ where $\delta(x_1,x_2,...,x_d)$ applies transition function once (transitions of priority i go to x_i)

<u>Goal</u>: compute probability distribution of the random variable τ_A

$$\delta(\tau_1, \tau_2, \dots, \tau_d) \qquad \longrightarrow \quad \frac{\overline{\tau} = (\tau_1, \tau_2, \dots, \tau_d)}{\Delta(\overline{\tau})}$$

Convenient to take:

$$\Delta(\overline{\tau}) = (\delta(\tau_1, \tau_1, \tau_1, ..., \tau_1), \ \delta(\tau_1, \tau_2, \tau_2, ..., \tau_2), \ \delta(\tau_1, \tau_2, \tau_3, ..., \tau_3), \ ..., \ \delta(\tau_1, \tau_2, ..., \tau_d))$$

Previously: $\tau_A(t) = \mu x_1 . v x_2 . \mu x_3 . v x_4 ... \mu x_{d-1} . v x_d . \delta(x_1, x_2, ..., x_d)$

Now: convenient to write things like: $\mu x.F(x \lor y)$, $\nu x.F(x \land y)$ (but \lor , \land does not translate to probabilities)

Intuition behind $\mu x.F(x \vee y)$ (but not precise meaning): least fixed point of F above y

We define: $F \uparrow (y)$ = least fixed point of F above y

<u>Unary μ-calculus</u>

Syntax: $H, F_1; F_2, F \uparrow, F \downarrow$ (defines a one-argument function $V \to V$) composition $F \downarrow (y) = \text{greatest fixed point of } F \text{ below } y$

 $F \uparrow (y) = \text{least fixed point of } F \text{ above } y$

<u>Unary μ-calculus</u>

partial function

Problem: $F \uparrow (y)$ may be undefined

- maybe there are no fixed points above *y*
- maybe there are many incomparable fixed points above *y*

So: $F \uparrow$ is a partial function

<u>Unary μ-calculus – type system</u>

How to prove that a formula of unary μ -calculus has a defined value? Type system: statements $F::A \to B$ (F is defined on A and has values in B)

$$\frac{F_1 :: A \to C \qquad F_2 :: C \to B}{F_1; F_2 :: A \to B}$$

<u>Unary μ-calculus – type system</u>

How to prove that a formula of unary μ -calculus has a defined value? Type system: statements $F::A \to B$ (*F* is defined on *A* and has values in *B*)

$$\frac{F_1 :: A \to C \qquad F_2 :: C \to B}{F_1; F_2 :: A \to B}$$

$$\frac{F :: A \to A}{F \uparrow :: A \to B} A \text{ chain complete, } \forall x \in A . F(x) \ge x, \text{ Fix}(F) \cap A \subseteq B$$

$$\frac{F :: A \to A}{F \downarrow :: A \to B} A \text{ chain complete, } \forall x \in A . F(x) \le x, \text{ Fix}(F) \cap A \subseteq B$$

every chain of elements of A has infimum and supremum in A

Why? $F \uparrow (x) / F \downarrow (x)$ will be reached by:

- applying *F*
- taking limits of chains

<u>Unary μ-calculus – the formula</u>

How to define τ_A in unary μ -calculus?

Base functions:

- $\Delta(\tau_1, \tau_2, ..., \tau_d) = (\delta(\tau_1, \tau_1, \tau_1, ..., \tau_1), \delta(\tau_1, \tau_2, \tau_2, ..., \tau_2), \delta(\tau_1, \tau_2, \tau_3, ..., \tau_3), ..., \delta(\tau_1, \tau_2, ..., \tau_d))$
- $\operatorname{Bid}_{n}(\tau_{1},\tau_{2},...,\tau_{d}) = (\tau_{1},...,\tau_{n-2},\tau_{n-1},\tau_{n-2},\tau_{n-2},...,\tau_{n-2})$ for n=1,...,d; $\tau_{-1}=\bot;$ $\tau_{0}=\top$
- $Cut_n(\tau_1, \tau_2, ..., \tau_d) = (\tau_1, ..., \tau_{n-2}, \tau_{n-1}, \tau_{n+1}, \tau_{n+1}, ..., \tau_{n+1})$ for n = 1, ..., d-1(Bid, and Cut_n only swap coordinates)

<u>Unary μ-calculus – the formula</u>

How to define τ_A in unary μ -calculus?

Base functions:

- $\Delta(\tau_1, \tau_2, ..., \tau_d) = (\delta(\tau_1, \tau_1, \tau_1, ..., \tau_1), \delta(\tau_1, \tau_2, \tau_2, ..., \tau_2), \delta(\tau_1, \tau_2, \tau_3, ..., \tau_3), ..., \delta(\tau_1, \tau_2, ..., \tau_d))$
- $Bid_n(\tau_1,\tau_2,...,\tau_d) = (\tau_1,...,\tau_{n-2},\tau_{n-1},\tau_{n-2},\tau_{n-2},...,\tau_{n-2})$ for n=1,...,d; $\tau_{-1}=\bot;$ $\tau_0=\top$
- $Cut_n(\tau_1, \tau_2, ..., \tau_d) = (\tau_1, ..., \tau_{n-2}, \tau_{n-1}, \tau_{n+1}, \tau_{n+1}, ..., \tau_{n+1})$ for n = 1, ..., d-1

(Bid_n and Cut_n only swap coordinates)

$$\begin{split} & \Phi_d = \operatorname{Bid}_d ; \Delta \uparrow \pmod{d} \\ & \Phi_d = \operatorname{Bid}_d ; \Delta \downarrow \pmod{d} \\ & \Phi_n = \operatorname{Bid}_n ; (\Delta \uparrow ; \Phi_{n+1} ; \operatorname{Cut}_n) \uparrow \pmod{n < d} \\ & \Phi_n = \operatorname{Bid}_n ; (\Delta \downarrow ; \Phi_{n+1} ; \operatorname{Cut}_n) \downarrow \pmod{n < d} \end{split}$$

<u>Unary μ-calculus – the formula</u>

```
\begin{split} & \Phi_d = \operatorname{Bid}_d ; \Delta \uparrow \quad (\operatorname{odd} d) \\ & \Phi_d = \operatorname{Bid}_d ; \Delta \downarrow \quad (\operatorname{even} d) \\ & \Phi_n = \operatorname{Bid}_n ; (\Delta \uparrow ; \Phi_{n+1} ; \operatorname{Cut}_n) \uparrow \quad (\operatorname{odd} n < d) \\ & \Phi_n = \operatorname{Bid}_n ; (\Delta \downarrow ; \Phi_{n+1} ; \operatorname{Cut}_n) \downarrow \quad (\operatorname{even} n < d) \end{split}
```

What has to be shown?

- 1) $\Phi_1(\cdot)$ is defined (using the type system)
- 2) $\Phi_1(\cdot)$ computes τ_A
- 3) all intermediate profiles used while computing $\Phi_1(\cdot)$ are measurable
- 4) the same computation can be done on distributions

Why the value is well defined?

We define sets S_n – we have $(\tau_1, \tau_2, ..., \tau_d) \in S_n$ if

•
$$\tau_1 \le \tau_3 \le \tau_5 \le \dots \le \tau_6 \le \tau_4 \le \tau_2$$

•
$$\tau_n = \tau_{n+1} = \tau_{n+2} = \dots = \tau_d$$

- first n-1 coordinates of $\Delta(\tau_1, \tau_2, ..., \tau_d)$ are $(\tau_1, \tau_2, ..., \tau_{n-1})$
- $\Delta(\tau_1, \tau_2, ..., \tau_d) \ge (\tau_1, \tau_2, ..., \tau_d)$ if n odd, and
- $\Delta(\tau_1, \tau_2, ..., \tau_d) \ge (\tau_1, \tau_2, ..., \tau_d)$ if n even.

For the base functions we derive:

- $\Delta :: S_n \to S_n$
- $\operatorname{Bid}_n :: S_n \to S_n$
- $\operatorname{Cut}_n :: S_{n+2} \to S_n$

Then we show (using the type system) that:

•
$$\Phi_n :: S_n \to S_{n+1}$$

Why is the value correct?

(why $\Phi_1(\cdot)$ computes τ_A ?)

Why is the value correct?

(why $\Phi_1(\cdot)$ computes τ_A ?)

<u>Step 1</u>:

Recall the intuition: $F \uparrow (y)$ was introduced to simulate $\mu x.F(x \lor y)$.

The typing rule says:

$$\frac{F :: A \to A}{F \uparrow :: A \to B} A \text{ chain complete, } \forall x \in A . F(x) \ge x, \text{ Fix}(F) \cap A \subseteq B$$

so $F \uparrow (y) = \mu x . F(x \lor y)$ for $y \in A$.

Why is the value correct?

(why $\Phi_1(\cdot)$ computes τ_A ?)

<u>Step 1</u>:

Recall the intuition: $F \uparrow (y)$ was introduced to simulate $\mu x.F(x \lor y)$.

The typing rule says:

$$\frac{F :: A \to A}{F \uparrow :: A \to B} A \text{ chain complete, } \forall x \in A . F(x) \ge x, \ \mathsf{Fix}(F) \cap A \subseteq B$$

so $F \uparrow (y) = \mu x . F(x \lor y)$ for $y \in A$.

Step 2:

Change Φ_1 into $\mu x_1.\nu x_2.\mu x_3.\nu x_4...\mu x_{d-1}.\nu x_d.\delta(x_1,x_2,...,x_d)$ using some laws of μ -calculus, like

$$\mu x.\nu y.F(x, x \vee y) = \mu x.\nu y.F(x, y)$$

$$\mu x. \nu y. \mu z. F(x, y, x \vee z) = \mu x. \nu y. \mu z. F(x, y, z)$$

$$\mu x.\nu y.F(\mu z.F(x\vee z,x\vee z),y) = \mu x.\nu y.F(x,y)$$

Measurability

Recall that $F \uparrow (x) / F \downarrow (x)$ can be reached from x by:

- applying F
- taking limits of chains

Difficulty:

We need to know that all intermediate values in this computation are measurable (so it makes sense to consider their probability distribution)

Measurability

Recall that $F \uparrow (x) / F \downarrow (x)$ can be reached from x by:

- applying F
- taking limits of chains

Difficulty:

We need to know that all intermediate values in this computation are measurable (so it makes sense to consider their probability distribution)

Solution:

Similar proof as for showing that every regular language is measurable [Gogacz, Michalewski, Mio, Skrzypczak 2017], [Lusin, Sierpiński 1918]

Moreover:

(in this case) probability of the limit of a chain is the limit of probabilities.

Probability distributions

Profiles ————

Distributions

$$\tau$$
: trees $\rightarrow P(Q \times \{1,...,d\})$

$$\hat{\tau}$$
: $\mathbb{D}(\mathsf{P}(Q \times \{1,...,d\}))$

$$\hat{\tau}(R) = \mathbb{P}(\{t \mid \tau(t) = R\})$$

Probability distributions

Profiles —

Distributions

$$\tau$$
: trees $\rightarrow P(Q \times \{1,...,d\})$

$$\hat{\tau}$$
: $\mathbb{D}(\mathsf{P}(Q \times \{1,...,d\}))$

$$\hat{\tau}(R) = \mathbb{P}(\{t \mid \tau(t) = R\})$$

coordinatewise order-

probabilistic powerdomain order [Jones, Plotkin 1989]

for each upward-closed $U \subseteq P(Q \times \{1,...,d\})$

$$\sum_{R \in U} \alpha(R) \le \sum_{R \in U} \beta(R)$$

Probability distributions

Distributions

$$\tau$$
: trees $\rightarrow P(Q \times \{1,...,d\})$

$$\hat{\tau}$$
: $\mathbb{D}(\mathsf{P}(Q \times \{1,...,d\}))$

$$\hat{\tau}(R) = \mathbb{P}(\{t \mid \tau(t) = R\})$$

probabilistic powerdomain order [Jones, Plotkin 1989]

for each upward-closed $U \subseteq P(Q \times \{1,...,d\})$

$$\sum_{R \in U} \alpha(R) \le \sum_{R \in U} \beta(R)$$

$$\Delta$$
, Bid_n , $\operatorname{Cut}_n \longrightarrow \Delta$, Bid_n , $\operatorname{Cut}_n \longrightarrow \Phi_1$

 Φ_1 can be expressed in first-order logic over reals – decidable by Tarski (the formula is of exponential size)

Conclusions

- We shown how to compute the probability that a random infinite tree belongs to a given regular language.
- We introduced unary μ -calculus, which works well for orders without \vee and \wedge (e.g. probability distributions)

Thank you