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Theorem
We can compute the probability that a random infinite tree belongs
to a given regular language L.



  

Theorem
We can compute the probability that a random infinite tree belongs
to a given regular language L.

full binary tree,
each label chosen

independently in random
given by, e.g.
● an MSO formula
● a nondeterministic parity 

automaton

● the result is an algebraic number
● can be computed in 3-EXPTIME
● can be compared with a given rational q in 2-EXPSPACE



  

Context

Open
● Satisfiability of PCTL*

Decidable
● some results for w-words

(probability always rational)
● infinite trees: the probability 

exists (not clear because
regular languages of infinite 
trees need not to be Borel)
[Gogacz, Michalewski, Mio, 
Skrzypczak 2017]

● determ. top-down parity autom.
[Chen, Dräger, Kiefer 2012]

● game automata
[Michalewski, Mio 2015]

● weak MSO
[Niwiński, Przybyłko, Skrzypczak 2020]

Undecidable
● nonemptiness for probabilistic

automata (exists a finite word
accepted with probability >0.5)

● value-1 for probabilistic auto-
mata (exists a sequence of
finite words where acceptance 
probability tends to 1)

● exists a w-word accepted by a 
probabilistic Büchi automaton
with probability >0.
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Key difficulty:
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Two worlds
Languages Probabilities

Key difficulty:

A           B

A∪B

P(A)      P(B)

P(A∪B)

Another aspect:

X           Y

F(X,Y)

(random variables) distribution of X, distribution of Y

distribution of F(X,Y)

distribution of X×Y

distribution of F(X,Y)✔ 



  

Step 1
Nondeterministic automata m-calculus / powersets



  

Step 1
Nondeterministic automata m-calculus / powersets

Basic objects: profiles
t : trees → P(Q)

Profile tA corresponding to automaton A:
tA(t) = states from which t can be accepted

Proposition:  tA(t) = mx1.nx2.mx3.nx4...mxd-1.nxd.d(x1,x2,...,xd)

where d(x1,x2,...,xd) applies transition function once
(transitions of priority i go to xi)

Goal: compute probability distribution of the random variable tA



  

Step 2

d(t1,t2,...,td) t=(t1,t2,...,td)
D(t)



  

Step 2

d(t1,t2,...,td) t=(t1,t2,...,td)
D(t)

Convenient to take:
D(t)=(d(t1,t1,t1,...,t1), d(t1,t2,t2,..,t2), d(t1,t2,t3,...,t3), ..., d(t1,t2,...,td))

Previously:  tA(t) = mx1.nx2.mx3.nx4...mxd-1.nxd.d(x1,x2,...,xd)

Now: convenient to write things like: mx.F(x∨y), nx.F(x∧y)
 (but ∨,∧ does not translate to probabilities)



  

Step 3

mx.F(x∨y) F↑(y)

Intuition behind mx.F(x∨y) (but not precise meaning):
least fixed point of F above y 

We define: F↑(y) = least fixed point of F above y



  

Unary m-calculus

Syntax: H,  F1;F2,  F↑,  F↓  (defines a one-argument function V→V)

fixed base functions

composition

F↑(y) = least fixed point of F above y

F↓(y) = greatest fixed point of F below y



  

Unary m-calculus

Syntax: H,  F1;F2,  F↑,  F↓  (defines a one-argument function V→V)

fixed base functions

composition

F↑(y) = least fixed point of F above y

F↓(y) = greatest fixed point of F below y

Problem: F↑(y) may be undefined
● maybe there are no fixed points above y
● maybe there are many incomparable fixed points above y
So: F↑ is a partial function

partial function



  

Unary m-calculus – type system

How to prove that a formula of unary m-calculus has a defined value?
Type system: statements F :: A→B   (F is defined on A and has values in B)

H :: A→B ∀x∈A . H(x)∈B
F1;F2 :: A→B

F1 :: A→C F2 :: C→B



  

Unary m-calculus – type system

How to prove that a formula of unary m-calculus has a defined value?
Type system: statements F :: A→B   (F is defined on A and has values in B)

H :: A→B ∀x∈A . H(x)∈B
F1;F2 :: A→B

F1 :: A→C F2 :: C→B

F↑ :: A→B
F :: A→A A chain complete, ∀x∈A . F(x) ≥ x, Fix(F)∩A⊆B

F↓ :: A→B
F :: A→A A chain complete, ∀x∈A . F(x) ≤ x, Fix(F)∩A⊆B

every chain of elements of A has infimum and supremum in A

F↑(x) / F↓(x) will be reached by:
● applying F
● taking limits of chains

Why?



  

Unary m-calculus – the formula

How to define tA in unary m-calculus?
Base functions:
● D(t1,t2,...,td)=(d(t1,t1,t1,...,t1), d(t1,t2,t2,..,t2), d(t1,t2,t3,...,t3), ..., d(t1,t2,...,td))
● Bidn(t1,t2,...,td)=(t1,...,tn-2,tn-1,tn-2,tn-2,...,tn-2)     for n=1,…,d;   t-1=⊥; t0=⊤
● Cutn(t1,t2,...,td)=(t1,...,tn-2,tn-1,tn+1,tn+1,...,tn+1)  for n=1,…,d-1
    (Bidn and Cutn only swap coordinates)



  

Unary m-calculus – the formula

How to define tA in unary m-calculus?
Base functions:
● D(t1,t2,...,td)=(d(t1,t1,t1,...,t1), d(t1,t2,t2,..,t2), d(t1,t2,t3,...,t3), ..., d(t1,t2,...,td))
● Bidn(t1,t2,...,td)=(t1,...,tn-2,tn-1,tn-2,tn-2,...,tn-2)     for n=1,…,d;   t-1=⊥; t0=⊤
● Cutn(t1,t2,...,td)=(t1,...,tn-2,tn-1,tn+1,tn+1,...,tn+1)  for n=1,…,d-1
    (Bidn and Cutn only swap coordinates)

Φd = Bidd;D↑    (odd d)
Φd = Bidd;D↓    (even d)
Φn = Bidn;(D↑;Φn+1;Cutn)↑   (odd n<d)
Φn = Bidn;(D↓;Φn+1;Cutn)↓   (even n<d)

⊥ ⊥ ⊥

⊤ ⊤

Bid1

Bid2

Bid3

Cut2

Cut1

D↑

D↑

D↓

↓ ↑



  

Unary m-calculus – the formula
Φd = Bidd;D↑    (odd d)
Φd = Bidd;D↓    (even d)
Φn = Bidn;(D↑;Φn+1;Cutn)↑   (odd n<d)
Φn = Bidn;(D↓;Φn+1;Cutn)↓   (even n<d)

What has to be shown?
1) Φ1(

.) is defined (using the type system)
2) Φ1(

.) computes tA

3) all intermediate profiles used while 
computing Φ1(

.) are measurable

4) the same computation can be done
 on distributions

⊥ ⊥ ⊥

⊤ ⊤

Bid1

Bid2

Bid3

Cut2

Cut1

D↑

D↑

D↓

↓ ↑



  

Why the value is well defined?
We define sets Sn – we have (t1,t2,...,td)∈Sn if
● t1≤t3≤t5≤...≤t6≤t4≤t2
● tn=tn+1=tn+2=...=td
● first n-1 coordinates of D(t1,t2,...,td) are (t1,t2,...,tn-1)
● D(t1,t2,...,td)≥(t1,t2,...,td) if n odd, and
● D(t1,t2,...,td)≥(t1,t2,...,td) if n even.

For the base functions we derive:
● D:: Sn→Sn 
● Bidn:: Sn→Sn
● Cutn:: Sn+2→Sn

Then we show (using the type system) that:
● Φn:: Sn→Sn+1 



  

Why is the value correct?
(why Φ1(

.) computes tA?)



  

Why is the value correct?
(why Φ1(

.) computes tA?)

Step 1:
Recall the intuition: F↑(y) was introduced to simulate mx.F(x∨y).

The typing rule says:

so F↑(y)=mx.F(x∨y) for y∈A.

F↑ :: A→B
F :: A→A A chain complete, ∀x∈A . F(x) ≥ x, Fix(F)∩A⊆B



  

Why is the value correct?
(why Φ1(

.) computes tA?)

Step 1:
Recall the intuition: F↑(y) was introduced to simulate mx.F(x∨y).

The typing rule says:

so F↑(y)=mx.F(x∨y) for y∈A.

Step 2:
Change Φ1 into mx1.nx2.mx3.nx4...mxd-1.nxd.d(x1,x2,...,xd) using some laws of 
m-calculus, like
µx.νy.F(x, x∨y) = µx.νy.F(x, y)
µx.νy.µz.F(x, y, x∨z) = µx.νy.µz.F(x, y, z)
µx.νy.F(µz.F(x∨z,x∨z), y) = µx.νy.F(x, y) 

F↑ :: A→B
F :: A→A A chain complete, ∀x∈A . F(x) ≥ x, Fix(F)∩A⊆B



  

Measurability
Recall that F↑(x) / F↓(x) can be reached from x by:
● applying F
● taking limits of chains

Difficulty:
We need to know that all intermediate values in this computation are 
measurable (so it makes sense to consider their probability distribution)



  

Measurability
Recall that F↑(x) / F↓(x) can be reached from x by:
● applying F
● taking limits of chains

Difficulty:
We need to know that all intermediate values in this computation are 
measurable (so it makes sense to consider their probability distribution)

Solution:
Similar proof as for showing that every regular language is measurable
[Gogacz, Michalewski, Mio, Skrzypczak 2017], [Lusin, Sierpiński 1918]

Moreover:
(in this case) probability of the limit of a chain is the limit of probabilities.



  

Probability distributions
Profiles Distributions

t : trees→P(Q×{1,...,d}) t : D(P(Q×{1,...,d}))
t(R)=P({t | t(t)=R})

^

^



  

Probability distributions
Profiles Distributions

t : trees→P(Q×{1,...,d})

coordinatewise order probabilistic powerdomain order
[Jones, Plotkin 1989]

for each upward-closed U⊆P(Q×{1,...,d})

SR∈U
a(R) ≤ SR∈U

b(R)

t : D(P(Q×{1,...,d}))
t(R)=P({t | t(t)=R})

^

^



  

Probability distributions
Profiles Distributions

t : trees→P(Q×{1,...,d})

coordinatewise order probabilistic powerdomain order
[Jones, Plotkin 1989]

for each upward-closed U⊆P(Q×{1,...,d})

SR∈U
a(R) ≤ SR∈U

b(R)

D, Bidn, Cutn D, Bidn, Cutn
Φ1 Φ1

Φ1 can be expressed in first-order
logic over reals – decidable by Tarski
(the formula is of exponential size)

t : D(P(Q×{1,...,d}))
t(R)=P({t | t(t)=R})

^

^



  

Conclusions
● We shown how to compute the probability that a random

infinite tree belongs to a given regular language.
● We introduced unary m-calculus, which works well for orders

without ∨ and ∧ (e.g. probability distributions)

Thank you 
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