The Probabilistic Rabin Tree Theorem

Damian Niwiński, Paweł Parys, Michał Skrzypczak University of Warsaw

Theorem

We can compute the probability that a random infinite tree belongs to a given regular language L.

Theorem

We can compute the probability that a random infinite tree belongs to a given regular language L.
given by, e.g.

- an MSO formula
- a nondeterministic parity automaton
full binary tree, each label chosen independently in random
- the result is an algebraic number
- can be computed in 3-EXPTIME
- can be compared with a given rational q in 2-EXPSPACE

Context

Decidable

- some results for ω-words (probability always rational)
- infinite trees: the probability exists (not clear because regular languages of infinite trees need not to be Borel) [Gogacz, Michalewski, Mio, Skrzypczak 2017]
- determ. top-down parity autom. [Chen, Dräger, Kiefer 2012]
- game automata
[Michalewski, Mio 2015]
- weak MSO
[Niwiński, Przybyłko, Skrzypczak 2020]

Undecidable

- nonemptiness for probabilistic automata (exists a finite word accepted with probability >0.5)
- value-1 for probabilistic automata (exists a sequence of finite words where acceptance probability tends to 1)
- exists a ω-word accepted by a probabilistic Büchi automaton with probability >0.

Open

- Satisfiability of PCTL*

Two worlds

Languages

- Probabilities

Two worlds

Languages

- Probabilities

Key difficulty:

Two worlds

Languages

- Probabilities

Key difficulty:

Another aspect:

(random variables)

distribution of X, distribution of Y

distribution of $X \times Y$
distribution of $F(X, Y)$

Step 1

Nondeterministicautomata $\longrightarrow \mu$-calculus / powersets

Step 1

Nondeterminist automata - u-calculus / powersets

Basic objects: profiles
τ : trees $\rightarrow \mathrm{P}(Q)$

Profile τ_{A} corresponding to automaton A :
$\tau_{A}(t)=$ states from which t can be accepted

Proposition: $\tau_{A}(t)=\mu x_{1} \cdot v x_{2} \cdot \mu x_{3} \cdot v x_{4} \ldots \mu x_{d-1} \cdot v x_{d} \cdot \delta\left(x_{1}, x_{2}, \ldots, x_{d}\right)$
where $\delta\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ applies transition function once (transitions of priority i go to x_{i})

Goal: compute probability distribution of the random variable τ_{A}

Step 2

Step 2

$$
\longmapsto \quad \begin{aligned}
& \bar{\tau}=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right) \\
& \Delta(\bar{\tau})
\end{aligned}
$$

Convenient to take:
$\Delta(\bar{\tau})=\left(\delta\left(\tau_{1}, \tau_{1}, \tau_{1}, \ldots, \tau_{1}\right), \delta\left(\tau_{1}, \tau_{2}, \tau_{2}, . ., \tau_{2}\right), \delta\left(\tau_{1}, \tau_{2}, \tau_{3}, \ldots, \tau_{3}\right), \ldots, \delta\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right)\right)$

Previously: $\tau_{A}(t)=\mu x_{1} \cdot v x_{2} \cdot \mu x_{3} \cdot v x_{4} \ldots \mu x_{d-1} \cdot v x_{d} \cdot \delta\left(x_{1}, x_{2}, \ldots, x_{d}\right)$

Now: convenient to write things like: $\mu x . F(x \vee y), v x . F(x \wedge y)$ (but \vee, \wedge does not translate to probabilities)

Step 3

Intuition behind $\mu x . F(x \vee y)$ (but not precise meaning): least fixed point of F above y

We define: $F \uparrow(y)=$ least fixed point of F above y

Unary u-calculus

Syntax: $H, F_{1} ; F_{2}, F \uparrow, F \downarrow$ (defines a one-argument function $V \rightarrow V$)
composition
fixed base functions
$F \downarrow(y)=$ greatest fixed point of F below y

$$
F \uparrow(y)=\text { least fixed point of } F \text { above } y
$$

Unary u-calculus

partial function

Syntax: $H, F_{1} ; F_{2}, F \uparrow, F \downarrow$ (defines a one-argument function $V \rightarrow V$)

> composition
fixed base functions
$F \downarrow(y)=$ greatest fixed point of F below y

$$
F \uparrow(y)=\text { least fixed point of } F \text { above } y
$$

Problem: $F \uparrow(y)$ may be undefined

- maybe there are no fixed points above y
- maybe there are many incomparable fixed points above y

So: $F \uparrow$ is a partial function

Unary u-calculus - type system

How to prove that a formula of unary μ-calculus has a defined value?
Type system: statements $F:: A \rightarrow B \quad(F$ is defined on A and has values in $B)$

$$
\overline{H: \because A \rightarrow B} \forall x \in A . H(x) \in B \quad \frac{F_{1} \because: A \rightarrow C \quad F_{2}: \because C \rightarrow B}{F_{1} ; F_{2} \because: A \rightarrow B}
$$

Unary u-calculus - type system

How to prove that a formula of unary μ-calculus has a defined value?
Type system: statements $F:: A \rightarrow B \quad(F$ is defined on A and has values in $B)$

$$
\begin{aligned}
& \overline{H: \because A \rightarrow B} \forall x \in A . H(x) \in B \quad \frac{F_{1}: \because A \rightarrow C \quad F_{2}: \because C \rightarrow B}{F_{1} ; F_{2}:: A \rightarrow B} \\
& \frac{F:: A \rightarrow A}{F \uparrow:: A \rightarrow B} A \text { chain complete, } \forall x \in A . F(x) \geq x, \operatorname{Fix}(F) \cap A \subseteq B \\
& \frac{F:: A \rightarrow A}{F \downarrow:: A \rightarrow B} A \text { chain complete, } \forall x \in A . F(x) \leq x, \operatorname{Fix}(F) \cap A \subseteq B
\end{aligned}
$$

every chain of elements of A has infimum and supremum in A
Why?
$F \uparrow(x) / F \downarrow(x)$ will be reached by:

- applying F
- taking limits of chains

Unary u-calculus - the formula

How to define τ_{A} in unary μ-calculus?
Base functions:

- $\Delta\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right)=\left(\delta\left(\tau_{1}, \tau_{1}, \tau_{1}, \ldots, \tau_{1}\right), \delta\left(\tau_{1}, \tau_{2}, \tau_{2}, . ., \tau_{2}\right), \delta\left(\tau_{1}, \tau_{2}, \tau_{3}, \ldots, \tau_{3}\right), \ldots, \delta\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right)\right)$
- $\operatorname{Bid}_{n}\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right)=\left(\tau_{1}, \ldots, \tau_{n-2}, \tau_{n-1}, \tau_{n-2}, \tau_{n-2}, \ldots, \tau_{n-2}\right)$ for $n=1, \ldots, d ; \tau_{-1}=\perp ; \tau_{0}=\top$
- $\operatorname{Cut}_{n}\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right)=\left(\tau_{1}, \ldots, \tau_{n-2}, \tau_{n-1}, \tau_{n+1}, \tau_{n+1}, \ldots, \tau_{n+1}\right)$ for $n=1, \ldots, d-1$
(Bid $_{n}$ and Cut ${ }_{n}$ only swap coordinates)

Unary u-calculus - the formula

How to define τ_{A} in unary μ-calculus?
Base functions:

- $\Delta\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right)=\left(\delta\left(\tau_{1}, \tau_{1}, \tau_{1}, \ldots, \tau_{1}\right), \delta\left(\tau_{1}, \tau_{2}, \tau_{2}, . ., \tau_{2}\right), \delta\left(\tau_{1}, \tau_{2}, \tau_{3}, \ldots, \tau_{3}\right), \ldots, \delta\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right)\right)$
- $\operatorname{Bid}_{n}\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right)=\left(\tau_{1}, \ldots, \tau_{n-2}, \tau_{n-1}, \tau_{n-2}, \tau_{n-2}, \ldots, \tau_{n-2}\right)$ for $n=1, \ldots, d ; \tau_{-1}=\perp ; \tau_{0}=\top$
- $\operatorname{Cut}_{n}\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right)=\left(\tau_{1}, \ldots, \tau_{n-2}, \tau_{n-1}, \tau_{n+1}, \tau_{n+1}, \ldots, \tau_{n+1}\right)$ for $n=1, \ldots, d-1$
(Bid_{n} and Cut ${ }_{n}$ only swap coordinates)

$$
\begin{array}{ll}
\Phi_{d}=\operatorname{Bid}_{d} ; \Delta \uparrow & (\text { odd } d) \\
\Phi_{d}=\operatorname{Bid}_{d} ; \Delta \downarrow & (\text { even } d) \\
\Phi_{n}=\operatorname{Bid}_{n} ;\left(\Delta \uparrow ; \Phi_{n+1} ; \operatorname{Cut}_{n}\right) \uparrow & (\text { odd } n<d) \\
\Phi_{n}=\operatorname{Bid}_{n} ;\left(\Delta \downarrow ; \Phi_{n+1} ; \operatorname{Cut}_{n}\right) \downarrow & (\text { even } n<d)
\end{array}
$$

Unary u-calculus - the formula

$$
\begin{array}{ll}
\Phi_{d}=\operatorname{Bid}_{d} ; \Delta \uparrow & (\text { odd } d) \\
\Phi_{d}=\operatorname{Bid}_{d} ; \Delta \downarrow & (\text { even } d) \\
\Phi_{n}=\operatorname{Bid}_{n} ;\left(\Delta \uparrow ; \Phi_{n+1} ; \operatorname{Cut}_{n}\right) \uparrow & (\text { odd } n<d) \\
\Phi_{n}=\operatorname{Bid}_{n} ;\left(\Delta \downarrow ; \Phi_{n+1} ; \operatorname{Cut}_{n}\right) \downarrow & (\text { even } n<d)
\end{array}
$$

What has to be shown?

1) $\Phi_{1}(\cdot)$ is defined (using the type system)
2) $\Phi_{1}(\cdot)$ computes τ_{A}
3) all intermediate profiles used while computing $\Phi_{1}(\cdot)$ are measurable
4) the same computation can be done on distributions

Why the value is well defined?

We define sets S_{n} - we have $\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right) \in S_{n}$ if

- $\tau_{1} \leq \tau_{3} \leq \tau_{5} \leq \ldots \leq \tau_{6} \leq \tau_{4} \leq \tau_{2}$
- $\tau_{n}=\tau_{n+1}=\tau_{n+2}=\ldots=\tau_{d}$
- first $n-1$ coordinates of $\Delta\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right)$ are $\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n-1}\right)$
- $\Delta\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right) \geq\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right)$ if n odd, and
- $\Delta\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right) \geq\left(\tau_{1}, \tau_{2}, \ldots, \tau_{d}\right)$ if n even.

For the base functions we derive:

- $\Delta:: S_{n} \rightarrow S_{n}$
- Bid $_{n}:: S_{n} \rightarrow S_{n}$
- Cut $_{n}:: S_{n+2} \rightarrow S_{n}$

Then we show (using the type system) that:

- $\Phi_{n}:: S_{n} \rightarrow S_{n+1}$

Why is the value correct?
(why $\Phi_{1}(\cdot)$ computes τ_{A} ?)

Why is the value correct?

(why $\Phi_{1}(\cdot)$ computes τ_{A} ?)

Step 1:

Recall the intuition: $F \uparrow(y)$ was introduced to simulate $\mu x . F(x \vee y)$. The typing rule says:

$$
\frac{F:: A \rightarrow A}{F \uparrow:: A \rightarrow B} A \text { chain complete, } \forall x \in A . F(x) \geq x, F i x(F) \cap A \subseteq B
$$

so $F \uparrow(y)=\mu x . F(x \vee y)$ for $y \in A$.

Why is the value correct?

(why $\Phi_{1}(\cdot)$ computes τ_{A} ?)

Step 1:

Recall the intuition: $F \uparrow(y)$ was introduced to simulate $\mu x . F(x \vee y)$.
The typing rule says:

$$
\frac{F:: A \rightarrow A}{F \uparrow:: A \rightarrow B} A \text { chain complete, } \forall x \in A . F(x) \geq x, F \operatorname{ix}(F) \cap A \subseteq B
$$

so $F \uparrow(y)=\mu x . F(x \vee y)$ for $y \in A$.
Step 2:
Change Φ_{1} into $\mu x_{1} \cdot v x_{2} \cdot \mu x_{3} \cdot v x_{4} \ldots \mu x_{d-1} \cdot v x_{d} \cdot \delta\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ using some laws of μ-calculus, like
$\mu x . v y \cdot F(x, x \vee y)=\mu x . v y \cdot F(x, y)$
$\mu x . v y . \mu z . F(x, y, x \vee z)=\mu x . v y . \mu z . F(x, y, z)$
$\mu x . v y \cdot F(\mu z . F(x \vee z, x \vee z), y)=\mu x . v y \cdot F(x, y)$

Measurability

Recall that $F \uparrow(x) / F \downarrow(x)$ can be reached from x by:

- applying F
- taking limits of chains

Difficulty:
We need to know that all intermediate values in this computation are measurable (so it makes sense to consider their probability distribution)

Measurability

Recall that $F \uparrow(x) / F \downarrow(x)$ can be reached from x by:

- applying F
- taking limits of chains

Difficulty:
We need to know that all intermediate values in this computation are measurable (so it makes sense to consider their probability distribution)

Solution:
Similar proof as for showing that every regular language is measurable [Gogacz, Michalewski, Mio, Skrzypczak 2017], [Lusin, Sierpiński 1918]

Moreover:
(in this case) probability of the limit of a chain is the limit of probabilities.

Probability distributions

Profiles

Distributions

$$
\begin{aligned}
& \hat{\tau}: \mathbb{D}(P(Q \times\{1, \ldots, d\})) \\
& \hat{\tau}(R)=\mathbb{P}(\{t \mid \tau(t)=R\})
\end{aligned}
$$

Probability distributions

Profiles

$\tau:$ trees $\rightarrow P(Q \times\{1, \ldots, d\})$

Distributions

$$
\begin{aligned}
& \hat{\tau}: \mathbb{D}(P(Q \times\{1, \ldots, d\})) \\
& \hat{\tau}(R)=\mathbb{P}(\{t \mid \tau(t)=R\})
\end{aligned}
$$

coordinatewise order
\rightarrow probabilistic powerdomain order [Jones, Plotkin 1989]
for each upward-closed $U \subseteq P(Q \times\{1, \ldots, d\})$

$$
\sum_{R \in U} \alpha(R) \leq \sum_{R \in U} \beta(R)
$$

Probability distributions

Profiles

$\tau:$ trees $\rightarrow P(Q \times\{1, \ldots, d\})$

Distributions

$$
\begin{aligned}
& \hat{\tau}: \mathbb{D}(P(Q \times\{1, \ldots, d\})) \\
& \hat{\tau}(R)=\mathbb{P}(\{t \mid \tau(t)=R\})
\end{aligned}
$$

coordinatewise order
\rightarrow probabilistic powerdomain order [Jones, Plotkin 1989]
for each upward-closed $U \subseteq P(Q \times\{1, \ldots, d\})$

$$
\sum_{R \in U} \alpha(R) \leq \sum_{R \in U} \beta(R)
$$

$$
\begin{aligned}
\Delta, \mathrm{Bid}_{n}, \mathrm{Cut}_{n} & \longrightarrow \Delta, \mathrm{Bid}_{n}, \mathrm{Cut}_{n} \\
\Phi_{1} & \longrightarrow \Phi_{1}
\end{aligned}
$$

Φ_{1} can be expressed in first-order logic over reals - decidable by Tarski (the formula is of exponential size)

Conclusions

- We shown how to compute the probability that a random infinite tree belongs to a given regular language.
- We introduced unary μ-calculus, which works well for orders without \vee and \wedge (e.g. probability distributions)

Thank you

