The Probabilistic Rabin Tree Theorem

Damian Niwiński, Paweł Parys, Michał Skrzypczak University of Warsaw

Theorem

We can compute the probability that a random infinite tree belongs to a given regular language L.

Theorem

We can compute the probability that a random infinite tree belongs to a given regular language L.
given by, e.g.

- an MSO formula
- a nondeterministic parity automaton
- the result is an algebraic number
- can be computed in 3-EXPTIME
- can be compared with a given rational q in 2-EXPSPACE

Context

Decidable

- some results for ω-words (probability always rational)
- infinite trees: the probability exists (not clear because regular languages of infinite trees need not to be Borel) [Gogacz, Michalewski, Mio, Skrzypczak 2017]
- determ. top-down parity autom. [Chen, Dräger, Kiefer 2012]
- game automata
[Michalewski, Mio 2015]
- weak MSO
[Niwiński, Przybyłko, Skrzypczak 2020]

Undecidable

- nonemptiness for probabilistic automata (exists a finite word accepted with probability >0.5)
- value-1 for probabilistic automata (exists a sequence of finite words where acceptance probability tends to 1)
- exists a ω-word accepted by a probabilistic Büchi automaton with probability >0.

Open

- Satisfiability of PCTL*

Two worlds

Languages

- Probabilities

Two worlds

Languages

- Probabilities

Key difficulty:

Two worlds

Languages

- Probabilities

Key difficulty:

Another aspect:

(random variables)

distribution of X, distribution of Y

distribution of $X \times Y$
distribution of $F(X, Y)$

Step 1

Nondeterministicautomata $\longrightarrow \mu$-calculus / powersets

Step 1

Nondeterministicautomata $\longrightarrow \mu$-calculus / powersets

$$
\mu x_{1} \cdot v x_{2} \cdot \mu x_{3} \cdot v x_{4} \ldots \mu x_{d-1} \cdot v x_{d} \cdot \delta\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

Still not good - a function of many variables!

Step 2

Not so nice - we need \vee, ^ to interact between coordinates!
e.g. $\mu x . F(x \vee y)$

Step 3

Intuition behind $\mu x . F(x \vee y)$ (but not precise meaning): least fixed point of F above y

We define: $F \uparrow(y)=$ least fixed point of F above y

Unary $\underline{\mu}$-calculus

Syntax: $H, F_{1} ; F_{2}, F \uparrow, F \downarrow$ (defines a one-argument function $V \rightarrow V$)
composition
fixed base functions
$F \downarrow(y)=$ greatest fixed point of F below y

$$
F \uparrow(y)=\text { least fixed point of } F \text { above } y
$$

Unary u-calculus - the formula

What has to be shown?

1) all fixpoints in Φ_{1} exist
2) Φ_{1} computes $\mu x_{1} \cdot v x_{2} \ldots \cdot \mu x_{d-1} \cdot v x_{d} \cdot \delta\left(x_{1},, \ldots, x_{d}\right)$
3) all intermediate sets used while computing Φ_{1} are measurable
4) the same computation can be done on distributions

Last step

Sets

$\tau:$ trees $\rightarrow P(Q \times\{1, \ldots, d\})$

Distributions

$$
\begin{aligned}
& \hat{\tau}: \mathbb{D}(P(Q \times\{1, \ldots, d\})) \\
& \hat{\tau}(R)=\mathbb{P}(\{t \mid \tau(t)=R\})
\end{aligned}
$$

Φ_{1} can be expressed in first-order logic over reals - decidable by Tarski (the formula is of exponential size)

Conclusions

- We shown how to compute the probability that a random infinite tree belongs to a given regular language.
- We introduced unary μ-calculus, which works well for orders without \vee and \wedge (e.g. probability distributions)

Thank you

