The Probabilistic Rabin Tree Theorem

Damian Niwiński, **Paweł Parys**, Michał Skrzypczak University of Warsaw

Theorem

We can compute the probability that a random infinite tree belongs to a given regular language L.

Theorem

We can compute the probability that a <u>random infinite tree</u> belongs to a given regular language L.

given by, e.g.

- an MSO formula
- a nondeterministic parity automaton

full binary tree, each label chosen independently in random

- the result is an algebraic number
- can be computed in 3-EXPTIME
- ullet can be compared with a given rational q in 2-EXPSPACE

Context

Decidable

- some results for ω -words (probability always rational)
- infinite trees: the probability exists (not clear because regular languages of infinite trees need not to be Borel) [Gogacz, Michalewski, Mio, Skrzypczak 2017]
- determ. top-down parity autom. [Chen, Dräger, Kiefer 2012]
- game automata [Michalewski, Mio 2015]
- weak MSO [Niwiński, Przybyłko, Skrzypczak 2020]

Undecidable

- nonemptiness for probabilistic automata (exists a finite word accepted with probability >0.5)
- value-1 for probabilistic automata (exists a sequence of finite words where acceptance probability tends to 1)
- exists a ω -word accepted by a probabilistic Büchi automaton with probability >0.

<u>Open</u>

Satisfiability of PCTL*

Two worlds

Languages Probabilities

Two worlds

Languages Probabilities

Key difficulty:

Two worlds

Languages

Probabilities

Key difficulty:

Another aspect:

(random variables)

distribution of X, distribution of Y

distribution of $X \times Y$ distribution of F(X,Y)

Nondeterministic automata \rightarrow μ -calculus / powersets

Nondeterministic automata $\longrightarrow \mu$ -calculus / powersets

$$\mu x_1 . \nu x_2 . \mu x_3 . \nu x_4 ... \mu x_{d-1} . \nu x_d . \delta(x_1, x_2, ..., x_d)$$

Still not good – a function of many variables!

Not so nice – we need \vee , \wedge to interact between coordinates! e.g. $\mu x.F(x\vee y)$

Intuition behind $\mu x.F(x \lor y)$ (but not precise meaning): least fixed point of F above y

We define: $F \uparrow (y) = \text{least fixed point of } F \text{ above } y$

<u>Unary μ-calculus</u>

Syntax: H, F_1 ; F_2 , $F \uparrow$, $F \downarrow$ (defines a one-argument function $V \to V$) composition $F \downarrow (y) = \text{greatest fixed point of } F \text{ below } y$

 $F \uparrow (y) = \text{least fixed point of } F \text{ above } y$

<u>Unary μ-calculus – the formula</u>

What has to be shown?

- 1) all fixpoints in Φ_1 exist
- 2) Φ_1 computes $\mu x_1 . \nu x_2 ... \mu x_{d-1} . \nu x_d . \delta(x_1, ..., x_d)$
- 3) all intermediate sets used while computing Φ_1 are measurable
- 4) the same computation can be done on distributions

Last step

Sets

Distributions

$$\tau$$
: trees $\rightarrow P(Q \times \{1,...,d\})$

$$\hat{\tau} : \mathbb{D}(\mathsf{P}(Q \times \{1,...,d\}))$$

$$\hat{\tau}(R) = \mathbb{P}(\{t \mid \tau(t) = R\})$$

 Φ_1 can be expressed in first-order logic over reals – decidable by Tarski (the formula is of exponential size)

Conclusions

- We shown how to compute the probability that a random infinite tree belongs to a given regular language.
- We introduced unary μ -calculus, which works well for orders without \vee and \wedge (e.g. probability distributions)

Thank you