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Pushdown systems
are given by a tuple (Q,G,A,R), where
● Q={p,q,r} is a finite set of control states
● G={X,Y,Z} is a finite set of stack symbols
● A={a,b,c} is a finite set of input symbols and
● R is a finite set of rewrite rules of either form:

induce an infinite A-edge-labeled transition system…

(pop rule) (push rule)or
p

qX a
p
X Z

q
Ya



  

Induced transition system (infinite)
Each pushdown system (Q,G,A,R) induces an infinite
transition system:

● nodes = state & stack

● transitions (labeled by A):

p
qX a

for a pop rule:
p
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∈Q×G*
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Example pushdown system
The two rules

q
X Y

q
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q
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q
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induce the infinite binary tree
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Why study pushdown systems?
Pushdown systems…
● can be used to model the call and return behavior of recursive

programs
● have been used to find bugs in Java programs

[Suwimontherabuth/Berger/Schwoon/Esparza 1997]
● equivalence checking (in the deterministic case) has been used

to verify security protocols [Chrétien, Cortier, Delaune 2015]
● reachability can be checked in polynomial time

[Caucal 1990, Bouajjani/Esparza/Maler 1997]
● have a decidable MSO-theory [Muller/Schupp 1985]
● can be model checked against μ-calculus formulas in

exponential time [Walukiewicz 1996]



  

We allow deterministic e-transitions

a
a b
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We allow deterministic e-transitions

a
a b

a

a
a b

a

e

e

e

allowed: forbidden:

ae

e e

● this version is equivalent to first-order 
grammars (programs with recursion)

● e-transitions are useful to pop many
symbols from the stack



  

Bisimulation equivalence
can be seen as a two player game between Spoiler and Duplicator.

a c
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Spoiler claims that C1~ C2

Duplicator claims that C1~ C2

/
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Bisimulation equivalence
can be seen as a two player game between Spoiler and Duplicator.

a c

b eb

a c

b

b
b

b
b

b

C1 C2

Spoiler claims that C1~ C2

Duplicator claims that C1~ C2

/

Moves = paths e*ae*   

A.k.a. weak bisimulation
A.k.a. bisimulation after contracting e-transitions

infinite play = 
Duplicator wins



  

Bisimulation equivalence
Negative example:
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Bisimulation equivalence
Negative example:

a

cb

a

b

C1 C2

/~

a
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Duplicator cannot answer



  

Why bisimulation equivalence?

Verification logics

Bisimulation equivalence is the central notion
of equivalence in formal verification!

Classical logics

Modal logic = [van Benthem 1976]FO~

m-calculus

Modal logic

= MSO~ [Janin/Walukiewicz 1996]

⋮
CTL* = MPL~ [Moller/Rabinovich 2003]
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is the following decision problem:

INPUT: a pushdown system P
QUESTION: is P bisimilar to some finite system?
(the finite system is NOT part of the input)



  

Bisimulation finiteness
is the following decision problem:

INPUT: a pushdown system P
QUESTION: is P bisimilar to some finite system?
(the finite system is NOT part of the input)

Theorem [Jančar 2016]
This problem is decidable.

Proof: two semi-decision procedures;
           oracle calls to the bisimulation equivalence problem 



  

Bisimulation equivalence
is the following decision problem:

INPUT: two pushdown systems P1, P2

QUESTION: does P1 ~ P2?

Theorem
This problem is decidable [Sénizergues 1998]
and ACKERMANN-complete [Zhang/Yin/Long/Xu 2020, Schmitz/Jancar 2019]
 



  

Bisimulation equivalence
is the following decision problem:

INPUT: two pushdown systems P1, P2

QUESTION: does P1 ~ P2?

Theorem
This problem is decidable [Sénizergues 1998]
and ACKERMANN-complete [Zhang/Yin/Long/Xu 2020, Schmitz/Jancar 2019]
 

INPUT: a pushdown system P, a finite system F
QUESTION: does P ~ F?
Theorem [Kučera/Mayr 2010]
This problem is PSPACE-complete.

Bisimulation equivalence with a finite system



  

Bisimulation finiteness
INPUT: a pushdown system P
QUESTION: is P bisimilar to some finite system?
(the finite system is NOT part of the input)

● This problem is decidable (in ACKERMANN) [Jančar 2016]
● For P without e-transitions, it is in 6-EXPSPACE [Göller/Parys 2020]
● This paper: the problem is 2-EXPTIME-complete



  

Our main result
Bisimulation finiteness is 2-EXPTIME-complete

Proof strategy (lower bound)
● Suppose that P1, P2 are bisimulation finite systems.

Then we can construct P(P1,P2) that is bisimulation finite iff P1~P2

a
poppush

a

a
pop

a
pop

a
pop

a
pop

push
a

push
a

push
a

push
a

...

P1 P2$

$

$

$

$

e,pop

e,pop

e,pop

e,pop

e,pop



  

Our main result
Bisimulation finiteness is 2-EXPTIME-complete

Proof strategy (lower bound)
● Suppose that P1, P2 are bisimulation finite systems.

Then we can construct P(P1,P2) that is bisimulation finite iff P1~P2

● We reduce from alternating EXPSPACE Turing machines.
We have to construct bisimulation finite systems P1, P2 such that
P1~P2 iff M accepts.



  

Our main result
Bisimulation finiteness is 2-EXPTIME-complete

Proof strategy (lower bound)
● We have to construct bisimulation finite systems P1, P2 such that

P1~P2 iff an alternating EXPSPACE Turing machine M accepts.
● AND realized directly:

C~D iff  C1~D1 ∧ C2~D2

● OR realized by „Defender’s forcing” gadget [Jančar/Srba 2008]:

C~D iff  C1~D1 ∨ C2~D2

a1

C
a2

C2C1

a1

D
a2

D2D1

C D

C2C1 D2D1

a a
a

aa

a1
a2

a1

a2
a1a2



  

Our main result
Bisimulation finiteness is 2-EXPTIME-complete

Proof strategy (upper bound)

Thm 1: If P ~ F for some F then P ~ F' for some F' of size <22|P|c

Step 1.1: Suppose that qabig are reachable for all i∈ℕ, and P ~ F.

                     Then configurations qabig for i>22|P|c 
are all bisimilar.

Use of Thm 1: Try to generate minimal F bisimilar to P; 
                   stop when F too large (a new, polynomial algorithm)



  

Thm 1: If P ~ F for some F then P ~ F' for some F' of size <22|P|c

● This presentation: no e-transitions
● Consider a reachable configuration qd



  

Thm 1: If P ~ F for some F then P ~ F' for some F' of size <22|P|c

● This presentation: no e-transitions
● Consider a reachable configuration qd
Step 1: represent d=abg to allow pumping:
● all qabig reachable
● set of states after popping abj from qabig the same for all j
● a, b short (exponential size)

b

g

a
b

g

b

b

b
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Thm 1: If P ~ F for some F then P ~ F' for some F' of size <22|P|c

● This presentation: no e-transitions
● Consider a reachable configuration qd
Step 1: represent d=abg to allow pumping:
● all qabig reachable
● set of states after popping abj from qabig the same for all j
● a, b short (exponential size)

Goal: prove that the number of classes of configurations rg 
  (reachable by popping from qabig) is small
● enough, because [qabg] is determined by a, b, and [rg]

g1 g2

a
b

g1

a
b

g2

~

~



  

Assumption: P ~ F for some finite F.
Step 1: represent d=abg to allow pumping:
● all qabig reachable
● set of states after popping abj from qabig the same for all j
Observation: if 2 configurations are not equivalent,
then this can be detected in the first |F| steps.
● Configurations qabig for i>|F| are all equivalent.

a
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~
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a
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Assumption: P ~ F for some finite F.
Step 1: represent d=abg to allow pumping:
● all qabig reachable
● set of states after popping abj from qabig the same for all j
Observation: if 2 configurations are not equivalent,
then this can be detected in the first |F| steps.
● Configurations qabig for i>|F| are all equivalent.

Consider the smallest e such that
qabeg~qab∞   rbeg~rb∞ for all reachable r 

We want to prove e<22|P|c

To this end, we will provide a 
“short description” of rbig,
different for every i<e 

a
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g
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b
b
b
b

a

b

g

b
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Assumption: P ~ F for some finite F.
Consider the smallest e such that rbeg~rb∞ for all reachable r 

We want to prove e<22|P|c

For all i<e let Mi = number of steps needed to distinguish rbig and rb∞

Easy to see: M1<M2<M3<...<Me-1

In particular [rbig]≠[rbjg]

b

g

b
b
b
b

b

~

b
b
b
b
b

bb
b
b
b
b
b
b
b

~/
~/
~/
~/
~/
~/
~/



  

Assumption: P ~ F for some finite F.
Consider the smallest e such that rbeg~rb∞ for all reachable r 

We want to prove e<22|P|c

Let i<e. Consider a fast run p from qabeg to rbig.
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b
b
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b
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a

i
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Assumption: P ~ F for some finite F.
Consider the smallest e such that rbeg~rb∞ for all reachable r 

We want to prove e<22|P|c

Let i<e. Consider a fast run p from qabeg to rbig.
There exists a run p' from qab∞ visiting the same classes.
Two possibilities for the shape of p':
1) p' mostly pops the stack

 it ends with b'b∞ for some small b'
  → small number of possibilities
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2) p' pushes some m of exponential size
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Assumption: P ~ F for some finite F.
Consider the smallest e such that rbeg~rb∞ for all reachable r 

We want to prove e<22|P|c

Let i<e. Consider a fast run p from qabeg to rbig.
There exists a run p' from qab∞ visiting the same classes.
Two possibilities for the shape of p':
1) p' mostly pops the stack

 it ends with b'b∞ for some small b'
  → small number of possibilities

2) p' pushes some m of exponential size
 [rbig] is characterized by classes [rbjg]
 and chi=(m, stacks above bjg)
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Assumption: P ~ F for some finite F.
Consider the smallest e such that rbeg~rb∞ for all reachable r 

We want to prove e<22|P|c

Let i<e. Consider a fast run p from qabeg to rbig.
There exists a run p' from qab∞ visiting the same classes.
Two possibilities for the shape of p':
1) p' mostly pops the stack

 it ends with b'b∞ for some small b'
  → small number of possibilities

2) p' pushes some m of exponential size
 [rbig] is characterized by classes [rbjg]
 and chi=(m, stacks above bjg)

We cannot have chi=chi'  

(bisimulation game from  rbig, rbi'g 
can go to rbjg, rbj'g, which are higher)

We obtain e<22|P|c
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Assumption: P ~ F for some finite F.
Next step: do the same for i=0, when g is not fixed
Consider a fast run p from qabeg to rg.
There exists a run p' from qab∞ visiting the same classes.
Two possibilities for the shape of p':
1) p' mostly pops the stack

 it ends with b'b∞ for some small b'
  → small number of possibilities

2) p' pushes some m of exponential size
3) [rg] is characterized by classes [rg]

 and chg=(j, m, stacks above bjg)

We cannot have chg=chg'  if [rg]≠[rg']
(bisimulation game from  rg, rg' 
can go back to rg, rg';
this can be repeated forever)

We obtain the theorem.
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Without assumption that P for is e-free?
● Needed e.g. to say that at least one letter is read during the loop

from rg, rg' to (configurations equivalent to) rg, rg'.
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Without assumption that P for is e-free?
● Needed e.g. to say that at least one letter is read during the loop

from rg, rg' to (configurations equivalent to) rg, rg'.
● Enough: ≥1 letter read while popping b.
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Without assumption that P for is e-free?
● Needed e.g. to say that at least one letter is read during the loop

from rg, rg' to (configurations equivalent to) rg, rg'.
● Enough: ≥1 letter read while popping b.
General case: Decompose d=abgh, where if an e-run pops b,
then it also pops g.
● We either proceed as previously,
● or we leave the image, popping the whole big.
We create a nested decomposition
with these properties.
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Conclusion
● Bisimulation finiteness of pushdown systems with deterministic
e-transitions is 2-EXPTIME-complete 
(thus much easier than bisimulation equivalence)

● Open problem: complexity for systems without e-transitions
➢ upper bound: 2-EXPTIME
➢ lower bound: EXPTIME [Kučera/Mayr 02, Srba 02]

● Generalize the proof to other classes of infinite systems
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