Weak Bisimulation Finiteness of Pushdown Systems With Deterministic ε-Transitions Is 2-EXPTIME-Complete

Stefan Göller University of Kassel

Paweł Parys
University of Warsaw

Pushdown systems

are given by a tuple (Q, Γ, A, R) , where

- $Q = \{p,q,r\}$ is a finite set of control states
- $\Gamma = \{X, Y, Z\}$ is a finite set of stack symbols
- $A = \{a,b,c\}$ is a finite set of input symbols and
- R is a finite set of **rewrite rules** of either form:

$$p \xrightarrow{q} q$$
 (pop rule) or $p \xrightarrow{q} Z$ (push rule)

induce an infinite A-edge-labeled transition system...

Induced transition system (infinite)

Each pushdown system (Q, Γ, A, R) induces an infinite transition system:

• nodes = state & stack

• transitions (labeled by A):

 $\begin{array}{ccc}
p & Y \\
\hline
X & Z \\
\hline
X_1 & X_2 \\
\hline
X_2 & X_2
\end{array}$ $\begin{array}{ccc}
X & X_1 & X_2 \\
\hline
X_n & X_n
\end{array}$

for a push rule:

Example pushdown system

induce the infinite binary tree

Why study pushdown systems?

Pushdown systems...

- can be used to model the call and return behavior of recursive programs
- have been used to find bugs in Java programs
 [Suwimontherabuth/Berger/Schwoon/Esparza 1997]
- equivalence checking (in the deterministic case) has been used to verify security protocols [Chrétien, Cortier, Delaune 2015]
- reachability can be checked in polynomial time [Caucal 1990, Bouajjani/Esparza/Maler 1997]
- have a decidable MSO-theory [Muller/Schupp 1985]
- can be model checked against μ-calculus formulas in exponential time [Walukiewicz 1996]

We allow deterministic $\underline{\epsilon}$ -transitions

allowed:

forbidden:

We allow deterministic ε-transitions

allowed:

forbidden:

- this version is equivalent to first-order grammars (programs with recursion)
- \bullet ϵ -transitions are useful to pop many symbols from the stack

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not\sim C_2$

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not\sim C_2$

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not \sim C_2$

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not\sim C_2$

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not\sim C_2$

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not\sim C_2$

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not\sim C_2$

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not\sim C_2$

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not \sim C_2$

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not\sim C_2$

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not\sim C_2$

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not\sim C_2$

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not\sim C_2$

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not\sim C_2$

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_1 \not \sim C_2$

Duplicator claims that $C_1 \sim C_2$

infinite play = Duplicator wins

Moves = paths $\varepsilon^* a \varepsilon^*$

A.k.a. weak bisimulation

A.k.a. bisimulation after contracting ϵ -transitions

Negative example:

Duplicator cannot answer

Why bisimulation equivalence?

Verification logics Classical logics			
Modal logic	=	FO~	[van Benthem 1976]
μ-calculus	=	MSO~	[Janin/Walukiewicz 1996]
CTL*	=	MPL~	[Moller/Rabinovich 2003]
	÷		

Bisimulation equivalence is the central notion of equivalence in formal verification!

Bisimulation finiteness

is the following decision problem:

INPUT: a pushdown system *P*

QUESTION: is *P* bisimilar to some finite system?

(the finite system is NOT part of the input)

Bisimulation finiteness

is the following decision problem:

INPUT: a pushdown system *P*

QUESTION: is *P* bisimilar to some finite system?

(the finite system is NOT part of the input)

Theorem [Jančar 2016] This problem is decidable.

Proof: two semi-decision procedures; oracle calls to the bisimulation equivalence problem

is the following decision problem:

INPUT: two pushdown systems P_1 , P_2

QUESTION: does $P_1 \sim P_2$?

Theorem

This problem is decidable [Sénizergues 1998] and ACKERMANN-complete [Zhang/Yin/Long/Xu 2020, Schmitz/Jancar 2019]

is the following decision problem:

INPUT: two pushdown systems P_1 , P_2

QUESTION: does $P_1 \sim P_2$?

Theorem

This problem is decidable [Sénizergues 1998] and ACKERMANN-complete [Zhang/Yin/Long/Xu 2020, Schmitz/Jancar 2019]

Bisimulation equivalence with a finite system

INPUT: a pushdown system P, a finite system F

QUESTION: does $P \sim F$?

Theorem [Kučera/Mayr 2010] This problem is PSPACE-complete.

Bisimulation finiteness

INPUT: a pushdown system P

QUESTION: is *P* bisimilar to some finite system?

(the finite system is NOT part of the input)

- This problem is decidable (in ACKERMANN) [Jančar 2016]
- For P without ε -transitions, it is in 6-EXPSPACE [Göller/Parys 2020]
- This paper: the problem is 2-EXPTIME-complete

Our main result

Bisimulation finiteness is 2-EXPTIME-complete

Proof strategy (lower bound)

• Suppose that P_1 , P_2 are bisimulation finite systems. Then we can construct $P(P_1,P_2)$ that is bisimulation finite iff $P_1 \sim P_2$

Our main result

Bisimulation finiteness is 2-EXPTIME-complete

Proof strategy (lower bound)

- Suppose that P_1 , P_2 are bisimulation finite systems. Then we can construct $P(P_1,P_2)$ that is bisimulation finite iff $P_1 \sim P_2$
- We reduce from alternating EXPSPACE Turing machines. We have to construct <u>bisimulation finite</u> systems P_1 , P_2 such that $P_1 \sim P_2$ iff M accepts.

Our main result

Bisimulation finiteness is 2-EXPTIME-complete

Proof strategy (lower bound)

- We have to construct bisimulation finite systems P_1 , P_2 such that $P_1 \sim P_2$ iff an <u>alternating</u> EXPSPACE Turing machine M accepts.
- AND realized directly:

$$C \sim D \text{ iff } C_1 \sim D_1 \wedge C_2 \sim D_2$$

OR realized by "Defender's forcing" gadget [Jančar/Srba 2008]:

$$C \sim D$$
 iff $C_1 \sim D_1 \vee C_2 \sim D_2$

Our main result

Bisimulation finiteness is 2-EXPTIME-complete

Proof strategy (upper bound)

Thm 1: If $P \sim F$ for some F then $P \sim F'$ for some F' of size $<2^{2^{|P|^c}}$

Use of Thm 1: Try to generate minimal F bisimilar to P; stop when F too large (a new, polynomial algorithm)

Thm 1: If $P \sim F$ for some F then $P \sim F'$ for some F' of size $<2^{2^{|P|^c}}$

- This presentation: no ϵ -transitions
- Consider a reachable configuration $q\delta$

Thm 1: If $P \sim F$ for some F then $P \sim F'$ for some F' of size $<2^{2^{|P|^c}}$

- This presentation: no ϵ -transitions
- Consider a reachable configuration $q\delta$

Step 1: represent $\delta = \alpha \beta \gamma$ to allow pumping:

- all $q\alpha\beta^i\gamma$ reachable
- set of states after popping $\alpha \beta^j$ from $q \alpha \beta^i \gamma$ the same for all j
- α , β short (exponential size)

Thm 1: If $P \sim F$ for some F then $P \sim F'$ for some F' of size $<2^{2^{|P|^c}}$

- This presentation: no ϵ -transitions
- Consider a reachable configuration $q\delta$

Step 1: represent $\delta = \alpha \beta \gamma$ to allow pumping:

- all $q\alpha\beta^i\gamma$ reachable
- set of states after popping $\alpha \beta^j$ from $q \alpha \beta^i \gamma$ the same for all j
- α , β short (exponential size)

Goal: prove that the number of classes of configurations $r\gamma$ (reachable by popping from $q\alpha\beta^i\gamma$) is small

• enough, because $[q\alpha\beta\gamma]$ is determined by α , β , and $[r\gamma]$

Step 1: represent $\delta = \alpha \beta \gamma$ to allow pumping:

- all $q\alpha\beta^i\gamma$ reachable
- set of states after popping $\alpha \beta^j$ from $q \alpha \beta^i \gamma$ the same for all j

Observation: if 2 configurations are not equivalent, then this can be detected in the first |F| steps.

• Configurations $q\alpha\beta^i\gamma$ for i>|F| are all equivalent.

Step 1: represent $\delta = \alpha \beta \gamma$ to allow pumping:

- all $q\alpha\beta^i\gamma$ reachable
- set of states after popping $\alpha \beta^j$ from $q \alpha \beta^i \gamma$ the same for all j

Observation: if 2 configurations are not equivalent, then this can be detected in the first |F| steps.

• Configurations $q\alpha\beta^i\gamma$ for i>|F| are all equivalent.

Consider the smallest e such that $q\alpha\beta^e\gamma\sim q\alpha\beta^\infty$ $r\beta^e\gamma\sim r\beta^\infty$ for all reachable r

We want to prove $e < 2^{2^{|P|^c}}$

To this end, we will provide a "short description" of $r\beta^i\gamma$, different for every i < e

Consider the smallest *e* such that $r\beta^e \gamma \sim r\beta^\infty$ for all reachable *r*

We want to prove $e < 2^{2^{|P|^c}}$

For all i < e let M_i = number of steps needed to distinguish $r\beta^i \gamma$ and $r\beta^{\infty}$

Easy to see: $M_1 < M_2 < M_3 < ... < M_{e-1}$

In particular $[r\beta^i\gamma] \neq [r\beta^j\gamma]$

Consider the smallest *e* such that $r\beta^e \gamma \sim r\beta^\infty$ for all reachable *r*

We want to prove $e < 2^{2^{|P|^c}}$

Let i < e. Consider a fast run π from $q\alpha\beta^e\gamma$ to $r\beta^i\gamma$.

Consider the smallest *e* such that $r\beta^e \gamma \sim r\beta^\infty$ for all reachable *r*

We want to prove $e < 2^{2^{|P|^c}}$

Let i < e. Consider a fast run π from $q\alpha\beta^e\gamma$ to $r\beta^i\gamma$.

There exists a run π' from $q\alpha\beta^{\infty}$ visiting the same classes.

Two possibilities for the shape of π ':

1) π' mostly pops the stack it ends with $\beta'\beta^{\infty}$ for some small β'

→ small number of possibilities

Consider the smallest *e* such that $r\beta^e \gamma \sim r\beta^\infty$ for all reachable *r*

We want to prove $e < 2^{2^{|P|^c}}$

Let i < e. Consider a fast run π from $q\alpha\beta^e\gamma$ to $r\beta^i\gamma$.

There exists a run π' from $q\alpha\beta^{\infty}$ visiting the same classes.

Two possibilities for the shape of π ':

1) π' mostly pops the stack it ends with $\beta'\beta^{\infty}$ for some small β'

→ small number of possibilities

2) π' pushes some μ of exponential size

Consider the smallest *e* such that $r\beta^e \gamma \sim r\beta^\infty$ for all reachable *r*

We want to prove $e < 2^{2^{|P|^c}}$

Let i < e. Consider a fast run π from $q\alpha\beta^e\gamma$ to $r\beta^i\gamma$.

There exists a run π' from $q\alpha\beta^{\infty}$ visiting the same classes.

Two possibilities for the shape of π ':

- 1) π' mostly pops the stack it ends with $\beta'\beta^{\infty}$ for some small β'
 - → small number of possibilities
- 2) π' pushes some μ of exponential size

Consider the smallest *e* such that $r\beta^e \gamma \sim r\beta^\infty$ for all reachable *r*

We want to prove $e < 2^{2^{|P|^c}}$

Let i < e. Consider a fast run π from $q\alpha\beta^e\gamma$ to $r\beta^i\gamma$.

There exists a run π' from $q\alpha\beta^{\infty}$ visiting the same classes.

Two possibilities for the shape of π ':

1) π' mostly pops the stack it ends with $\beta'\beta^{\infty}$ for some small β'

→ small number of possibilities

2) π' pushes some μ of exponential size

Consider the smallest *e* such that $r\beta^e \gamma \sim r\beta^\infty$ for all reachable *r*

We want to prove $e < 2^{2^{|P|^c}}$

Let i < e. Consider a fast run π from $q\alpha\beta^e\gamma$ to $r\beta^i\gamma$.

There exists a run π ' from $q\alpha\beta^{\infty}$ visiting the same classes.

Two possibilities for the shape of π ':

- 1) π' mostly pops the stack it ends with $\beta'\beta^{\infty}$ for some small β'
 - → small number of possibilities
- 2) π' pushes some μ of exponential size $[r\beta^i\gamma]$ is characterized by classes $[r\beta^j\gamma]$ and ch_i =(μ , stacks above $\beta^j\gamma$)

Consider the smallest *e* such that $r\beta^e \gamma \sim r\beta^\infty$ for all reachable *r*

We want to prove $e < 2^{2^{|P|^c}}$

Let i < e. Consider a fast run π from $q\alpha\beta^e\gamma$ to $r\beta^i\gamma$.

There exists a run π' from $q\alpha\beta^{\infty}$ visiting the same classes.

Two possibilities for the shape of π ':

- 1) π' mostly pops the stack it ends with $\beta'\beta^{\infty}$ for some small β'
 - → small number of possibilities
- 2) π' pushes some μ of exponential size $[r\beta^i\gamma]$ is characterized by classes $[r\beta^j\gamma]$ and ch_i =(μ , stacks above $\beta^j\gamma$)

We cannot have $ch_i = ch_{i'}$

(bisimulation game from $r\beta^i\gamma$, $r\beta^i\gamma$

can go to $r\beta^{j}\gamma$, $r\beta^{j'}\gamma$, which are higher)

We obtain $e < 2^{2^{|P|^c}}$

Next step: do the same for i=0, when γ is not fixed

Consider a fast run π from $q\alpha\beta^e\gamma$ to $r\gamma$.

There exists a run π' from $q\alpha\beta^{\infty}$ visiting the same classes.

Two possibilities for the shape of π ':

- 1) π' mostly pops the stack it ends with $\beta'\beta^{\infty}$ for some small β'
 - → small number of possibilities
- 2) π' pushes some μ of exponential size
- 3) $[r\gamma]$ is characterized by classes $[r\gamma]$ and ch_{γ} = $(j, \mu, \text{ stacks above } \beta^{j}\gamma)$

We cannot have $ch_{\gamma} = ch_{\gamma'}$ if $[r\gamma] \neq [r\gamma']$ (bisimulation game from $r\gamma$, $r\gamma'$ can go back to $r\gamma$, $r\gamma'$; this can be repeated forever)

We obtain the theorem.

Without assumption that P for is ε -free?

• Needed e.g. to say that at least one letter is read during the loop from $r\gamma$, $r\gamma'$ to (configurations equivalent to) $r\gamma$, $r\gamma'$.

Without assumption that P for is ε -free?

- Needed e.g. to say that at least one letter is read during the loop from $r\gamma$, $r\gamma'$ to (configurations equivalent to) $r\gamma$, $r\gamma'$.
- Enough: ≥ 1 letter read while popping β .

Without assumption that P for is ε -free?

- Needed e.g. to say that at least one letter is read during the loop from $r\gamma$, $r\gamma'$ to (configurations equivalent to) $r\gamma$, $r\gamma'$.
- Enough: ≥ 1 letter read while popping β .

General case: Decompose $\delta = \alpha \beta \gamma \eta$, where if an ϵ -run pops β , then it also pops γ .

We either proceed as previously,

• or we leave the image, popping the whole $\beta^i \gamma$.

We create a nested decomposition with these properties.

Conclusion

- Bisimulation finiteness of pushdown systems with deterministic ε-transitions is 2-EXPTIME-complete (thus much easier than bisimulation equivalence)
- Open problem: complexity for systems without ε -transitions
 - upper bound: 2-EXPTIME
 - lower bound: EXPTIME [Kučera/Mayr 02, Srba 02]
- Generalize the proof to other classes of infinite systems