Weak Bisimulation Finiteness of Pushdown Systems
 With Deterministic ε-Transitions Is 2-EXPTIME-Complete

Stefan Göller University of Kassel

Paweł Parys
University of Warsaw

Pushdown systems

are given by a tuple (Q, Γ, A, R), where

- $Q=\{p, q, r\}$ is a finite set of control states
- $\Gamma=\{X, Y, Z\}$ is a finite set of stack symbols
- $A=\{a, b, c\}$ is a finite set of input symbols and
- R is a finite set of rewrite rules of either form:

$$
\stackrel{p}{X} \xrightarrow{a} q \quad \text { (pop rule) } \quad \text { or } \quad ~ \quad \underset{\sim}{\square} \xrightarrow{\frac{a}{Z}} \text { (push rule) }
$$ induce an infinite A-edge-labeled transition system...

Induced transition system (infinite)

Each pushdown system (Q, Γ, A, R) induces an infinite transition system:

- nodes = state \& stack

- transitions (labeled by A):

for a pop rule:
$\xrightarrow{p} \xrightarrow{a} q$

for a push rule:
曷路

Example pushdown system

The two rules
induce the infinite binary tree

Why study pushdown systems?

Pushdown systems...

- can be used to model the call and return behavior of recursive programs
- have been used to find bugs in Java programs [Suwimontherabuth/Berger/Schwoon/Esparza 1997]
- equivalence checking (in the deterministic case) has been used to verify security protocols [Chrétien, Cortier, Delaune 2015]
- reachability can be checked in polynomial time [Caucal 1990, Bouajjani/Esparza/Maler 1997]
- have a decidable MSO-theory [Muller/Schupp 1985]
- can be model checked against μ-calculus formulas in exponential time [Walukiewicz 1996]

We allow deterministic ε-transitions

allowed:

forbidden:

We allow deterministic ε-transitions

allowed:

forbidden:

- this version is equivalent to first-order grammars (programs with recursion)
- ε-transitions are useful to pop many symbols from the stack

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \nsucc C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \nsucc C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \nsucc C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \nsucc C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \nsucc C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \nsucc C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \nsucc C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \nsucc C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \nsucc C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \nsucc C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \not \not C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \nsucc C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \not \not C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \nsucc C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$

Bisimulation equivalence

can be seen as a two player game between Spoiler and Duplicator.

Spoiler claims that $C_{1} \not \not C_{2}$
Duplicator claims that $C_{1} \sim C_{2}$
infinite play = Duplicator wins

Moves $=$ paths $\varepsilon^{*} a \varepsilon^{*}$
A.k.a. weak bisimulation
A.k.a. bisimulation after contracting ε-transitions

Bisimulation equivalence

Negative example:

Duplicator cannot answer

Why bisimulation equivalence?

Verification logics Classical logics

Modal logic	$=\mathrm{FO}_{\sim}$	$[$ van Benthem 1976]
μ-calculus	$=$ MSO $_{\sim}$	$[$ Janin/Walukiewicz 1996]
CTL *	$=$ MPL $_{\sim}$	
	\vdots	

Bisimulation equivalence is the central notion of equivalence in formal verification!

Bisimulation finiteness

is the following decision problem:
INPUT: a pushdown system P
QUESTION: is P bisimilar to some finite system?
(the finite system is NOT part of the input)

Bisimulation finiteness

is the following decision problem:
INPUT: a pushdown system P
QUESTION: is P bisimilar to some finite system?
(the finite system is NOT part of the input)

Theorem [Jančar 2016]
This problem is decidable.
Proof: two semi-decision procedures; oracle calls to the bisimulation equivalence problem

Bisimulation equivalence

is the following decision problem:
INPUT: two pushdown systems P_{1}, P_{2}
QUESTION: does $P_{1} \sim P_{2}$?
Theorem
This problem is decidable [Sénizergues 1998] and ACKERMANN-complete [Zhang/Yin/Long/Xu 2020, Schmitz/Jancar 2019]

Bisimulation equivalence

is the following decision problem:
INPUT: two pushdown systems P_{1}, P_{2}
QUESTION: does $P_{1} \sim P_{2}$?
Theorem
This problem is decidable [Sénizergues 1998]
and ACKERMANN-complete [Zhang/Yin/Long/Xu 2020, Schmitz/Jancar 2019]

Bisimulation equivalence with a finite system

INPUT: a pushdown system P, a finite system F
QUESTION: does $P \sim F$?
Theorem [Kučera/Mayr 2010]
This problem is PSPACE-complete.

Bisimulation finiteness

INPUT: a pushdown system P
QUESTION: is P bisimilar to some finite system?
(the finite system is NOT part of the input)

- This problem is decidable (in ACKERMANN) [Jančar 2016]
- For P without ε-transitions, it is in 6-EXPSPACE [Göller/Parys 2020]
- This paper: the problem is 2-EXPTIME-complete

Our main result

Bisimulation finiteness is 2-EXPTIME-complete

Proof strategy (lower bound)

- Suppose that P_{1}, P_{2} are bisimulation finite systems.

Then we can construct $P\left(P_{1}, P_{2}\right)$ that is bisimulation finite iff $P_{1} \sim P_{2}$

Our main result

Bisimulation finiteness is 2-EXPTIME-complete
Proof strategy (lower bound)

- Suppose that P_{1}, P_{2} are bisimulation finite systems.

Then we can construct $P\left(P_{1}, P_{2}\right)$ that is bisimulation finite iff $P_{1} \sim P_{2}$

- We reduce from alternating EXPSPACE Turing machines. We have to construct bisimulation finite systems P_{1}, P_{2} such that $P_{1} \sim P_{2}$ iff M accepts.

Our main result

Bisimulation finiteness is 2-EXPTIME-complete
Proof strategy (lower bound)

- We have to construct bisimulation finite systems P_{1}, P_{2} such that $P_{1} \sim P_{2}$ iff an alternating EXPSPACE Turing machine M accepts.
- AND realized directly:

$$
C \sim D \text { iff } C_{1} \sim D_{1} \wedge C_{2} \sim D_{2}
$$

- OR realized by „Defender's forcing" gadget [Jančar/Srba 2008]:

$$
C \sim D \text { iff } C_{1} \sim D_{1} \vee C_{2} \sim D_{2}
$$

Our main result

Bisimulation finiteness is 2-EXPTIME-complete

Proof strategy (upper bound)

Thm 1: If $P \sim F$ for some F then $P \sim F^{\prime}$ for some F^{\prime} of size $<2^{2^{|P|^{c}}}$

Use of Thm 1: Try to generate minimal F bisimilar to P; stop when F too large (a new, polynomial algorithm)

Thm 1: If $P \sim F$ for some F then $P \sim F^{\prime}$ for some F^{\prime} of size $<2^{2^{|P|^{c}}}$

- This presentation: no ε-transitions
- Consider a reachable configuration $q \delta$

Thm 1: If $P \sim F$ for some F then $P \sim F^{\prime}$ for some F^{\prime} of size $<2^{2^{|P|^{c}}}$

- This presentation: no ε-transitions
- Consider a reachable configuration $q \delta$

Step 1: represent $\delta=\alpha \beta \gamma$ to allow pumping:

- all qa $\beta^{i} \gamma$ reachable
- set of states after popping $\alpha \beta^{j}$ from $q \alpha \beta^{i} \gamma$ the same for all j
- α, β short (exponential size)

Thm 1: If $P \sim F$ for some F then $P \sim F^{\prime}$ for some F^{\prime} of size $<2^{2^{|P|^{c}}}$

- This presentation: no ε-transitions
- Consider a reachable configuration $q \delta$

Step 1: represent $\delta=\alpha \beta \gamma$ to allow pumping:

- all qa $\beta^{i} \gamma$ reachable
- set of states after popping $\alpha \beta^{j}$ from $q \alpha \beta^{i} \gamma$ the same for all j
- α, β short (exponential size)

Goal: prove that the number of classes of configurations ry (reachable by popping from $q \alpha \beta^{i} \gamma$) is small

- enough, because [qa $\beta \gamma$] is determined by α, β, and [$r \gamma$]

Assumption: $P \sim F$ for some finite F.
Step 1: represent $\delta=\alpha \beta \gamma$ to allow pumping:

- all qa $\beta^{i} \gamma$ reachable
- set of states after popping $\alpha \beta^{j}$ from $q \alpha \beta^{i} \gamma$ the same for all j

Observation: if 2 configurations are not equivalent, then this can be detected in the first $|F|$ steps.

- Configurations $q \alpha \beta^{i} \gamma$ for $i>|F|$ are all equivalent.

Assumption: $P \sim F$ for some finite F.
Step 1: represent $\delta=\alpha \beta \gamma$ to allow pumping:

- all qa $\beta^{i} \gamma$ reachable
- set of states after popping $\alpha \beta^{j}$ from $q \alpha \beta^{i} \gamma$ the same for all j

Observation: if 2 configurations are not equivalent, then this can be detected in the first $|F|$ steps.

- Configurations $q \alpha \beta^{i} \gamma$ for $i>|F|$ are all equivalent.

Consider the smallest e such that $q \alpha \beta^{e}{ }_{\gamma} \sim q \alpha \beta^{\infty-} r \beta^{e} \gamma \sim r \beta^{\infty}$ for all reachable r We want to prove $e<2^{2^{|P|^{C}}}$

To this end, we will provide a "short description" of $r \beta^{i} \gamma$, different for every $i<e$

Assumption: $P \sim F$ for some finite F.
Consider the smallest e such that $r \beta^{e} \gamma \sim r \beta^{\infty}$ for all reachable r We want to prove $e<2^{2^{\left.P\right|^{C}}}$
For all $i<e$ let $M_{i}=$ number of steps needed to distinguish $r \beta^{i} \gamma$ and $r \beta^{\infty}$
Easy to see: $M_{1}<M_{2}<M_{3}<\ldots<M_{e-1}$
In particular $\left[r \beta^{i} \gamma\right] \neq\left[r \beta^{j} \gamma\right]$

Assumption: $P \sim F$ for some finite F.
Consider the smallest e such that $r \beta^{e} \gamma \sim r \beta^{\infty}$ for all reachable r We want to prove $e<2^{2^{|P|^{c}}}$
Let $i<e$. Consider a fast run π from qa $\beta^{e} \gamma$ to $r \beta^{i} \gamma$.

Assumption: $P \sim F$ for some finite F.
Consider the smallest e such that $r \beta^{e} \gamma \sim r \beta^{\infty}$ for all reachable r
We want to prove $e<2^{2^{\left.P\right|^{C}}}$
Let $i<e$. Consider a fast run π from qa $\beta^{e} \gamma$ to $r \beta^{i} \gamma$.
There exists a run π^{\prime} from $q \alpha \beta^{\infty}$ visiting the same classes.
Two possibilities for the shape of π ':

1) π ' mostly pops the stack
it ends with $\beta^{\prime} \beta^{\infty}$ for some small β^{\prime}
\rightarrow small number of possibilities

Assumption: $P \sim F$ for some finite F.
Consider the smallest e such that $r \beta^{e} \gamma \sim r \beta^{\infty}$ for all reachable r
We want to prove $e<2^{2^{\left.P\right|^{C}}}$
Let $i<e$. Consider a fast run π from qa $\beta^{e} \gamma$ to $r \beta^{i} \gamma$.
There exists a run π^{\prime} from $q \alpha \beta^{\infty}$ visiting the same classes.
Two possibilities for the shape of π ':

1) π ' mostly pops the stack
it ends with $\beta^{\prime} \beta^{\infty}$ for some small β^{\prime}
\rightarrow small number of possibilities
2) π ' pushes some μ of exponential size

Assumption: $P \sim F$ for some finite F.
Consider the smallest e such that $r \beta^{e} \gamma \sim r \beta^{\infty}$ for all reachable r
We want to prove $e<2^{2^{\left.P\right|^{C}}}$
Let $i<e$. Consider a fast run π from qa $\beta^{e} \gamma$ to $r \beta^{i} \gamma$.
There exists a run π^{\prime} from $q \alpha \beta^{\infty}$ visiting the same classes.
Two possibilities for the shape of π ':

1) π ' mostly pops the stack
it ends with $\beta^{\prime} \beta^{\infty}$ for some small β^{\prime}
\rightarrow small number of possibilities
2) π ' pushes some μ of exponential size

Assumption: $P \sim F$ for some finite F.
Consider the smallest e such that $r \beta^{e} \gamma \sim r \beta^{\infty}$ for all reachable r
We want to prove $e<2^{2^{\left.P\right|^{C}}}$
Let $i<e$. Consider a fast run π from qa $\beta^{e} \gamma$ to $r \beta^{i} \gamma$.
There exists a run π^{\prime} from $q \alpha \beta^{\infty}$ visiting the same classes.
Two possibilities for the shape of π ':

1) π ' mostly pops the stack
it ends with $\beta^{\prime} \beta^{\infty}$ for some small β^{\prime}
\rightarrow small number of possibilities
2) π ' pushes some μ of exponential size

Assumption: $P \sim F$ for some finite F.
Consider the smallest e such that $r \beta^{e} \gamma \sim r \beta^{\infty}$ for all reachable r
We want to prove $e<2^{2^{\left.P\right|^{C}}}$
Let $i<e$. Consider a fast run π from qa $\beta^{e} \gamma$ to $r \beta^{i} \gamma$.
There exists a run π^{\prime} from $q \alpha \beta^{\infty}$ visiting the same classes.
Two possibilities for the shape of π ':

1) π ' mostly pops the stack
it ends with $\beta^{\prime} \beta^{\infty}$ for some small β^{\prime}
\rightarrow small number of possibilities
2) π^{\prime} pushes some μ of exponential size $\left[r \beta^{i} \gamma\right]$ is characterized by classes $\left[r \beta^{j} \gamma\right]$ and $c h_{i}=\left(\mu\right.$, stacks above $\left.\beta^{j} \gamma\right)$

Assumption: $P \sim F$ for some finite F.
Consider the smallest e such that $r \beta^{e} \gamma \sim r \beta^{\infty}$ for all reachable r
We want to prove $e<2^{2^{|P|^{C}}}$
Let $i<e$. Consider a fast run π from qa $\beta^{e} \gamma$ to $r \beta^{i} \gamma$.
There exists a run π^{\prime} from $q \alpha \beta^{\infty}$ visiting the same classes.
Two possibilities for the shape of π ':

1) π ' mostly pops the stack
it ends with $\beta^{\prime} \beta^{\infty}$ for some small β^{\prime}
\rightarrow small number of possibilities
2) π ' pushes some μ of exponential size $\left[r \beta^{i} \gamma\right]$ is characterized by classes $\left[r \beta^{j} \gamma\right]$ and $c h_{i}=\left(\mu\right.$, stacks above $\left.\beta^{j} \gamma\right)$
We cannot have $c h_{i}=c h_{i^{\prime}}$
(bisimulation game from $r \beta^{i} \gamma, r \beta^{i^{\prime}} \gamma$ can go to $r \beta^{j} \gamma, r \beta^{j^{\prime}} \gamma$, which are higher)

We obtain $e<2^{\left.2\right|^{\left.P\right|^{C}}}$

Assumption: $P \sim F$ for some finite F.
Next step: do the same for $i=0$, when γ is not fixed
Consider a fast run π from $q \alpha \beta^{e} \gamma$ to $r \gamma$.
There exists a run π^{\prime} from $q \alpha \beta^{\infty}$ visiting the same classes.
Two possibilities for the shape of π^{\prime} :

1) π ' mostly pops the stack
it ends with $\beta^{\prime} \beta^{\infty}$ for some small β^{\prime}
\rightarrow small number of possibilities
2) π ' pushes some μ of exponential size
3) $[r \gamma]$ is characterized by classes $[r \gamma]$ and $c h_{\gamma}=\left(j, \mu\right.$, stacks above $\left.\beta^{j} \gamma\right)$ We cannot have $c h_{\gamma}=c h_{\gamma^{\prime}}$ if $[r \gamma] \neq\left[r \gamma^{\prime}\right]$ (bisimulation game from ry, ry' can go back to ry, ry'; this can be repeated forever)

We obtain the theorem.

Without assumption that P for is ε-free?

- Needed e.g. to say that at least one letter is read during the loop from $r \gamma, r \gamma^{\prime}$ to (configurations equivalent to) ry, ry'.

Without assumption that P for is ε-free?

- Needed e.g. to say that at least one letter is read during the loop from ry, ry' to (configurations equivalent to) ry, ry'.
- Enough: ≥ 1 letter read while popping β.

Without assumption that P for is ε-free?

- Needed e.g. to say that at least one letter is read during the loop from ry, ry' to (configurations equivalent to) ry, ry'.
- Enough: ≥ 1 letter read while popping β.

General case: Decompose $\delta=\alpha \beta \gamma \eta$, where if an ε-run pops β, then it also pops γ.

- We either proceed as previously,
- or we leave the image, popping the whole $\beta^{i} \gamma$. We create a nested decomposition with these properties.

Conclusion

- Bisimulation finiteness of pushdown systems with deterministic ε-transitions is 2-EXPTIME-complete
(thus much easier than bisimulation equivalence)
- Open problem: complexity for systems without ε-transitions » upper bound: 2-EXPTIME
> lower bound: EXPTIME [Kučera/Mayr 02, Srba 02]
- Generalize the proof to other classes of infinite systems

