Unboundedness for Recursion Schemes: A Simpler Type System

David Barozzini

Paweł Parys

Jan Wróblewski

University of Warsaw

What is it about?

Recursion schemes = we consider trees generated by higher-order recursion schemes

<u>Unboundedness</u> = we provide an algorithm checking whether some properties in these trees are unbounded

Simpler type system = we give a new, simpler method, leading to a practical algorithm

<u>Higher-order recursion schemes – what is this?</u>

Definition

<u>Higher-order recursion schemes</u> = a generalization of context-free grammars, where nonterminals can take arguments. We use them to generate trees.

Equivalent definition: simply-typed lambda-calculus + recursion

In other words:

- programs with recursion
- higher-order functions (i.e., functions taking other functions as parameters)
- every function/parameter has a fixed type
- no data values, only functions

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals: S (starting), A, D

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals: S (starting), A, D

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals: S (starting), A, D

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow Ab \rightarrow a(A(Db))(bc)$$

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:

S (starting), A, D

$$A(Db)$$
 $b c$

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow Ab \rightarrow a(A(Db))(bc)$$

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:

S (starting), A, D

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow Ab \rightarrow a(A(Db))(bc)$$

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:

S (starting), A, D

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow A b \rightarrow a (A (D b)) (b c)$$

 $A (D b) \rightarrow a (A (D (D b))) (D b c)$

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:

S (starting), A, D

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow A b \rightarrow a (A (D b)) (b c)$$

 $A (D b) \rightarrow a (A (D (D b))) (D b c)$

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:

S (starting), A, D

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow A b \rightarrow a (A (D b)) (b c)$$

 $A (D b) \rightarrow a (A (D (D b))) (D b c)$
 $D b c \rightarrow b (b c)$

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals: S (starting), A, D

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow A b \rightarrow a (A (D b)) (b c)$$

 $A (D b) \rightarrow a (A (D (D b))) (D b c)$
 $D b c \rightarrow b (b c)$
 $A (D (D b)) \rightarrow a (A (D (D (D b)))) (D (D b) c)$
 $D (D b) c \rightarrow D b (D b c) \rightarrow b (b (D b c))$

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals: S (starting), A, D

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow A b \rightarrow a (A (D b)) (b c)$$

 $A (D b) \rightarrow a (A (D (D b))) (D b c)$
 $D b c \rightarrow b (b c)$
 $A (D (D b)) \rightarrow a (A (D (D (D b)))) (D (D b) c)$
 $D (D b) c \rightarrow D b (D b c) \rightarrow b (b (D b c))$

Sorts (simple types)

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals: S (starting), A, D

Rules:

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

Every nonterminal (every argument) has assigned some "sort", for example:

- *o* a tree
- $o \rightarrow o$ a function that takes a tree, and produces a tree
- $o \rightarrow (o \rightarrow o) \rightarrow o$ a function that takes a tree and a function of type $o \rightarrow o$, and produces a tree

Model-checking

Theorem [Ong 2006]

MSO model-checking on trees generated by recursion schemes is decidable.

Input: recursion scheme G, MSO formula ϕ

Question: is ϕ true in the (infinite) tree generated by G?

Model-checking

Theorem [Ong 2006]

MSO model-checking on trees generated by recursion schemes is decidable.

Input: recursion scheme G, MSO formula ϕ

Question: is ϕ true in the (infinite) tree generated by G?

This procedure can be used for model-checking programs written in functional programming languages:

Input: a program P, a property ψ

Question: does P satisfy ψ ?

CEGAR loop, etc.

There exist tools that take (short) programs in Ocaml and can verify some useful properties.

<u>Several recent papers – can we go beyond MSO?</u>

What about checking properties not expressible in MSO, e.g., talking about boundedness?

<u>Unboundedness – basic problem</u>

Input: recursion scheme *G*

Question: In the tree generated by G, are there (finite) branches with arbitrarily many occurrences of a symbol "a"?

 $(\forall n \exists branch with > n occurrences of a)$

<u>Unboundedness – basic problem</u>

Input: recursion scheme *G*

Question: In the tree generated by G, are there (finite) branches with arbitrarily many occurrences of a symbol "a"?

 $(\forall n \exists branch with > n occurrences of a)$

There may be no path with infinitely many "a".

Our property is not regular!!!

(the result [Ong – LICS 2006] does not help here)

Simultaneous unboundedness

Input: recursion scheme *G*, set of symbols *A*Question: In the tree generated by *G*, are there (finite) branches with arbitrarily many occurrences of every symbol from *A*?

 $(\forall n \exists branch \forall a \in A there are > n occurrences of a on the branch)$

Known results

Given a recursion scheme G generating a tree T, the following problems are decidable:

- Does \mathcal{T} satisfy $\phi \in MSO$? [Ong 2006] (equivalently: is \mathcal{T} accepted by a parity automaton)?
- Simultaneous unboundedness for T. [Clemente, P., Salvati, Walukiewicz 2016]
- Does \mathcal{T} satisfy $\phi \in WMSO+U?$ [P. 2018]
- Only if \mathcal{G} is safe: Is \mathcal{T} accepted by a B-automaton \mathcal{A} ? [Barozzini, Clemente, Colcombet, P. 2020]

Known results

Given a recursion scheme G generating a tree T, the following problems are decidable:

- Does T satisfy $\phi \in MSO$? [Ong 2006]
 - -(equivalently: is \mathcal{T} accepted by a parity automaton)?
- Simultaneous unboundedness for \mathcal{T} . [Clemente, P., Salvati, Walukiewicz 2016]
- Does \mathcal{T} satisfy $\phi \in WMSO+U?$ [P. 2018]
- Only if $\mathcal G$ is safe: Is $\mathcal T$ accepted by a B-automaton $\mathcal A$? [Barozzini, Clemente, Colcombet, P. 2020]
- The problem is n-EXP complete for schemes of order n
 - There exist tools solving this problem in practice:
 - → TRecS, HorSat, ... [Kobayashi, Broadbent, ...]
 - → HORSC, TravMC2 [Neatherway, Ramsay, Ong, ...]
 - The tools are based on intersection type systems

Known results

Given a recursion scheme G generating a tree T, the following problems are decidable:

- Does \mathcal{T} satisfy $\phi \in MSO$? [Ong 2006] (equivalently: is \mathcal{T} accepted by a parity automaton)?
- Simultaneous unboundedness for T. [Clemente, P., Salvati, Walukiewicz 2016]
- Does \mathcal{T} satisfy $\phi \in WMSO+U?$ [P. 2018]
- Only if $\mathcal G$ is safe: Is $\mathcal T$ accepted by a B-automaton $\mathcal A$? [Barozzini, Clemente, Colcombet, P. 2020]
- solution for safe schemes [Hague, Kochems, Ong 2016]
 - solution for all schemes [Clemente, P., Salvati, Walukiewicz 2016]
 - can be solved in n-EXP for schemes of order n [P. 2017]
 - this paper: can be solved in practice (for safe schemes)

Order of a sort

ord(o) = 0
ord(
$$\alpha_1 \rightarrow ... \rightarrow \alpha_k \rightarrow o$$
) = 1+max(ord(α_1), ..., ord(α_k))

For example:

- ord(o) = 0,
- ord $(o \rightarrow o)$ = ord $(o \rightarrow o \rightarrow o)$ = 1,
- ord $(o \to (o \to o) \to o) = 2$

Order of a recursion scheme

= maximal order of (a type of) its nonterminal

Restriction on terms appearing on right sides of rules:

unrestricted terms:

$$M := a \mid x \mid A \mid M N$$

safe terms:

$$M := a \mid x \mid A \mid M N_1 \dots N_k$$

only if $ord(M N_1 \dots N_k) \leq ord(N_i)$ for all i

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

Restriction on terms appearing on right sides of rules:

unrestricted terms:

$$M ::= a \mid x \mid A \mid M N$$

safe terms:

$$M := a \mid x \mid A \mid M N_1 \dots N_k$$

only if $ord(M N_1 \dots N_k) \leq ord(N_i)$ for all i

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

Let's check safety for our example HORS:

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

Restriction on terms appearing on right sides of rules:

unrestricted terms:

$$M ::= a \mid x \mid A \mid M N$$

safe terms:

$$M := a \mid x \mid A \mid M N_1 \dots N_k$$

only if $ord(M N_1 \dots N_k) \leq ord(N_i)$ for all i

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

Let's check safety for our example HORS:

$$S \rightarrow Ab$$

 $Af \rightarrow a (A (D f)) (f c)$
 $Df x \rightarrow f (f x)$
 $ord(D f) = 1 \le 1 = ord(f) \rightarrow OK$

Restriction on terms appearing on right sides of rules:

unrestricted terms:

$$M := a \mid x \mid A \mid M N$$

safe terms:

$$M := a \mid x \mid A \mid M N_1 \dots N_k$$

only if $ord(M N_1 \dots N_k) \leq ord(N_i)$ for all i

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

Let's check safety for our example HORS:

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$ safe
 $Dfx \rightarrow f(fx)$

$$ord(D f) = 1 \le 1 = ord(f) \rightarrow OK$$

All other subterms are of order $0 \rightarrow OK$

Restriction on terms appearing on right sides of rules:

unrestricted terms:

$$M := a \mid x \mid A \mid M N$$

safe terms:

$$M := a \mid x \mid A \mid M N_1 \dots N_k$$

only if $ord(M N_1 \dots N_k) \leq ord(N_i)$ for all i

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

Example: Unsafe HORS (generating "Urzyczyn's tree" U):

Types:
$$a^{o \to o \to o}$$
, $b^{o \to o}$, $c^{o \to o}$, d^{o} , e^{o} , S^{o} , $F^{(o \to o) \to o \to o \to o}$

Rules:
$$S \rightarrow Fbde$$

$$F f x y \rightarrow a (F (F f x)) y (c y)) (a (f y) x)$$
 unsafe (and not equivalent)

to any safe HORS)

$$ord(F f x) = 1 > 0 = ord(x)$$

(F expects two order-0 arguments; we have applied one (x), but not the other)

Why safety helps?

Theorem [Knapik, Niwiński, Urzyczyn 2002; Blum, Ong 2007] Substitution (hence β -reduction) in safe λ -calculus can be implemented without renaming bound variables.

Bad example: when you substitute $(\lambda x.y x) [a x x/y]$, it is necessary to change the first two x to some other variable name

We provide a system of intersection types.

A type derivation says:

- which arguments / free variables are used (and with which type)
- if the term is "productive":
 - produces the letter "a", or
 - used a productive argument twice

"Productive" places in a type derivation can be counted.

We provide a system of intersection types.

A type derivation says:

- which arguments / free variables are used (and with which type)
- if the term is "productive":
 - produces the letter "a", or
 - used a productive argument twice

"Productive" places in a type derivation can be counted.

Theorem

G has type derivations with arbitrarily many productive places

the tree generated by G has branches with arbitrarily many symbols "a"

- soundness always
- completeness proof only for safe schemes
 - ??? for other schemes

Algorithm & implementation:

- based on HORSAT2
- tries to find all possible type derivations
- found a derivation with a "productive loop" → answer YES
- optimizations are necessary mostly coming from HORSAT2 (which types for subterms may be useful)

Algorithm & implementation:

- based on HORSAT2
- tries to find all possible type derivations
- found a derivation with a "productive loop" → answer YES
- optimizations are necessary mostly coming from HORSAT2 (which types for subterms may be useful)

Evaluation:

- tried on (adapted) benchmarks from HORSAT, coming from real verification problems + some new examples
- 24 inputs, only 2 timeouts (> 600s)
- on other inputs works in <60s, often <1s
- size (largest solved): 400 rules, order 8

Conclusion

- We consider the unboundedness problem for recursion schemes
- We propose a new, simpler type system for this problem
- Correctness proof for safe schemes
- Open question: does the type system work for all schemes?
- We implemented a tool working relatively well in practice

Thank you!