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What is it about?

Recursion schemes = we consider trees generated by
   higher-order recursion schemes 

Unboundedness = we provide an algorithm checking whether
 some properties in these trees are unbounded

Simpler type system = we give a new, simpler method, 
    leading to a practical algorithm



  

Higher-order recursion schemes – what is this?

Definition
Higher-order recursion schemes = a generalization of context-free
grammars, where nonterminals can take arguments. We use them
to generate trees.

Equivalent definition: simply-typed lambda-calculus + recursion

In other words:
● programs with recursion
● higher-order functions (i.e., functions taking other functions as

parameters)
● every function/parameter has a fixed type
● no data values, only functions



  

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D
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Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S       → A b
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Sorts (simple types)

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

Every nonterminal (every argument) has assigned some “sort”,
for example:
● o – a tree
● o→o – a function that takes a tree, and produces a tree
● o→(o→o)→o – a function that takes a tree and a function

    of type o→o, and produces a tree
    



  

Model-checking

Theorem [Ong 2006]
MSO model-checking on trees generated by recursion schemes
is decidable.

Input: recursion scheme G, MSO formula f
Question: is f true in the (infinite) tree generated by G?



  

Model-checking

Theorem [Ong 2006]
MSO model-checking on trees generated by recursion schemes
is decidable.

Input: recursion scheme G, MSO formula f
Question: is f true in the (infinite) tree generated by G?

This procedure can be used for model-checking programs written
in functional programming languages:

Input: a program P, a property y
Question: does P satisfy y?

CEGAR loop, etc. 
There exist tools that take (short) programs in Ocaml and can
verify some useful properties.



  

Several recent papers – can we go beyond MSO?

What about checking properties not expressible in MSO, 
e.g., talking about boundedness?
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Unboundedness – basic problem

Input: recursion scheme G
Question: In the tree generated by G, are there (finite) branches
                with arbitrarily many occurrences of a symbol “a”?
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(∀n ∃branch with >n occurrences of a)
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Unboundedness – basic problem

Input: recursion scheme G
Question: In the tree generated by G, are there (finite) branches
                with arbitrarily many occurrences of a symbol “a”?

a

a
a

a
a

a

a

a
a

aa

a

a …

(∀n ∃branch with >n occurrences of a)

Notice:
There may be no path with infinitely many „a”.
Our property is not regular!!!
(the result [Ong – LICS 2006] does not help here)
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Simultaneous unboundedness

Input: recursion scheme G, set of symbols A
Question: In the tree generated by G, are there (finite) branches
                with arbitrarily many occurrences of every symbol from A?

a

a
a

a
a

a

a

a
a

aa

a

a …

(∀n ∃branch ∀a∈A there are >n occurrences of a on the branch)
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Known results

Given a recursion scheme G generating a tree T, the following problems 
are decidable:
● Does T  satisfy f MSO? [Ong 2006]

(equivalently: is T  accepted by a parity automaton)?
● Simultaneous unboundedness for T. [Clemente, P., Salvati, Walukiewicz 2016]
● Does T  satisfy f WMSO+U? [P. 2018]
● Only if G  is safe: Is T  accepted by a B-automaton A?

[Barozzini, Clemente, Colcombet, P. 2020]
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● Does T  satisfy f WMSO+U? [P. 2018]
● Only if G  is safe: Is T  accepted by a B-automaton A?

[Barozzini, Clemente, Colcombet, P. 2020]

● The problem is n-EXP complete for schemes of order n
● There exist tools solving this problem in practice:

➔ TRecS, HorSat, … [Kobayashi, Broadbent, ...]
➔ HORSC, TravMC2 [Neatherway, Ramsay, Ong, ...]

● The tools are based on intersection type systems



  

Known results

Given a recursion scheme G generating a tree T, the following problems 
are decidable:
● Does T  satisfy f MSO? [Ong 2006]

(equivalently: is T  accepted by a parity automaton)?
● Simultaneous unboundedness for T. [Clemente, P., Salvati, Walukiewicz 2016]
● Does T  satisfy f WMSO+U? [P. 2018]
● Only if G  is safe: Is T  accepted by a B-automaton A?

[Barozzini, Clemente, Colcombet, P. 2020]

● solution for safe schemes [Hague, Kochems, Ong 2016]
● solution for all schemes [Clemente, P., Salvati, Walukiewicz 2016]
● can be solved in n-EXP for schemes of order n [P. 2017]
● this paper: can be solved in practice (for safe schemes)



  

Order of a sort

      
ord(o) = 0
ord(a1→...→ak→o) = 1+max(ord(a1), …, ord(ak))

For example:
● ord(o) = 0,
● ord(o→o) = ord(o→o→o) = 1,
● ord(o→(o→o)→o) = 2 

Order of a recursion scheme 
= maximal order of (a type of) its nonterminal



  

What is safety?

Restriction on terms appearing on right sides of rules:
● unrestricted terms:

M ::= a | x | A | M N
● safe terms: 

M ::= a | x | A | M N1 … Nk
   only if ord(M N1 … Nk)≤ord(Ni) for all i

In other words: if we apply an argument of some order k,
then we have to apply also all arguments of order ≥k
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What is safety?

Restriction on terms appearing on right sides of rules:
● unrestricted terms:

M ::= a | x | A | M N
● safe terms: 

M ::= a | x | A | M N1 … Nk
   only if ord(M N1 … Nk)≤ord(Ni) for all i

In other words: if we apply an argument of some order k,
then we have to apply also all arguments of order ≥k

Let's check safety for our example HORS:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

ord(D f) = 1 ≤ 1 = ord(f)  → OK
All other subterms are of order 0 → OK

✓safe



  

What is safety?

Restriction on terms appearing on right sides of rules:
● unrestricted terms:

M ::= a | x | A | M N
● safe terms: 

M ::= a | x | A | M N1 … Nk
   only if ord(M N1 … Nk)≤ord(Ni) for all i

In other words: if we apply an argument of some order k,
then we have to apply also all arguments of order ≥k

Example: Unsafe HORS (generating ”Urzyczyn's tree” U):
Types: ao→o→o, bo→o, co→o, do, eo, So, F(o→o)→o→o→o 
Rules:  S         → F b d e

  F f x y → a (F (F f x) y (c y)) (a (f y) x)

ord(F f x) = 1 > 0 = ord(x)
(F expects two order-0 arguments; we have applied one (x), but not the other) 

✘ unsafe
(and not equivalent 
to any safe HORS)



  

Why safety helps?

Theorem [Knapik, Niwiński, Urzyczyn 2002; Blum, Ong 2007]
Substitution (hence b-reduction) in safe l-calculus can be
implemented without renaming bound variables.

Bad example: when you substitute (lx.y x) [a x x / y], it is necessary 
    to change the first two x to some other variable name



  

Our solution to the unboundedness problem

We provide a system of intersection types.
A type derivation says:
● which arguments / free variables are used (and with which type)
● if the term is „productive”:

➢ produces the letter „a”, or
➢ used a productive argument twice

“Productive” places in a type derivation can be counted.



  

Our solution to the unboundedness problem

We provide a system of intersection types.
A type derivation says:
● which arguments / free variables are used (and with which type)
● if the term is „productive”:

➢ produces the letter „a”, or
➢ used a productive argument twice

“Productive” places in a type derivation can be counted.

Theorem
G has type derivations 
with arbitrarily many 

productive places

the tree generated by G
has branches with arbitrarily 

many symbols „a”

soundness - always

completeness – proof only for safe schemes
       – ??? for other schemes



  

Our solution to the unboundedness problem

Algorithm & implementation:
● based on HORSAT2
● tries to find all possible type derivations
● found a derivation with a “productive loop” → answer YES
● optimizations are necessary – mostly coming from HORSAT2

(which types for subterms may be useful)



  

Our solution to the unboundedness problem

Algorithm & implementation:
● based on HORSAT2
● tries to find all possible type derivations
● found a derivation with a “productive loop” → answer YES
● optimizations are necessary – mostly coming from HORSAT2

(which types for subterms may be useful)

Evaluation:
● tried on (adapted) benchmarks from HORSAT, coming from real

verification problems + some new examples
● 24 inputs, only 2 timeouts (> 600s)
● on other inputs works in <60s, often <1s
● size (largest solved): 400 rules, order 8



  

Conclusion
● We consider the unboundedness problem for recursion schemes 
● We propose a new, simpler type system for this problem
● Correctness proof for safe schemes
● Open question: does the type system work for all schemes?
● We implemented a tool working relatively well in practice

Thank you!
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