Unboundedness for Recursion Schemes: A Simpler Type System

David Barozzini
Paweł Parys
Jan Wróblewski
University of Warsaw

Recursion schemes = we consider trees generated by higher-order recursion schemes

Unboundedness = we provide an algorithm checking whether some properties in these trees are unbounded

Simpler type system = we give a new, simpler method, leading to a practical algorithm

Higher-order recursion schemes - what is this?

Definition

Higher-order recursion schemes $=$ a generalization of context-free grammars, where nonterminals can take arguments. We use them to generate trees.

Equivalent definition: simply-typed lambda-calculus + recursion
In other words:

- programs with recursion
- higher-order functions (i.e., functions taking other functions as parameters)
- every function/parameter has a fixed type
- no data values, only functions

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank $2, b$ of rank $1, c$ of rank 0

Nonterminals:
S (starting), A, D

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank $2, b$ of rank $1, c$ of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \rightarrow A b \\
& A f \rightarrow a(A(D f f)(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$S \rightarrow A b \rightarrow a(A(D b))(b c)$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$$
S \rightarrow A b \rightarrow a(A(D b))(b c)
$$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank $2, b$ of rank $1, c$ of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$S \rightarrow A b \rightarrow a(A(D b))(b c)$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \rightarrow A b \\
& A f \rightarrow a(A(D f f)(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$S \rightarrow A b \rightarrow a(A(D b))(b c)$
$A(D b) \rightarrow a(A(D(D b)))(D b c)$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \quad \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$$
S \rightarrow A b \rightarrow a(A(D b))(b c)
$$

$$
A(D b) \rightarrow a(A(D(D b)))(D b c)
$$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$$
S \rightarrow A b \rightarrow a(A(D b))(b c)
$$

$$
A(D b) \rightarrow a(A(D(D b)))(D b c)
$$

$D b c \rightarrow b(b c)$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \rightarrow A b \\
& A f \rightarrow a(A(D f f)(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$$
S \rightarrow A b \rightarrow a(A(D b))(b c)
$$

$$
A(D b) \rightarrow a(A(D(D b)))(D b c)
$$

$D b c \rightarrow b(b c)$
$A(D(D b)) \rightarrow a(A(D(D(D b))))(D(D b) c)$
$D(D b) c \rightarrow D b(D b c) \rightarrow b(b(D b c))$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$$
\begin{aligned}
& S \rightarrow A b \rightarrow a(A(D b))(b c) \\
& A(D b) \rightarrow a(A(D(D b)))(D b c) \\
& D b c b b(b c) \\
& A(D(D b)) \rightarrow a(A(D(D(D b))))(D(D b) c) \\
& D(D b) c \rightarrow D b(D b c) \rightarrow b(b(D b c))
\end{aligned}
$$

Sorts (simple types)

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

Every nonterminal (every argument) has assigned some "sort", for example:

- o - a tree
- $o \rightarrow O$ - a function that takes a tree, and produces a tree
- $o \rightarrow(o \rightarrow o) \rightarrow o$ - a function that takes a tree and a function of type $o \rightarrow o$, and produces a tree

Model-checking

Theorem [Ong 2006]
MSO model-checking on trees generated by recursion schemes is decidable.

Input: recursion scheme \mathcal{G}, MSO formula ϕ
Question: is ϕ true in the (infinite) tree generated by \mathcal{G} ?

Model-checking

Theorem [Ong 2006]
MSO model-checking on trees generated by recursion schemes is decidable.

Input: recursion scheme \mathcal{G}, MSO formula ϕ
Question: is ϕ true in the (infinite) tree generated by \mathcal{G} ?

This procedure can be used for model-checking programs written in functional programming languages:

Input: a program P, a property ψ
Question: does P satisfy ψ ?
CEGAR loop, etc.
There exist tools that take (short) programs in Ocaml and can verify some useful properties.

Several recent papers - can we go beyond MSO?

What about checking properties not expressible in MSO, e.g., talking about boundedness?

Unboundedness - basic problem

Input: recursion scheme G
Question: In the tree generated by G, are there (finite) branches with arbitrarily many occurrences of a symbol "a"?
($\forall n \exists$ branch with $>n$ occurrences of a)

Unboundedness - basic problem

Input: recursion scheme G
Question: In the tree generated by G, are there (finite) branches with arbitrarily many occurrences of a symbol "a"?
($\forall n \exists$ branch with $>n$ occurrences of a)

Notice:
There may be no path with infinitely many „a".
Our property is not regular!!!
(the result [Ong - LICS 2006] does not help here)

Simultaneous unboundedness

Input: recursion scheme G, set of symbols A Question: In the tree generated by G, are there (finite) branches with arbitrarily many occurrences of every symbol from A?
($\forall n \exists$ branch $\forall a \in A$ there are $>n$ occurrences of a on the branch)

Known results

Given a recursion scheme \mathcal{G} generating a tree \mathcal{T}, the following problems are decidable:

- Does \mathcal{T} satisfy $\phi \in \mathrm{MSO}$? [Ong 2006] (equivalently: is \mathcal{T} accepted by a parity automaton)?
- Simultaneous unboundedness for \mathcal{T}. [Clemente, P., Salvati, Walukiewicz 2016]
- Does \mathcal{T} satisfy $\phi \in \mathrm{WMSO}+\mathrm{U}$? [P. 2018]
- Only if \mathcal{G} is safe: Is \mathcal{T} accepted by a B-automaton \mathscr{A} ?
[Barozzini, Clemente, Colcombet, P. 2020]

Known results

Given a recursion scheme \mathcal{G} generating a tree \mathcal{T}, the following problems are decidable:

- Does \mathcal{T} satisfy $\phi \in \mathrm{MSO}$? [Ong 2006] (equivalently: is \mathcal{T} accepted by a parity automaton)?
- Simultaneous unboundedness for \mathcal{T}. [Clemente, P., Salvati, Walukiewicz 2016]
- Does \mathcal{T} satisfy $\phi \in \mathrm{WMSO}+\mathrm{U}$? [P. 2018]
- Only if \mathcal{G} is safe: Is \mathcal{T} accepted by a B-automaton \mathscr{A} ?
[Barozzini, Clemente, Colcombet, P. 2020]
- The problem is n-EXP complete for schemes of order n
- There exist tools solving this problem in practice: \rightarrow TRecS, HorSat, ... [Kobayashi, Broadbent, ...]
\rightarrow HORSC, TravMC2 [Neatherway, Ramsay, Ong, ...]
- The tools are based on intersection type systems

Known results

Given a recursion scheme \mathcal{G} generating a tree \mathcal{T}, the following problems are decidable:

- Does \mathcal{T} satisfy $\phi \in \mathrm{MSO}$? [Ong 2006] (equivalently: is \mathcal{T} accepted by a parity automaton)?
- Simultaneous unboundedness for \mathcal{T}. [Clemente, P., Salvati, Walukiewicz 2016]
- Does \mathcal{T} satisfy $\phi \in \mathrm{WMSO}+\mathrm{U}$? [P. 2018]
- Only if \mathcal{G} is safe: Is \mathcal{T} accepted by a B-automaton \mathscr{A} ?
[Barozzini, Clemente, Colcombet, P. 2020]
- solution for safe schemes [Hague, Kochems, Ong 2016]
- solution for all schemes [Clemente, P., Salvati, Walukiewicz 2016]
- can be solved in n-EXP for schemes of order n [P. 2017]
- this paper: can be solved in practice (for safe schemes)

Order of a sort

$$
\begin{aligned}
& \operatorname{ord}(o)=0 \\
& \operatorname{ord}\left(\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{k} \rightarrow 0\right)=1+\max \left(\operatorname{ord}\left(\alpha_{1}\right), \ldots, \operatorname{ord}\left(\alpha_{k}\right)\right)
\end{aligned}
$$

For example:

- $\operatorname{ord}(o)=0$,
- $\operatorname{ord}(o \rightarrow o)=\operatorname{ord}(o \rightarrow o \rightarrow o)=1$,
- $\operatorname{ord}(o \rightarrow(o \rightarrow o) \rightarrow o)=2$

Order of a recursion scheme
= maximal order of (a type of) its nonterminal

What is safety?

Restriction on terms appearing on right sides of rules:

- unrestricted terms:

$$
M::=a|x| A \mid M N
$$

- safe terms:

$$
\begin{aligned}
& M::=a|x| A \mid M N_{1} \ldots N_{k} \\
& \quad \text { only if } \operatorname{ord}\left(M N_{1} \ldots N_{k}\right) \leq o r d\left(N_{i}\right) \text { for all } i
\end{aligned}
$$

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

What is safety?

Restriction on terms appearing on right sides of rules:

- unrestricted terms:

$$
M::=a|x| A \mid M N
$$

- safe terms:

$$
\begin{aligned}
& M::=a|x| A \mid M N_{1} \ldots N_{k} \\
& \text { only if } \operatorname{ord}\left(M N_{1} \ldots N_{k}\right) \leq o r d\left(N_{i}\right) \text { for all } i
\end{aligned}
$$

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

Let's check safety for our example HORS:

$$
\begin{aligned}
& S \rightarrow A b \\
& A f \rightarrow a(A(D f f)(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

What is safety?

Restriction on terms appearing on right sides of rules:

- unrestricted terms:

$$
M::=a|x| A \mid M N
$$

- safe terms:

$$
\begin{aligned}
& M::=a|x| A \mid M N_{1} \ldots N_{k} \\
& \quad \text { only if } \operatorname{ord}\left(M N_{1} \ldots N_{k}\right) \leq \operatorname{ord}\left(N_{i}\right) \text { for all } i
\end{aligned}
$$

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

Let's check safety for our example HORS:

$$
\begin{aligned}
& S \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$\operatorname{ord}(\mathrm{D} f)=1 \leq 1=\operatorname{ord}(f) \rightarrow \mathrm{OK}$

What is safety?

Restriction on terms appearing on right sides of rules:

- unrestricted terms:

$$
M::=a|x| A \mid M N
$$

- safe terms:

$$
\begin{aligned}
& M::=a|x| A \mid M N_{1} \ldots N_{k} \\
& \text { only if } \operatorname{ord}\left(M N_{1} \ldots N_{k}\right) \leq o r d\left(N_{i}\right) \text { for all } i
\end{aligned}
$$

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

Let's check safety for our example HORS:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \quad \checkmark \text { safe } \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$\operatorname{ord}(\mathrm{D} f)=1 \leq 1=\operatorname{ord}(f) \rightarrow \mathrm{OK}$
All other subterms are of order $0 \rightarrow \mathrm{OK}$

What is safety?

Restriction on terms appearing on right sides of rules:

- unrestricted terms:

$$
M::=a|x| A \mid M N
$$

- safe terms:

$$
\begin{aligned}
& M::=a|x| A \mid M N_{1} \ldots N_{k} \\
& \quad \text { only if } \operatorname{ord}\left(M N_{1} \ldots N_{k}\right) \leq \operatorname{ord}\left(N_{i}\right) \text { for all } i
\end{aligned}
$$

In other words: if we apply an argument of some order k, then we have to apply also all arguments of order $\geq k$

Example: Unsafe HORS (generating "Urzyczyn's tree" U):
Types: $a^{o \rightarrow 0 \rightarrow 0}, b^{o \rightarrow 0}, c^{o \rightarrow o}, d^{0}, e^{o}, S^{o}, F^{(0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0}$
Rules: $S \rightarrow F b d e$

$$
F f x y \rightarrow a(F(F f x) y(c y))(a(f y) x)
$$

X unsafe
(and not equivalent
$\operatorname{ord}(F f x)=1>0=\operatorname{ord}(x)$ to any safe HORS)
(F expects two order-0 arguments; we have applied one (x), but not the other)

Why safety helps?

Theorem [Knapik, Niwiński, Urzyczyn 2002; Blum, Ong 2007] Substitution (hence β-reduction) in safe λ-calculus can be implemented without renaming bound variables.

Bad example: when you substitute ($\lambda x . y x$) [$a x x / y$], it is necessary to change the first two x to some other variable name

Our solution to the unboundedness problem

We provide a system of intersection types.
A type derivation says:

- which arguments / free variables are used (and with which type)
- if the term is „productive":
» produces the letter „a", or
> used a productive argument twice
"Productive" places in a type derivation can be counted.

Our solution to the unboundedness problem

We provide a system of intersection types.
A type derivation says:

- which arguments / free variables are used (and with which type)
- if the term is „productive":
> produces the letter „a", or
> used a productive argument twice
"Productive" places in a type derivation can be counted.

Theorem

G has type derivations with arbitrarily many productive places
the tree generated by G has branches with arbitrarily many symbols „a"
soundness - always
completeness - proof only for safe schemes

- ??? for other schemes

Our solution to the unboundedness problem

Algorithm \& implementation:

- based on HORSAT2
- tries to find all possible type derivations
- found a derivation with a "productive loop" \rightarrow answer YES
- optimizations are necessary - mostly coming from HORSAT2 (which types for subterms may be useful)

Our solution to the unboundedness problem

Algorithm \& implementation:

- based on HORSAT2
- tries to find all possible type derivations
- found a derivation with a "productive loop" \rightarrow answer YES
- optimizations are necessary - mostly coming from HORSAT2 (which types for subterms may be useful)

Evaluation:

- tried on (adapted) benchmarks from HORSAT, coming from real verification problems + some new examples
- 24 inputs, only 2 timeouts (>600s)
- on other inputs works in $<60 \mathrm{~s}$, often <1 s
- size (largest solved): 400 rules, order 8

Conclusion

- We consider the unboundedness problem for recursion schemes
- We propose a new, simpler type system for this problem
- Correctness proof for safe schemes
- Open question: does the type system work for all schemes?
- We implemented a tool working relatively well in practice

Thank you!

