

Unboundedness for Recursion Schemes:
A Simpler Type System

David Barozzini Paweł Parys Jan Wróblewski

University of Warsaw

ICALP 2022

What is it about?

Recursion schemes = we consider trees generated by
 higher-order recursion schemes

Unboundedness = we provide an algorithm checking whether
 some properties in these trees are unbounded

Simpler type system = we give a new, simpler method,
 leading to a practical algorithm

Higher-order recursion schemes – what is this?

Definition
Higher-order recursion schemes = a generalization of context-free
grammars, where nonterminals can take arguments. We use them
to generate trees.

Equivalent definition: simply-typed lambda-calculus + recursion

In other words:
● programs with recursion
● higher-order functions (i.e., functions taking other functions as

parameters)
● every function/parameter has a fixed type
● no data values, only functions

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)

a

A (D b) b c

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)

a

A (D b) b
c

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)

a

A (D b) b
c

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)

a

a

A (D (D b))

b
cD b c

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)
D b c → b (b c)

a

a

A (D (D b))

b
cb

c
b

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)
D b c → b (b c)
A (D (D b)) → a (A (D (D (D b)))) (D (D b) c)
D (D b) c → D b (D b c) → b (b (D b c))

a

a

a
A (D (D (D b)))

b
cb

c
bb

b
b

b
c

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)
D b c → b (b c)
A (D (D b)) → a (A (D (D (D b)))) (D (D b) c)
D (D b) c → D b (D b c) → b (b (D b c))

a

a

a
a

b
cb

c
bb

b
b

b

b
b

b
b

b
b

b
b

c

c

...

Sorts (simple types)

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

Every nonterminal (every argument) has assigned some “sort”,
for example:
● o – a tree
● o→o – a function that takes a tree, and produces a tree
● o→(o→o)→o – a function that takes a tree and a function

 of type o→o, and produces a tree

Model-checking

Theorem [Ong 2006]
MSO model-checking on trees generated by recursion schemes
is decidable.

Input: recursion scheme G, MSO formula f
Question: is f true in the (infinite) tree generated by G?

Model-checking

Theorem [Ong 2006]
MSO model-checking on trees generated by recursion schemes
is decidable.

Input: recursion scheme G, MSO formula f
Question: is f true in the (infinite) tree generated by G?

This procedure can be used for model-checking programs written
in functional programming languages:

Input: a program P, a property y
Question: does P satisfy y?

CEGAR loop, etc.
There exist tools that take (short) programs in Ocaml and can
verify some useful properties.

Several recent papers – can we go beyond MSO?

What about checking properties not expressible in MSO,
e.g., talking about boundedness?

a

Unboundedness – basic problem

Input: recursion scheme G
Question: In the tree generated by G, are there (finite) branches
 with arbitrarily many occurrences of a symbol “a”?

a

a
a

a
a

a

a

a
a

aa

a

a …

(∀n ∃branch with >n occurrences of a)

a

Unboundedness – basic problem

Input: recursion scheme G
Question: In the tree generated by G, are there (finite) branches
 with arbitrarily many occurrences of a symbol “a”?

a

a
a

a
a

a

a

a
a

aa

a

a …

(∀n ∃branch with >n occurrences of a)

Notice:
There may be no path with infinitely many „a”.
Our property is not regular!!!
(the result [Ong – LICS 2006] does not help here)

a

Simultaneous unboundedness

Input: recursion scheme G, set of symbols A
Question: In the tree generated by G, are there (finite) branches
 with arbitrarily many occurrences of every symbol from A?

a

a
a

a
a

a

a

a
a

aa

a

a …

(∀n ∃branch ∀a∈A there are >n occurrences of a on the branch)

b b

b

b

b
b

b

b

b

b

b

b b

Known results

Given a recursion scheme G generating a tree T, the following problems
are decidable:
● Does T satisfy f MSO? [Ong 2006]

(equivalently: is T accepted by a parity automaton)?
● Simultaneous unboundedness for T. [Clemente, P., Salvati, Walukiewicz 2016]
● Does T satisfy f WMSO+U? [P. 2018]
● Only if G is safe: Is T accepted by a B-automaton A?

[Barozzini, Clemente, Colcombet, P. 2020]

Known results

Given a recursion scheme G generating a tree T, the following problems
are decidable:
● Does T satisfy f MSO? [Ong 2006]

(equivalently: is T accepted by a parity automaton)?
● Simultaneous unboundedness for T. [Clemente, P., Salvati, Walukiewicz 2016]
● Does T satisfy f WMSO+U? [P. 2018]
● Only if G is safe: Is T accepted by a B-automaton A?

[Barozzini, Clemente, Colcombet, P. 2020]

● The problem is n-EXP complete for schemes of order n
● There exist tools solving this problem in practice:

➔ TRecS, HorSat, … [Kobayashi, Broadbent, ...]
➔ HORSC, TravMC2 [Neatherway, Ramsay, Ong, ...]

● The tools are based on intersection type systems

Known results

Given a recursion scheme G generating a tree T, the following problems
are decidable:
● Does T satisfy f MSO? [Ong 2006]

(equivalently: is T accepted by a parity automaton)?
● Simultaneous unboundedness for T. [Clemente, P., Salvati, Walukiewicz 2016]
● Does T satisfy f WMSO+U? [P. 2018]
● Only if G is safe: Is T accepted by a B-automaton A?

[Barozzini, Clemente, Colcombet, P. 2020]

● solution for safe schemes [Hague, Kochems, Ong 2016]
● solution for all schemes [Clemente, P., Salvati, Walukiewicz 2016]
● can be solved in n-EXP for schemes of order n [P. 2017]
● this paper: can be solved in practice (for safe schemes)

Order of a sort

ord(o) = 0
ord(a1→...→ak→o) = 1+max(ord(a1), …, ord(ak))

For example:
● ord(o) = 0,
● ord(o→o) = ord(o→o→o) = 1,
● ord(o→(o→o)→o) = 2

Order of a recursion scheme
= maximal order of (a type of) its nonterminal

What is safety?

Restriction on terms appearing on right sides of rules:
● unrestricted terms:

M ::= a | x | A | M N
● safe terms:

M ::= a | x | A | M N1 … Nk
 only if ord(M N1 … Nk)≤ord(Ni) for all i

In other words: if we apply an argument of some order k,
then we have to apply also all arguments of order ≥k

What is safety?

Restriction on terms appearing on right sides of rules:
● unrestricted terms:

M ::= a | x | A | M N
● safe terms:

M ::= a | x | A | M N1 … Nk
 only if ord(M N1 … Nk)≤ord(Ni) for all i

In other words: if we apply an argument of some order k,
then we have to apply also all arguments of order ≥k

Let's check safety for our example HORS:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

What is safety?

Restriction on terms appearing on right sides of rules:
● unrestricted terms:

M ::= a | x | A | M N
● safe terms:

M ::= a | x | A | M N1 … Nk
 only if ord(M N1 … Nk)≤ord(Ni) for all i

In other words: if we apply an argument of some order k,
then we have to apply also all arguments of order ≥k

Let's check safety for our example HORS:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

ord(D f) = 1 ≤ 1 = ord(f) → OK

What is safety?

Restriction on terms appearing on right sides of rules:
● unrestricted terms:

M ::= a | x | A | M N
● safe terms:

M ::= a | x | A | M N1 … Nk
 only if ord(M N1 … Nk)≤ord(Ni) for all i

In other words: if we apply an argument of some order k,
then we have to apply also all arguments of order ≥k

Let's check safety for our example HORS:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

ord(D f) = 1 ≤ 1 = ord(f) → OK
All other subterms are of order 0 → OK

✓safe

What is safety?

Restriction on terms appearing on right sides of rules:
● unrestricted terms:

M ::= a | x | A | M N
● safe terms:

M ::= a | x | A | M N1 … Nk
 only if ord(M N1 … Nk)≤ord(Ni) for all i

In other words: if we apply an argument of some order k,
then we have to apply also all arguments of order ≥k

Example: Unsafe HORS (generating ”Urzyczyn's tree” U):
Types: ao→o→o, bo→o, co→o, do, eo, So, F(o→o)→o→o→o
Rules: S → F b d e

 F f x y → a (F (F f x) y (c y)) (a (f y) x)

ord(F f x) = 1 > 0 = ord(x)
(F expects two order-0 arguments; we have applied one (x), but not the other)

✘ unsafe
(and not equivalent
to any safe HORS)

Why safety helps?

Theorem [Knapik, Niwiński, Urzyczyn 2002; Blum, Ong 2007]
Substitution (hence b-reduction) in safe l-calculus can be
implemented without renaming bound variables.

Bad example: when you substitute (lx.y x) [a x x / y], it is necessary
 to change the first two x to some other variable name

Our solution to the unboundedness problem

We provide a system of intersection types.
A type derivation says:
● which arguments / free variables are used (and with which type)
● if the term is „productive”:

➢ produces the letter „a”, or
➢ used a productive argument twice

“Productive” places in a type derivation can be counted.

Our solution to the unboundedness problem

We provide a system of intersection types.
A type derivation says:
● which arguments / free variables are used (and with which type)
● if the term is „productive”:

➢ produces the letter „a”, or
➢ used a productive argument twice

“Productive” places in a type derivation can be counted.

Theorem
G has type derivations
with arbitrarily many

productive places

the tree generated by G
has branches with arbitrarily

many symbols „a”

soundness - always

completeness – proof only for safe schemes
 – ??? for other schemes

Our solution to the unboundedness problem

Algorithm & implementation:
● based on HORSAT2
● tries to find all possible type derivations
● found a derivation with a “productive loop” → answer YES
● optimizations are necessary – mostly coming from HORSAT2

(which types for subterms may be useful)

Our solution to the unboundedness problem

Algorithm & implementation:
● based on HORSAT2
● tries to find all possible type derivations
● found a derivation with a “productive loop” → answer YES
● optimizations are necessary – mostly coming from HORSAT2

(which types for subterms may be useful)

Evaluation:
● tried on (adapted) benchmarks from HORSAT, coming from real

verification problems + some new examples
● 24 inputs, only 2 timeouts (> 600s)
● on other inputs works in <60s, often <1s
● size (largest solved): 400 rules, order 8

Conclusion
● We consider the unboundedness problem for recursion schemes
● We propose a new, simpler type system for this problem
● Correctness proof for safe schemes
● Open question: does the type system work for all schemes?
● We implemented a tool working relatively well in practice

Thank you!

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35

