Higher-Order Model Checking Step by Step

Paweł Parys

University of Warsaw

What is it about?

Higher-Order = we consider higher-order recursion schemes

Model Checking = we solve the acceptance problem for alternating parity automata

Step by Step = we give a new method, working in multiple simple steps

<u>Higher-order recursion schemes – what is this?</u>

Definition

<u>Higher-order recursion schemes</u> = a generalization of context-free grammars, where nonterminals can take arguments. We use them to generate trees.

Equivalent definition: simply-typed lambda-calculus + recursion

In other words:

- programs with recursion
- higher-order functions (i.e., functions taking other functions as parameters)
- every function/parameter has a fixed type
- no data values, only functions

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals: S (starting), A, D

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals: S (starting), A, D

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals: S (starting), A, D

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow Ab \rightarrow a(A(Db))(bc)$$

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:

S (starting), A, D

$$A(Db)$$
 $b c$

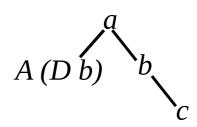
$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow Ab \rightarrow a(A(Db))(bc)$$

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:



$$S \rightarrow Ab$$

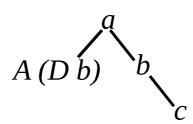
 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow Ab \rightarrow a(A(Db))(bc)$$

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:

S (starting), A, D



$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow Ab \rightarrow a (A(Db)) (bc)$$

 $A(Db) \rightarrow a (A(D(Db))) (Dbc)$

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:

$$S$$
 (starting), A , D

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow Ab \rightarrow a (A(Db)) (bc)$$

 $A(Db) \rightarrow a (A(D(Db))) (Dbc)$

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:

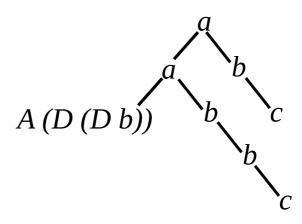
S (starting), A, D

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow A b \rightarrow a (A (D b)) (b c)$$

 $A (D b) \rightarrow a (A (D (D b))) (D b c)$
 $D b c \rightarrow b (b c)$



Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:

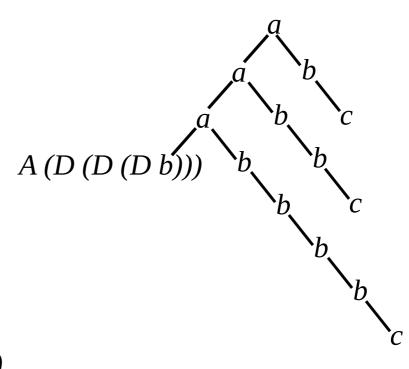
S (starting), A, D

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow Ab \rightarrow a (A (D b)) (b c)$$

 $A (D b) \rightarrow a (A (D (D b))) (D b c)$
 $D b c \rightarrow b (b c)$
 $A (D (D b)) \rightarrow a (A (D (D (D b)))) (D (D b) c)$
 $D (D b) c \rightarrow D b (D b c) \rightarrow b (b (D b c))$



Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:

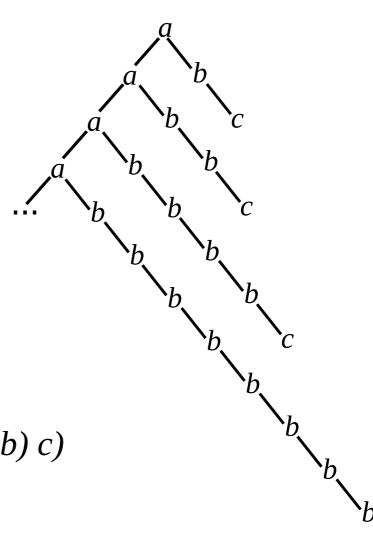
S (starting), A, D

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

$$S \rightarrow A b \rightarrow a (A (D b)) (b c)$$

 $A (D b) \rightarrow a (A (D (D b))) (D b c)$
 $D b c \rightarrow b (b c)$
 $A (D (D b)) \rightarrow a (A (D (D (D b)))) (D (D b) c)$
 $D (D b) c \rightarrow D b (D b c) \rightarrow b (b (D b c))$



<u>Types</u>

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals: S (starting), A, D

Rules:

$$S \rightarrow Ab$$

 $Af \rightarrow a(A(Df))(fc)$
 $Dfx \rightarrow f(fx)$

Every nonterminal (every argument) has assigned some type, for example:

- *o* a tree
- $o \rightarrow o$ a function that takes a tree, and produces a tree
- $o \rightarrow (o \rightarrow o) \rightarrow o$ a function that takes a tree and a function of type $o \rightarrow o$, and produces a tree

Order of a type

$$ord(o) = 0$$

 $ord(\alpha_1 \rightarrow ... \rightarrow \alpha_k \rightarrow o) = 1 + max(ord(\alpha_1), ..., ord(\alpha_k))$

For example:

- ord(o) = 0,
- ord $(o \rightarrow o)$ = ord $(o \rightarrow o \rightarrow o)$ = 1,
- ord $(o \to (o \to o) \to o) = 2$

Order of a recursion scheme

= maximal order of (a type of) its nonterminal

Model-checking for recursion schemes

General goal: verifying properties of trees generated by schemes

Why? Recursion schemes are decidable models (abstractions) of programs using higher-order recursion

Model-checking for recursion schemes

Input: alternating tree automaton (ATA) \mathcal{A} with parity condition, recursion scheme \mathcal{G}

Qestion: does \mathcal{A} accept the tree generated by \mathcal{G} ?

Theorem [Ong 2006]
This problem is decidable.

Several proofs, using:

- game semantics
- collapsible pushdown automata
- intersection types
- Krivine machines and several extensions.

Some proofs only for reachability ATA.

We show another, quite simple algorithm.

Model-checking for recursion schemes

Input: alternating tree automaton (ATA) $\mathcal A$ with parity condition, recursion scheme $\mathcal G$

Qestion: does \mathcal{A} accept the tree generated by \mathcal{G} ?

Theorem [Ong 2006]
This problem is decidable.

Complexity:

- *n*-EXPTIME-complete for recursion schemes of order *n* (hardness already for reachability ATA)
- FTP: linear in the size of \mathcal{G} , when size of \mathcal{A} and maximal arity of types in \mathcal{G} are fixed,
- (algorithms based on intersection types perform relatively well in practice)

Our algorithm achieves the same complexity.

Preprocessing

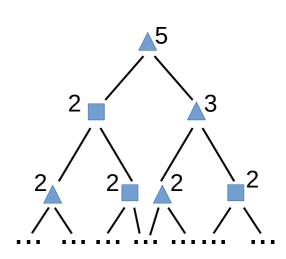
We consider an (appropriately defined) product of G and A.

It generates a tree of "runs of \mathcal{A} on \mathcal{G} " with nodes labeled by:

- player name,
- priority.

This tree is thus an infinite parity game.

We ask who wins this game.



General idea

We replace the recursion scheme G_n of order n by an equivalent recursion scheme G_{n-1} of order n-1. Size grows exponentially.

$$G_n \longrightarrow G_{n-1} \longrightarrow G_{n-2} \longrightarrow \cdots \longrightarrow G_1 \longrightarrow G_0$$

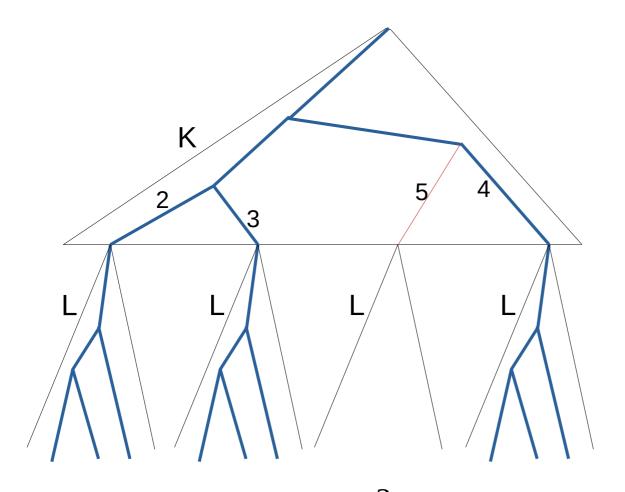
For recursion schemes of order 0 the problem becomes trivial.

Transformation

Consider an application KL, where L is of order 0 (generates a tree).

How can a winning strategy in *KL* look like?

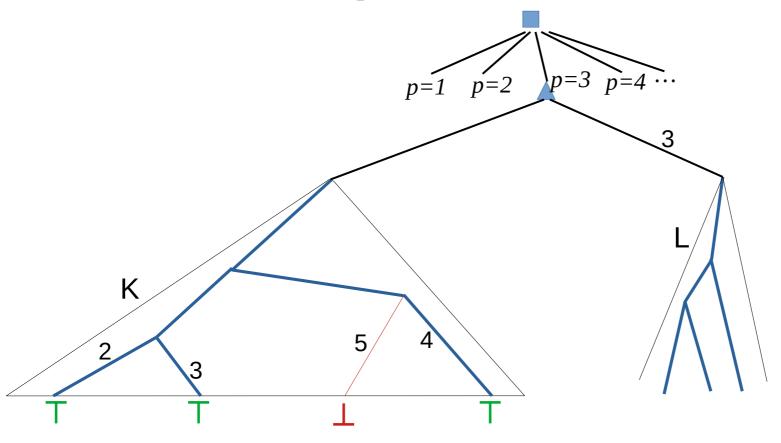
- the greatest priority seen in K is p or better ... < 7 < 5 < 3 < 1 < 2 < 4 < 6 < 8 ...
- the strategy in every copy of L can be the same



Transformation

After the transformation

- Even declares the priority *p* for *K*
- Odd can either check or accept this declaration
- If he checks, we play in K; reaching an argument ends the game
- If he accepts, we read p, and we continue in L



More details:

- Duplicate nonterminals a copy for every value of p
- Duplicate arguments a copy for every value of p
- Remove arguments of order 0 order decreases by 1

Conclusion

- We consider the model-checking problem for recursion schemes
 + parity ATA
- We propose a new, simpler method algorithm solving this problem: we repeatedly reduce the order of a recursion scheme by one, increasing its size exponentially
- We obtain optimal complexity

Thank you!