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What is it about?

Higher-Order = we consider higher-order recursion schemes

Model Checking = we solve the acceptance problem for
alternating parity automata

Step by Step = we give a new method, working in multiple
simple steps




Higher-order recursion schemes — what is this?

Definition

Higher-order recursion schemes = a generalization of context-free
grammars, where nonterminals can take arguments. We use them
to generate trees.

Equivalent definition: simply-typed lambda-calculus + recursion

In other words:

e programs with recursion

* higher-order functions (i.e., functions taking other functions as
parameters)

 every function/parameter has a fixed type

* no data values, only functions
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Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank O

Nonterminals:
S (starting), A, D
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Types

Ranked alphabet: (rank = number of children)
a of rank 2, b of rank 1, c of rank O

Nonterminals:
S (starting), A, D

Rules:
S > Ab

Af —aAMDP (fo)
Dfx - f(fx)

Every nonterminal (every argument) has assigned some type,
for example:
*0—atree
* 00 — a function that takes a tree, and produces a tree
* 0 (0-0) -0 —a function that takes a tree and a function
of type o - o, and produces a tree




Order of a type

ord(o) =0
ord(oy - ... » o, — 0) = 1+max(ord(a.,), ..., ord(c,))

For example:

* ord(o) =0,

e ord(o-0) =ord(lo-0-0) =1,
* ord(o-(0-»0)—-0) =2

Order of a recursion scheme
= maximal order of (a type of) its nonterminal



Model-checking for recursion schemes

General goal: verifying properties of trees generated by schemes

Why? Recursion schemes are decidable models (abstractions) of
programs using higher-order recursion



Model-checking for recursion schemes

Input: alternating tree automaton (ATA) 2 with parity condition,
recursion scheme G
Qestion: does 4 accept the tree generated by G?

Theorem [Ong 2006]
This problem is decidable.

Several proofs, using:

* game semantics

* collapsible pushdown automata

* Intersection types

* Krivine machines

and several extensions.

Some proofs only for reachability ATA.

We show another, quite simple algorithm.



Model-checking for recursion schemes

Input: alternating tree automaton (ATA) 2 with parity condition,
recursion scheme G

Qestion: does 4 accept the tree generated by G?

Theorem [Ong 2006]
This problem is decidable.

Complexity:
* n-EXPTIME-complete for recursion schemes of order n
(hardness already for reachability ATA)

« FTP: linear in the size of G, when size of 2 and maximal arity of
types in G are fixed,
* (algorithms based on intersection types perform relatively well in practice)

Our algorithm achieves the same complexity.



Preprocessing

We consider an (appropriately defined) product of G and 4.

It generates a tree of “runs of 42 on G" with nodes labeled by:

* player name,
* priority.

This tree is thus an infinite parity game. A5
2 D/ \AS
N AN,

A ’H A2 m

INGLMNLON

We ask who wins this game.



General iIdea

We replace the recursion scheme ¢ of order n by an equivalent
recursion scheme ¢, _, of order n-1. Size grows exponentially.

Gp e Gpp_j s G s .. iy G G

For recursion schemes of order 0 the problem becomes trivial.



Transformation

Consider an application KL, where L is of order O (generates a tree).

How can a winning strategy in KL look like?

* the greatest priority seen in K Is p or better
LL.<7T<5<3<1<2<4<6<8..

* the strategy in every copy of L can be the same




Transformation

After the transformation
* Even declares the priority p for K
e Odd can either check or accept this declaration

* If he checks, we play in K; reaching an argument ends the game
* If he accepts, we read p, and we continue in L

—|w



More detalls:

* Duplicate nonterminals — a copy for every value of p
* Duplicate arguments — a copy for every value of p
* Remove arguments of order O m=) order decreases by 1



Conclusion

* We consider the model-checking problem for recursion schemes
+ parity ATA

* We propose a new, simpler method algorithm solving this
problem: we repeatedly reduce the order of a recursion scheme
by one, increasing its size exponentially

* We obtain optimal complexity

Thank you!
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