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What is it about?

Higher-Order = we consider higher-order recursion schemes 

Model Checking = we solve the acceptance problem for
alternating parity automata

Step by Step = we give a new method, working in multiple
simple steps



  

Higher-order recursion schemes – what is this?

Definition
Higher-order recursion schemes = a generalization of context-free
grammars, where nonterminals can take arguments. We use them
to generate trees.

Equivalent definition: simply-typed lambda-calculus + recursion

In other words:
● programs with recursion
● higher-order functions (i.e., functions taking other functions as

parameters)
● every function/parameter has a fixed type
● no data values, only functions



  

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

 



  

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)
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S → A b → a (A (D b)) (b c)
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Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
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Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S       → A b
A f     → a (A (D f)) (f c)
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Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)
D b c → b (b c)
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Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)
D b c → b (b c)
A (D (D b)) → a (A (D (D (D b)))) (D (D b) c)
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S       → A b
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Types

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

Every nonterminal (every argument) has assigned some type,
for example:
● o – a tree
● o→o – a function that takes a tree, and produces a tree
● o→(o→o)→o – a function that takes a tree and a function

    of type o→o, and produces a tree
    



  

Order of a type

      
ord(o) = 0
ord(a1→...→ak→o) = 1+max(ord(a1), …, ord(ak))

For example:
● ord(o) = 0,
● ord(o→o) = ord(o→o→o) = 1,
● ord(o→(o→o)→o) = 2 

Order of a recursion scheme 
= maximal order of (a type of) its nonterminal



  

Model-checking for recursion schemes

General goal: verifying properties of trees generated by schemes

Why? Recursion schemes are decidable models (abstractions) of 
programs using higher-order recursion



  

Model-checking for recursion schemes

Input: alternating tree automaton (ATA) A with parity condition,
recursion scheme G

Qestion: does A accept the tree generated by G?

Theorem [Ong 2006]

This problem is decidable.

Several proofs, using:
● game semantics
● collapsible pushdown automata
● intersection types
● Krivine machines
and several extensions. 
Some proofs only for reachability ATA.

We show another, quite simple algorithm.



  

Model-checking for recursion schemes

Input: alternating tree automaton (ATA) A with parity condition,
recursion scheme G

Qestion: does A accept the tree generated by G?

Theorem [Ong 2006]

This problem is decidable.

Complexity:
● n-EXPTIME-complete for recursion schemes of order n

(hardness already for reachability ATA)
● FTP: linear in the size of G, when size of A and maximal arity of 

types in G are fixed,
● (algorithms based on intersection types perform relatively well in practice)

Our algorithm achieves the same complexity.



  

Preprocessing

We consider an (appropriately defined) product of G and A.

It generates a tree of “runs of A on G” with nodes labeled by:
● player name,
● priority.

This tree is thus an infinite parity game.

We ask who wins this game.

5

32

2 2 2 2

.....................



  

General idea

We replace the recursion scheme Gn of order n by an equivalent 

recursion scheme Gn-1 of order n-1. Size grows exponentially.

Gn Gn-1 Gn-2 G1 G0 ...

For recursion schemes of order 0 the problem becomes trivial.



  

Transformation

Consider an application KL, where L is of order 0 (generates a tree).

How can a winning strategy in KL look like?
● the greatest priority seen in K is p or better

… ≺ 7 ≺ 5 ≺ 3 ≺ 1 ≺ 2 ≺ 4 ≺ 6 ≺ 8 ...
● the strategy in every copy of L can be the same

L

K

LLL

3
2 4

p=3

5



  

Transformation

After the transformation
● Even declares the priority p for K
● Odd can either check or accept this declaration
● If he checks, we play in K; reaching an argument ends the game
● If he accepts, we read p, and we continue in L 

p=1 p=2 p=3 p=4 …

K

3
2 4

L

⊥⊤ ⊤ ⊤

5

3



  

More details:
● Duplicate nonterminals – a copy for every value of p
● Duplicate arguments – a copy for every value of p
● Remove arguments of order 0       order decreases by 1



  

Conclusion

● We consider the model-checking problem for recursion schemes 
+ parity ATA

● We propose a new, simpler method algorithm solving this 
problem: we repeatedly reduce the order of a recursion scheme 
by one, increasing its size exponentially

● We obtain optimal complexity

Thank you!
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