A Quasi-Polynomial Black-Box Algorithm
for Fixed Point Evaluation

André Arnold, Damian Niwinski, Pawet Parys

CSL 2021

Plan

 parity games = modal u-calculus

N
(black-box) fixed point evaluation

 quasi-polynomial algorithms for parity games
4

guasi-polynomial black-box algorithms for fixed point evaluation

* Our algorithm is an abstract version of recent quasi-polynomial
algorithms solving parity games

* We unify two kinds of parity-games algorithms (asymmetric,
symmetric) in a common framework

* Some lower bounds for the method (universal trees are needed)

Considered problem: fixed point evaluation

Compute: VX4.UXg_ .- VX2.UX{.[(X1,X0,.--sX4.1,X)

where x; € {0,1}"
f:({0,1/)¢= {0,1/* monotone

access to f: only evaluation for given arguments (f is a black-box)

Considered problem: fixed point evaluation

Compute: VX4.UXg_ .- VX2.UX{.[(X1,X0,.--sX4.1,X)

where x; € {0,1}"
f:({0,1/)¢= {0,1/* monotone

access to f: only evaluation for given arguments (f is a black-box)

Relation to parity games

fixed point evaluation

parity game _
(nnodes, d prioriies) > (nbits, d arguments)
f of a special form

fixed point evaluation
(n bits, d arguments)
arbitrary f

parity game ‘
(exp(n) nodes, d priorities)

Parity games vs. fixed point evaluation

VXWX 1~ VX0 UX 1 [(X 15X 0500 5X 415X g)

For parity games:
 fis of a special form: every output bit is either AND or OR of some input bits
* the game graph can be accessed also in other ways, not only by evaluating f

Recent quasipolynomial algorithms for parity games:
» access the game graph only by evaluating f
» work for arbitrary f, not only for f coming from parity games

After a careful analysis, they give black-box algorithms for fixed point evaluation
This paper / this talk:

 Why?
* How to prove this in a nice way?

Recent results on parity games

Calude, Jain, Khoussainov, Li, Stephan 2017 _ combplexity:
Fearnley, Jain, Schewe, Stephan, Wojtczak 2017\ asymmetric algo. | (d/P) +O>Ell) N
Jurdzinski, Lazié¢ 2017 (separator approach) N9 = [Undl

Lehtinen 2018

* Bojanczyk, Czerwinski 2018
» Czerwinski, Daviaud, Fijalkow, Jurdzinski, Lazi¢, Parys 2019

* Parys 2019 _ _
* Lehtinen, Schewe, Wojtczak 2019 | symmetric algo. complexity:
« Jurdziniski, Morvan 2020 (recursive) n2lg(dlg n)+o(l) = U, 4|2

o

e Jurdzinski, Morvan, Ohimann, Thejaswini 2020 — symmetric, in nlo(@lg N+O1) = |U, |

fixed point evaluation:
* Hausmann, Schroder 2019
e Hausmann, Schroder 2020

(blue = after writing this paper)

Standard exponential algorithm

Notation: |(©,f,(0,1))|=vxg.uxy_1-..VXs.uX{.f(X1,X0,...,X4.1,Xg) fOr ©=vu...vu

SA _
[(X15X05e-5Xg.1) = [(X1,X05--,Xg.1,A)

Algorithm evaluating |(0.,f,(0,1))] (where j=1,2,...,n)
forO=u®’: forO=vO'’
A)=0 By)=1
A; = |(©'f A0, 1)) B; = |(©",f"1,(0,1))

return An return Bn

Standard exponential algorithm

Notation: |(©,f,(0,1))|=vxg.uxy_1-..VXs.uX{.f(X1,X0,...,X4.1,Xg) fOr ©=vu...vu

foAx XX g1) = [(XXX g1, A)
Algorithm evaluating |(0.,f,(0,1))] (where j=1,2,...,n)
forO@=u®’: forO=vO'’
A)=0 By)=1
A; = |(©,f 7*1,(0,1) B; = |(©',f ~%,(0,1)
return A, return B,

How to make it quasipolynomial?

* do not start from 0/ 1, but from some intermediate values (restrictions)
» perform less iterations (follow a structure of some universal trees)

Restrictions

Notation: fus(xpx %) = A 1 B \f() A<B

= inf
= sup = bitwise AND
= bitwise OR

e~

Restrictions

. A<B
Notation: fsp(X;,X5,..-,Xg) = A + B * [(x{,X5,...,Xg)

1(©,f,(A,B))|=VX4.UX g1 ... VX5.UX1.[ap(X1:X0s-- X g.1:Xg) TOr O=vu...vu

Algorithm evaluating |(®,f,(A,B))| (where j=1,2,...,n)
forO@=u®’: for O=v 0O’
A=A B,=B
A; = |(©,f~41,(A;,B)) B; = |(©",f "%,(A,B;))|
return A, return B,

N~

Universal trees

Atree U (of height h) is (n,h)-universal if every tree of height h with n leaves
embeds in U.

N AT

(2,2)-universal

Universal trees

Atree U (of height h) is (n,h)-universal if every tree of height h with n leaves
embeds in U.

N AT

(2,2)-universal

Examples:

Cn,h =

Universal trees

Atree U (of height h) is (n,h)-universal if every tree of height h with n leaves
embeds in U.

N AT

(2,2)-universal

Examples:

S, P Pleains - Pl Pz
n
w2) |
size nh/

\ |n/2
size nlg n + lg(h/lg n)+O(1)

i size nlg(h/lg n)+0(1)

Symmetric algorithm based on universal trees
~ the symmetric algorithm for parity games

U,V — (universal) trees

Definition / Algorithm evaluating |(©,f,(A,B))|; v (where j=1,2,....p)
for =@, U=(U,,..,U,) for @=v@’, V=(V,,...,V,)
A=A B,=B
y £ SA. — ' £ 5B
A =|©%f Af'la(Aj-1,B))|Uj,v B =1(®f Jl’(A’Bj-l))lU,Vj

return A, return B,

Symmetric algorithm based on universal trees
~ the symmetric algorithm for parity games

U,V — (universal) trees

Definition / Algorithm evaluating |(©,f,(A,B))|; v (where j=1,2,....p)
for =@, U=(U,,..,U,) for @=v@’, V=(V,,...,V,)
AOZ A B0: B
A =|(©f L)AJ'I,(A]'-1,B))|U].,V B; = 1(©f QBJ_I’(A’Bj-l))lU,Vj
return A, return B,
Correctness

If U,V are (n,d/2)-universal then |(©,f,(0,1))|y.v = |(©,{,(0,1))|.

Proof is based on: \
 dominions adapted from parity games

« dominion decomposition " [Jurdzinski, Morvan 2020]

Symmetric algorithm based on universal trees
~ the symmetric algorithm for parity games

U,V — (universal) trees

Definition / Algorithm evaluating |(©,f,(A,B))|; v (where j=1,2,....p)
for =@, U=(U,,..,U,) for @=v@’, V=(V,,...,V,)
A=A B,=B
y £ SA. — ' £ 5B
A =|©f Af-l,(Aj_l,B))|Uj,V B; = |(©f " L(ABiluy,
return A, return B,
Correctness

If U,V are (n,d/2)-universal then |(©,f,(0,1))|y.v = |(©,{,(0,1))|.

Proof is based on:
 dominions adapted from parity games

« dominion decomposition " [Jurdzinski, Morvan 2020]

Time complexity: |U]-|V| = n2lg(d/lg n)+O(1)
(two universal trees)

Asymmetric algorithm (Seidl’s idea, 1996)

« evaluate recursively ~ Seidl'96 create a system of least fixed point
time: nd e equations, and solve it
time: nd/2+1

* universal trees

* restrictions)

 evaluate recursively

universal trees
restrictions
create a system of least fixed point

time: n2lg(d/lg n+O(1) equations, and solve it
time: n2lg(d/lg n)/2+0O(1)
U U
symmetric algorithm asymmetric algorithm

for parity games for parity games

A lower bound (for our method)

Theorem: Fix n,d.
If |(©,£,(0,1))] = |(©,f,(0,1))|yy for all f, then U,V are (n,d/2)-universal.

Corollary:
It is known that every universal tree has size at least nlg(h/lg n)+Q(1)
Thus our algorithm cannot work faster (using potentially some smaller tree).

A lower bound (for our method)

Theorem: Fix n,d.
If |(©,£,(0,1))] = |(©,f,(0,1))|yy for all f, then U,V are (n,d/2)-universal.

Corollary:
It is known that every universal tree has size at least n!9(d/lg n)+€(1)
Thus our algorithm cannot work faster (using potentially some smaller tree).

Remark:
It is enough to assume equality for functions f defined by parity games
(so the lower bound applies also to parity games)

Conclusions

guasi-polynomial algorithms for fixed-point evaluation
an abstract formulation using universal trees

unified treatment of symmetric / asymmetric variants
a lower bound for the method

Open problem:

* prove a (quasi-polynomial?) lower bound for the number of queries
for black-box fixed point evaluation
[we only have Q(n“/log n) — Parys 2009]

Thank you!

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20

