

A Quasi-Polynomial Black-Box Algorithm
for Fixed Point Evaluation

André Arnold, Damian Niwiński, Paweł Parys

CSL 2021

Plan
● parity games ≈ modal m-calculus

(black-box) fixed point evaluation

● quasi-polynomial algorithms for parity games

quasi-polynomial black-box algorithms for fixed point evaluation

● Our algorithm is an abstract version of recent quasi-polynomial
algorithms solving parity games

● We unify two kinds of parity-games algorithms (asymmetric,
symmetric) in a common framework

● Some lower bounds for the method (universal trees are needed)
⊆

Considered problem: fixed point evaluation

Compute: nxd.mxd-1…nx2.mx1.f(x1,x2,...,xd-1,xd)

where xi ∈ {0,1}n

f : ({0,1}n)d→ {0,1}n monotone

access to f: only evaluation for given arguments (f is a black-box)

Considered problem: fixed point evaluation

Compute: nxd.mxd-1…nx2.mx1.f(x1,x2,...,xd-1,xd)

where xi ∈ {0,1}n

f : ({0,1}n)d→ {0,1}n monotone

access to f: only evaluation for given arguments (f is a black-box)

Relation to parity games

parity game
(n nodes, d priorities)

fixed point evaluation
(n bits, d arguments)

f of a special form

parity game
(exp(n) nodes, d priorities)

fixed point evaluation
(n bits, d arguments)

arbitrary f

Parity games vs. fixed point evaluation

nxd.mxd-1…nx2.mx1.f(x1,x2,...,xd-1,xd)

For parity games:
● f is of a special form: every output bit is either AND or OR of some input bits
● the game graph can be accessed also in other ways, not only by evaluating f

Recent quasipolynomial algorithms for parity games:
● access the game graph only by evaluating f
● work for arbitrary f, not only for f coming from parity games

After a careful analysis, they give black-box algorithms for fixed point evaluation

This paper / this talk:
● Why?
● How to prove this in a nice way?

Recent results on parity games
● Calude, Jain, Khoussainov, Li, Stephan 2017
● Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
● Jurdziński, Lazić 2017
● Lehtinen 2018

● Parys 2019
● Lehtinen, Schewe, Wojtczak 2019
● Jurdziński, Morvan 2020

● Jurdziński, Morvan, Ohlmann, Thejaswini 2020 – symmetric, in nlg(d/lg n)+O(1) ≈ |Un,d|

fixed point evaluation:
● Hausmann, Schröder 2019
● Hausmann, Schröder 2020

asymmetric algo.
(separator approach)

complexity:
nlg(d/lg n)+O(1) ≈ |Un,d|

● Bojańczyk, Czerwiński 2018
● Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, Parys 2019

symmetric algo.
(recursive)

complexity:
n2lg(d/lg n)+O(1) ≈ |Un,d|2

(blue = after writing this paper)

Standard exponential algorithm

Notation: |(Q,f,(0,1))|=nxd.mxd-1…nx2.mx1.f(x1,x2,...,xd-1,xd) for Q=nm...nm

f ↳A(x1,x2,...,xd-1) = f (x1,x2,...,xd-1,A)

 for Q=n Q’:
B0= 1

Bj = |(Q’,f ↳Bj-1,(0,1))|
return Bn

(where j=1,2,…,n) Algorithm evaluating |(Q,f,(0,1))|
 for Q=m Q’:

A0= 0

Aj = |(Q’,f ↳Aj-1,(0,1))|
return An

Standard exponential algorithm

Notation: |(Q,f,(0,1))|=nxd.mxd-1…nx2.mx1.f(x1,x2,...,xd-1,xd) for Q=nm...nm

f ↳A(x1,x2,...,xd-1) = f (x1,x2,...,xd-1,A)

 for Q=n Q’:
B0= 1

Bj = |(Q’,f ↳Bj-1,(0,1))|
return Bn

(where j=1,2,…,n)

How to make it quasipolynomial?
● do not start from 0 / 1, but from some intermediate values (restrictions)
● perform less iterations (follow a structure of some universal trees)

Algorithm evaluating |(Q,f,(0,1))|
 for Q=m Q’:

A0= 0

Aj = |(Q’,f ↳Aj-1,(0,1))|
return An

Restrictions

Notation: fAB(x1,x2,...,xd) = A + B * f (x1,x2,...,xd)
A≤B

= sup
= bitwise OR

= inf
= bitwise AND

A

B

fAB

Restrictions

Notation: fAB(x1,x2,...,xd) = A + B * f (x1,x2,...,xd)
|(Q,f,(A,B))|=nxd.mxd-1…nx2.mx1.fAB(x1,x2,...,xd-1,xd) for Q=nm...nm

 for Q=n Q’:
B0= B

Bj = |(Q’,f ↳Bj-1,(A,Bj-1))|
return Bn

(where j=1,2,…,n) Algorithm evaluating |(Q,f,(A,B))|
 for Q=m Q’:

A0= A

Aj = |(Q’,f ↳Aj-1,(Aj-1,B))|
return An

A≤B

A

B

fAB

Universal trees

A tree U (of height h) is (n,h)-universal if every tree of height h with n leaves
embeds in U.

(2,2)-universal

Universal trees

A tree U (of height h) is (n,h)-universal if every tree of height h with n leaves
embeds in U.

(2,2)-universal

Examples:

Cn,h =

Cn,h-1Cn,h-1Cn,h-1

...

n

Pn,h =

P⌊n/2⌋,h-1 P⌊n/2⌋,h-1
...

Pn,h-1
P⌊n/2⌋,h-1 P⌊n/2⌋,h-1

...

⌊n/2⌋ ⌊n/2⌋

Sn,h =
S⌊n/2⌋,h

Sn,h-1

S⌊n/2⌋,h

Universal trees

A tree U (of height h) is (n,h)-universal if every tree of height h with n leaves
embeds in U.

(2,2)-universal

Examples:

Cn,h =

Cn,h-1Cn,h-1Cn,h-1

...

n

Pn,h =

P⌊n/2⌋,h-1 P⌊n/2⌋,h-1
...

Pn,h-1
P⌊n/2⌋,h-1 P⌊n/2⌋,h-1

...

⌊n/2⌋ ⌊n/2⌋

Sn,h =
S⌊n/2⌋,h

Sn,h-1

S⌊n/2⌋,h

size nlg(h/lg n)+O(1)

size nlg n + lg(h/lg n)+O(1)

size nh

U,V – (universal) trees

 for Q=n Q’, V=〈V1,...,Vp〉

B0= B

Bj = |(Q’,f ↳Bj-1,(A,Bj-1))|U,Vj

return Bp

(where j=1,2,…,p) Definition / Algorithm evaluating |(Q,f,(A,B))|U,V

 for Q=m Q’, U=〈U1,...,Up〉
A0= A

Aj = |(Q’,f ↳Aj-1,(Aj-1,B))|Uj,V

return Ap

Symmetric algorithm based on universal trees
≈ the symmetric algorithm for parity games

U,V – (universal) trees

 for Q=n Q’, V=〈V1,...,Vp〉

B0= B

Bj = |(Q’,f ↳Bj-1,(A,Bj-1))|U,Vj

return Bp

(where j=1,2,…,p) Definition / Algorithm evaluating |(Q,f,(A,B))|U,V

 for Q=m Q’, U=〈U1,...,Up〉
A0= A

Aj = |(Q’,f ↳Aj-1,(Aj-1,B))|Uj,V

return Ap

Symmetric algorithm based on universal trees
≈ the symmetric algorithm for parity games

Correctness
If U,V are (n,d/2)-universal then |(Q,f,(0,1))|U,V = |(Q,f,(0,1))|.
Proof is based on:
● dominions
● dominion decomposition

adapted from parity games
[Jurdziński, Morvan 2020]

U,V – (universal) trees

 for Q=n Q’, V=〈V1,...,Vp〉

B0= B

Bj = |(Q’,f ↳Bj-1,(A,Bj-1))|U,Vj

return Bp

(where j=1,2,…,p) Definition / Algorithm evaluating |(Q,f,(A,B))|U,V

 for Q=m Q’, U=〈U1,...,Up〉
A0= A

Aj = |(Q’,f ↳Aj-1,(Aj-1,B))|Uj,V

return Ap

Symmetric algorithm based on universal trees
≈ the symmetric algorithm for parity games

Correctness
If U,V are (n,d/2)-universal then |(Q,f,(0,1))|U,V = |(Q,f,(0,1))|.
Proof is based on:
● dominions
● dominion decomposition

Time complexity: |U|.|V| = n2lg(d/lg n)+O(1)

(two universal trees)

adapted from parity games
[Jurdziński, Morvan 2020]

Asymmetric algorithm (Seidl’s idea, 1996)

● evaluate recursively
time: nd

● create a system of least fixed point
equations, and solve it

time: nd/2+1

Seidl ‘96

● universal trees
● restrictions
● evaluate recursively

time: n2lg(d/lg n)+O(1)

● universal trees
● restrictions
● create a system of least fixed point

equations, and solve it
time: n2lg(d/lg n)/2+O(1)

symmetric algorithm
for parity games

≈

asymmetric algorithm
for parity games

≈

A lower bound (for our method)

Theorem: Fix n,d.
If |(Q,f,(0,1))| = |(Q,f,(0,1))|U,V for all f, then U,V are (n,d/2)-universal.

Corollary:
It is known that every universal tree has size at least nlg(h/lg n)+W(1)

Thus our algorithm cannot work faster (using potentially some smaller tree).

A lower bound (for our method)

Theorem: Fix n,d.
If |(Q,f,(0,1))| = |(Q,f,(0,1))|U,V for all f, then U,V are (n,d/2)-universal.

Corollary:
It is known that every universal tree has size at least nlg(d/lg n)+W(1)

Thus our algorithm cannot work faster (using potentially some smaller tree).

Remark:
It is enough to assume equality for functions f defined by parity games
(so the lower bound applies also to parity games)

Conclusions
● quasi-polynomial algorithms for fixed-point evaluation
● an abstract formulation using universal trees
● unified treatment of symmetric / asymmetric variants
● a lower bound for the method

Open problem:
● prove a (quasi-polynomial?) lower bound for the number of queries

for black-box fixed point evaluation
[we only have W(n2/log n) – Parys 2009]

Thank you!

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20

