A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

André Arnold, Damian Niwiński, Paweł Parys

Plan

- parity games \approx modal μ-calculus

in
 (black-box) fixed point evaluation

- quasi-polynomial algorithms for parity games
$\sqrt{\square}$
quasi-polynomial black-box algorithms for fixed point evaluation
- Our algorithm is an abstract version of recent quasi-polynomial algorithms solving parity games
- We unify two kinds of parity-games algorithms (asymmetric, symmetric) in a common framework
- Some lower bounds for the method (universal trees are needed)

Considered problem: fixed point evaluation

Compute: $v x_{d} \cdot \mu x_{d-1} \ldots v x_{2} \cdot \mu x_{1} \cdot f\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)$
where $x_{i} \in\{0,1\}^{n}$
$f:\left(\{0,1\}^{n}\right)^{d} \rightarrow\{0,1\}^{n} \quad$ monotone
access to f : only evaluation for given arguments (f is a black-box)

Considered problem: fixed point evaluation

Compute: $v x_{d} \cdot \mu x_{d-1} \ldots v x_{2} \cdot \mu x_{1} \cdot f\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)$
where $x_{i} \in\{0,1\}^{n}$

$$
f:\left(\{0,1\}^{n}\right)^{d} \rightarrow\{0,1\}^{n} \quad \text { monotone }
$$

access to f : only evaluation for given arguments (f is a black-box)

Relation to parity games

parity game
(n nodes, d priorities)
parity game
($\exp (n)$ nodes, d priorities)
fixed point evaluation (n bits, d arguments)
f of a special form
fixed point evaluation
(n bits, d arguments) arbitrary f

Parity games vs. fixed point evaluation

$$
v x_{d} \cdot \mu x_{d-1} \ldots v x_{2} \cdot \mu x_{1} \cdot f\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)
$$

For parity games:

- f is of a special form: every output bit is either AND or OR of some input bits
- the game graph can be accessed also in other ways, not only by evaluating f

Recent quasipolynomial algorithms for parity games:

- access the game graph only by evaluating f
- work for arbitrary f, not only for f coming from parity games
Ω
After a careful analysis, they give black-box algorithms for fixed point evaluation
This paper / this talk:
-Why?
- How to prove this in a nice way?

Recent results on parity games

- Calude, Jain, Khoussainov, Li, Stephan 2017
- Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
- Jurdziński, Lazić 2017
- Lehtinen 2018
asymmetric algo. complexity:
(separator approach) $\quad n \lg (d / \lg n)+O(1) \approx\left|\mathrm{U}_{\mathrm{n}, \mathrm{d}}\right|$
- Bojańczyk, Czerwiński 2018
- Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, Parys 2019
- Parys 2019
- Lehtinen, Schewe, Wojtczak 2019
- Jurdziński, Morvan 2020
symmetric algo. complexity: (recursive)

$$
\mathrm{n}^{2 \lg (d / \lg \mathrm{n})+\mathrm{O}(1)} \approx\left|\mathrm{U}_{\mathrm{n}, \mathrm{~d}}\right|^{2}
$$

- Jurdziński, Morvan, Ohlmann, Thejaswini 2020 - symmetric, in $n \lg (d / \lg n)+O(1) \approx\left|U_{n, d}\right|$
fixed point evaluation:
- Hausmann, Schröder 2019
- Hausmann, Schröder 2020

Standard exponential algorithm

Notation: $|(\Theta, f,(\mathbf{0}, \mathbf{1}))|=v x_{d} \cdot \mu x_{d-1} \ldots v x_{2} \cdot \mu x_{1} \cdot f\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)$ for $\Theta=v \mu \ldots . . \nu \mu$

$$
f^{\llcorner A}\left(x_{1}, x_{2}, \ldots, x_{d-1}\right)=f\left(x_{1}, x_{2}, \ldots, x_{d-1}, A\right)
$$

Algorithm evaluating $|(\Theta, f,(\mathbf{0}, \mathbf{1}))|$

$$
\begin{aligned}
& \text { for } \Theta=\mu \Theta^{\prime}: \\
& A_{0}=\mathbf{0} \\
& A_{j}=\mid\left(\Theta^{\prime}, f^{\left\llcorner A_{j-1},(\mathbf{0}, \mathbf{1})\right) \mid}\right. \\
& \text { return } A_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \Theta=v \Theta^{\prime}: \\
& B_{0}=\mathbf{1} \\
& B_{j}=\left|\left(\Theta^{\prime}, f^{\left\llcorner B_{j-1}\right.},(\mathbf{0}, \mathbf{1})\right)\right| \\
& \text { return } B_{n}
\end{aligned}
$$

Standard exponential algorithm

Notation: $|(\Theta, f,(\mathbf{0}, \mathbf{1}))|=v x_{d} \cdot \mu x_{d-1} \ldots v x_{2} . \mu x_{1} \cdot f\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)$ for $\Theta=v \mu \ldots \nu \mu$

$$
f^{\llcorner A}\left(x_{1}, x_{2}, \ldots, x_{d-1}\right)=f\left(x_{1}, x_{2}, \ldots, x_{d-1}, A\right)
$$

Algorithm evaluating $\mid(\Theta, f,(\mathbf{0}, \mathbf{1}) \mid$

$$
\begin{aligned}
& \text { for } \Theta=\mu \Theta^{\prime}: \\
& A_{0}=\mathbf{0} \\
& A_{j}=\mid\left(\Theta^{\prime}, f^{\left\llcorner A_{j-1},(\mathbf{0}, \mathbf{1})\right) \mid}\right. \\
& \text { return } A_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \Theta=v \Theta^{\prime}: \\
& B_{0}=\mathbf{1} \\
& B_{j}=\left|\left(\Theta^{\prime}, f^{\left\llcorner B_{j-1}\right.},(\mathbf{0}, \mathbf{1})\right)\right| \\
& \text { return } B_{n}
\end{aligned}
$$

How to make it quasipolynomial?

- do not start from $\mathbf{0}$ / 1, but from some intermediate values (restrictions)
- perform less iterations (follow a structure of some universal trees)

Restrictions

Notation: $f_{A B}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=A+B * f\left(x_{1}, x_{2}, \ldots, x_{d}\right)$

$=\mathrm{inf}$
= sup $\quad=$ bitwise AND
= bitwise OR

Restrictions

Notation: $f_{A B}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=A+B * f\left(x_{1}, x_{2}, \ldots, x_{d}\right)$

$$
|(\Theta, f,(A, B))|=v x_{d} \cdot \mu x_{d-1} \ldots v x_{2} \cdot \mu x_{1} \cdot f_{A B}\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right) \text { for } \Theta=v \mu \ldots v \mu
$$

Algorithm evaluating $|(\Theta, f,(A, B))|$
for $\Theta=\mu \Theta^{\prime}$:
$A_{0}=A$
$A_{j}=\mid\left(\Theta^{\prime}, f^{\left\llcorner A_{j-1},\left(A_{j-1}, B\right)\right) \mid}\right.$
return A_{n}

$$
\begin{aligned}
& \text { for } \Theta=v \Theta^{\prime}: \\
& B_{0}=B \\
& B_{j}=\mid\left(\Theta^{\prime}, f^{\left\llcorner B_{j-1},\left(A, B_{j-1}\right)\right) \mid}\right. \\
& \text { return } B_{n}
\end{aligned}
$$

(where $j=1,2, \ldots, n$)

B

Universal trees

A tree U (of height h) is (n, h)-universal if every tree of height h with n leaves embeds in U.

Universal trees

A tree U (of height h) is (n, h)-universal if every tree of height h with n leaves embeds in U.

Examples:

$$
\begin{gathered}
C_{n, h}= \\
C_{n, h-1}=C_{n, h-1}^{C_{n, h}} C_{n, h-1} \\
S_{[n / 2], h} \\
S_{n, h-1} \\
S_{[n / 2], h}
\end{gathered}
$$

$$
P_{n, h}=
$$

$$
\underbrace{P_{\lfloor n / 2\rfloor, h-1} \cdots P_{\lfloor n / 2\rfloor, h-1}}_{\lfloor n / 2\rfloor} \underbrace{P_{\lfloor n / 2\rfloor, h-1} \cdots P_{\lfloor n / 2\rfloor, h-1}}_{\lfloor n / 2\rfloor}
$$

Universal trees

A tree U (of height h) is (n, h)-universal if every tree of height h with n leaves embeds in U.

Examples:

$$
C_{n, h}=
$$

size n^{h}

$$
S_{n, h}=
$$

Symmetric algorithm based on universal trees

$U, V-$ (universal) trees
\approx the symmetric algorithm for parity games

Definition / Algorithm evaluating $\mid\left(\Theta,\left.f(,(A, B))\right|_{U, V} \quad\right.$ (where $j=1,2, \ldots, p$)
for $\Theta=\mu \Theta^{\prime}, U=\left\langle U_{1}, \ldots, U_{p}\right\rangle$
$A_{0}=A$
$A_{j}=\mid\left(\Theta^{\prime}, f^{\left.\left\llcorner A_{j-1},\left(A_{j-1}, B\right)\right)\right|_{U_{j}, V}}\right.$
return A_{p}
for $\Theta=v \Theta^{\prime}, V=\left\langle V_{1}, \ldots, V_{p}\right\rangle$

$$
B_{0}=B
$$

$$
B_{j}=\mid\left(\Theta^{\prime}, f^{\left.\left\llcorner B_{j-1},\left(A, B_{j-1}\right)\right)\right|_{U, V_{j}}}\right.
$$

return B_{p}

Symmetric algorithm based on universal trees

$U, V-($ universal $)$ trees
\approx the symmetric algorithm for parity games

Definition / Algorithm evaluating $|(\Theta, f,(A, B))|_{U, V} \quad$ (where $j=1,2, \ldots, p$)
for $\Theta=\mu \Theta^{\prime}, U=\left\langle U_{1}, \ldots, U_{p}\right\rangle$

$$
A_{0}=A
$$

$$
A_{j}=\left|\left(\Theta^{\prime}, f^{\left\llcorner A_{j-1}\right.},\left(A_{j-1}, B\right)\right)\right|_{U_{j}, V}
$$

return A_{p}

$$
\text { for } \Theta=v \Theta^{\prime}, V=\left\langle V_{1}, \ldots, V_{p}\right\rangle
$$

$$
B_{0}=B
$$

$$
B_{j}=\left|\left(\Theta^{\prime}, f^{\hookrightarrow B_{j-1}},\left(A, B_{j-1}\right)\right)\right|_{U, V_{j}}
$$

return B_{p}

Correctness
If U, V are $(n, d / 2)$-universal then $\mid\left(\Theta, f,\left.(\mathbf{0}, \mathbf{1})\right|_{U, V}=|(\Theta, f,(\mathbf{0}, \mathbf{1}))|\right.$.
Proof is based on:

- dominions
- dominion decomposition
adapted from parity games
[Jurdziński, Morvan 2020]

Symmetric algorithm based on universal trees

$U, V-$ (universal) trees
\approx the symmetric algorithm for parity games

Definition / Algorithm evaluating $|(\Theta, f,(A, B))|_{U, V} \quad$ (where $j=1,2, \ldots, p$)
for $\Theta=\mu \Theta^{\prime}, U=\left\langle U_{1}, \ldots, U_{p}\right\rangle$

$$
A_{0}=A
$$

$$
A_{j}=\left|\left(\Theta^{\prime}, f^{\left\llcorner A_{j-1}\right.},\left(A_{j-1}, B\right)\right)\right|_{U_{j}, V}
$$

return A_{p}
for $\Theta=v \Theta^{\prime}, V=\left\langle V_{1}, \ldots, V_{p}\right\rangle$

$$
B_{0}=B
$$

$$
B_{j}=\left|\left(\Theta^{\prime}, f^{\hookrightarrow B_{j-1}},\left(A, B_{j-1}\right)\right)\right|_{U, V_{j}}
$$

return B_{p}

Correctness

If U, V are $(n, d / 2)$-universal then $|(\Theta, f,(\mathbf{0}, \mathbf{1}))|_{U, V}=|(\Theta, f,(\mathbf{0}, \mathbf{1}))|$.
Proof is based on:

- dominions
- dominion decomposition
adapted from parity games
[Jurdziński, Morvan 2020]

Time complexity: $|\mathrm{U}| \cdot|\mathrm{V}|=\mathrm{n}^{2 \lg (\mathrm{~d} / \lg \mathrm{n})+\mathrm{O}(1)}$ (two universal trees)

- evaluate recursively time: n^{d}

Seidl '96

- create a system of least fixed point equations, and solve it time: $\mathrm{n}^{\mathrm{d} / 2+1}$
- universal trees
- restrictions
- evaluate recursively time: $n^{2 l g(d / l g n)+O(1)}$

\Downarrow

symmetric algorithm
for parity games

- universal trees
- restrictions
- create a system of least fixed point equations, and solve it
time: $n^{2 l g(d / l g n) / 2+O(1)}$
थ
asymmetric algorithm
for parity games

A lower bound (for our method)

Theorem: Fix n, d.
If $\mid\left(\Theta, f,(\mathbf{0}, \mathbf{1})\left|=|(\Theta, f,(\mathbf{0}, \mathbf{1}))|_{U, V}\right.\right.$ for all f, then U, V are ($n, d / 2$)-universal.
Corollary:
It is known that every universal tree has size at least $n \lg (\mathrm{~h} / \mathrm{lg} \mathrm{n})+\Omega(1)$ Thus our algorithm cannot work faster (using potentially some smaller tree).

A lower bound (for our method)

Theorem: Fix n, d.
If $\mid\left(\Theta, f,(\mathbf{0}, \mathbf{1})\left|=|(\Theta, f,(\mathbf{0}, \mathbf{1}))|_{U, V}\right.\right.$ for all f, then U, V are ($n, d / 2$)-universal.
Corollary:
It is known that every universal tree has size at least $n \lg (d / l \mathrm{~g} n)+\Omega(1)$ Thus our algorithm cannot work faster (using potentially some smaller tree).

Remark:

It is enough to assume equality for functions f defined by parity games (so the lower bound applies also to parity games)

Conclusions

- quasi-polynomial algorithms for fixed-point evaluation
- an abstract formulation using universal trees
- unified treatment of symmetric / asymmetric variants
- a lower bound for the method

Open problem:

- prove a (quasi-polynomial?) lower bound for the number of queries for black-box fixed point evaluation
[we only have $\Omega\left(n^{2} / \log n\right)$ - Parys 2009]

Thank you!

