A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

André Arnold, Damian Niwiński, Paweł Parys

Plan

- parity games \approx modal μ-calculus

in
 (black-box) fixed point evaluation

- quasi-polynomial algorithms for parity games
$\sqrt{\square}$
quasi-polynomial black-box algorithms for fixed point evaluation
- Our algorithm is an abstract version of recent quasi-polynomial algorithms solving parity games
- We unify two kinds of parity-games algorithms (asymmetric, symmetric) in a common framework
- Some lower bounds for the method (universal trees are needed)

Considered problem: fixed point evaluation

Compute: $v x_{d} \cdot \mu x_{d-1} \ldots v x_{2} \cdot \mu x_{1} \cdot f\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)$
where $x_{i} \in\{0,1\}^{n}$
$f:\left(\{0,1\}^{n}\right)^{d} \rightarrow\{0,1\}^{n} \quad$ monotone
access to f : only evaluation for given arguments (f is a black-box)

Considered problem: fixed point evaluation

Compute: $v x_{d} \cdot \mu x_{d-1} \ldots v x_{2} \cdot \mu x_{1} \cdot f\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)$
where $x_{i} \in\{0,1\}^{n}$

$$
f:\left(\{0,1\}^{n}\right)^{d} \rightarrow\{0,1\}^{n} \quad \text { monotone }
$$

access to f : only evaluation for given arguments (f is a black-box)

Relation to parity games

parity game
(n nodes, d priorities)
parity game
($\exp (n)$ nodes, d priorities)
fixed point evaluation (n bits, d arguments)
f of a special form
fixed point evaluation
(n bits, d arguments) arbitrary f

Considered problem: fixed point evaluation

Compute: $v x_{d} \cdot \mu x_{d-1} \ldots v x_{2} \cdot \mu x_{1} \cdot f\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)$ $f:\left(\{0,1\}^{n}\right)^{d} \rightarrow\{0,1\}^{n} \quad$ monotone

Relation to parity games

parity game

 (n nodes, d priorities)$x_{i} \subseteq V$
f describes a game:

$f\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)$ returns nodes from which Eve can reach in one step:

- a node in x_{1} via an edge of priority 1 , or
- a node in x_{2} via an edge of priority 2 , or

Then $v x_{d} \cdot \mu x_{d-1} \ldots v x_{2} \cdot \mu x_{1} \cdot f\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)$ is the set of nodes where Eve wins the parity game

Parity games vs. fixed point evaluation

$$
v x_{d} \cdot \mu x_{d-1} \ldots v x_{2} \cdot \mu x_{1} \cdot f\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)
$$

For parity games:

- f is of a special form: every output bit is either AND or OR of some input bits
- the game graph can be accessed also in other ways, not only by evaluating f

Recent quasipolynomial algorithms for parity games:

- access the game graph only by evaluating f
- work for arbitrary f, not only for f coming from parity games
Ω
After a careful analysis, they give black-box algorithms for fixed point evaluation
This paper / this talk:
-Why?
- How to prove this in a nice way?

Recent results on parity games

- Calude, Jain, Khoussainov, Li, Stephan 2017
- Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
- Jurdziński, Lazić 2017
- Lehtinen 2018
asymmetric algo. complexity:
(separator approach) $\quad n \lg (d / \lg n)+O(1) \approx\left|U_{n, d}\right|$
- Bojańczyk, Czerwiński 2018
- Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, Parys 2019
- Parys 2019
- Lehtinen, Schewe, Wojtczak 2019
- Jurdziński, Morvan 2020
symmetric algo. complexity: (recursive)

$$
\mathrm{n}^{2 \lg (d / \lg \mathrm{n})+\mathrm{O}(1)} \approx\left|\mathrm{U}_{\mathrm{n}, \mathrm{~d}}\right|^{2}
$$

- Jurdziński, Morvan, Ohlmann, Thejaswini 2020 - symmetric, in $n \lg (d / \lg n)+O(1) \approx\left|U_{n, d}\right|$
fixed point evaluation:
- Hausmann, Schröder 2019
- Hausmann, Schröder 2020

Standard exponential algorithm

Notation: $|(\Theta, f,(\mathbf{0}, \mathbf{1}))|=v x_{d} \cdot \mu x_{d-1} \ldots v x_{2} \cdot \mu x_{1} \cdot f\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)$ for $\Theta=v \mu \ldots . . \nu \mu$

$$
f^{\llcorner A}\left(x_{1}, x_{2}, \ldots, x_{d-1}\right)=f\left(x_{1}, x_{2}, \ldots, x_{d-1}, A\right)
$$

Algorithm evaluating $|(\Theta, f,(\mathbf{0}, \mathbf{1}))|$

$$
\begin{aligned}
& \text { for } \Theta=\mu \Theta^{\prime}: \\
& A_{0}=\mathbf{0} \\
& A_{j}=\mid\left(\Theta^{\prime}, f^{\left\llcorner A_{j-1},(\mathbf{0}, \mathbf{1})\right) \mid}\right. \\
& \text { return } A_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \Theta=v \Theta^{\prime}: \\
& B_{0}=\mathbf{1} \\
& B_{j}=\left|\left(\Theta^{\prime}, f^{\left\llcorner B_{j-1}\right.},(\mathbf{0}, \mathbf{1})\right)\right| \\
& \text { return } B_{n}
\end{aligned}
$$

Standard exponential algorithm

Notation: $|(\Theta, f,(\mathbf{0}, \mathbf{1}))|=v x_{d} \cdot \mu x_{d-1} \ldots v x_{2} . \mu x_{1} \cdot f\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)$ for $\Theta=v \mu \ldots \nu \mu$

$$
f^{\llcorner A}\left(x_{1}, x_{2}, \ldots, x_{d-1}\right)=f\left(x_{1}, x_{2}, \ldots, x_{d-1}, A\right)
$$

Algorithm evaluating $\mid(\Theta, f,(\mathbf{0}, \mathbf{1}) \mid$

$$
\begin{aligned}
& \text { for } \Theta=\mu \Theta^{\prime}: \\
& A_{0}=\mathbf{0} \\
& A_{j}=\mid\left(\Theta^{\prime}, f^{\left\llcorner A_{j-1},(\mathbf{0}, \mathbf{1})\right) \mid}\right. \\
& \text { return } A_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \Theta=v \Theta^{\prime}: \\
& B_{0}=\mathbf{1} \\
& B_{j}=\left|\left(\Theta^{\prime}, f^{\left\llcorner B_{j-1}\right.},(\mathbf{0}, \mathbf{1})\right)\right| \\
& \text { return } B_{n}
\end{aligned}
$$

How to make it quasipolynomial?

- do not start from $\mathbf{0}$ / 1, but from some intermediate values (restrictions)
- perform less iterations (follow a structure of some universal trees)

Restrictions

Notation: $f_{A B}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=A+B * f\left(x_{1}, x_{2}, \ldots, x_{d}\right)$

$=\mathrm{inf}$
= sup $\quad=$ bitwise AND
= bitwise OR

Restrictions

Notation: $f_{A B}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=A+B * f\left(x_{1}, x_{2}, \ldots, x_{d}\right)$

$$
|(\Theta, f,(A, B))|=v x_{d} \cdot \mu x_{d-1} \ldots v x_{2} \cdot \mu x_{1} \cdot f_{A B}\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right) \text { for } \Theta=v \mu \ldots v \mu
$$

Algorithm evaluating $|(\Theta, f,(A, B))|$
for $\Theta=\mu \Theta^{\prime}$:
$A_{0}=A$
$A_{j}=\mid\left(\Theta^{\prime}, f^{\left\llcorner A_{j-1},\left(A_{j-1}, B\right)\right) \mid}\right.$
return A_{n}

$$
\begin{aligned}
& \text { for } \Theta=v \Theta^{\prime}: \\
& B_{0}=B \\
& B_{j}=\mid\left(\Theta^{\prime}, f^{\left\llcorner B_{j-1},\left(A, B_{j-1}\right)\right) \mid}\right. \\
& \text { return } B_{n}
\end{aligned}
$$

(where $j=1,2, \ldots, n$)

B

Universal trees

A tree U (of height h) is (n, h)-universal if every tree of height h with n leaves embeds in U.

Universal trees

A tree U (of height h) is (n, h)-universal if every tree of height h with n leaves embeds in U.

Examples:

$$
\begin{gathered}
C_{n, h}= \\
C_{n, h-1}=C_{n, h-1}^{C_{n, h}} C_{n, h-1} \\
S_{[n / 2], h} \\
S_{n, h-1} \\
S_{[n / 2], h}
\end{gathered}
$$

$$
P_{n, h}=
$$

$$
\underbrace{P_{\lfloor n / 2\rfloor, h-1} \cdots P_{\lfloor n / 2\rfloor, h-1}}_{\lfloor n / 2\rfloor} \underbrace{P_{\lfloor n / 2\rfloor, h-1} \cdots P_{\lfloor n / 2\rfloor, h-1}}_{\lfloor n / 2\rfloor}
$$

Universal trees

A tree U (of height h) is (n, h)-universal if every tree of height h with n leaves embeds in U.

Examples:

$$
C_{n, h}=
$$

size n^{h}

$$
S_{n, h}=
$$

Symmetric algorithm based on universal trees

$U, V-$ (universal) trees
\approx the symmetric algorithm for parity games

Definition / Algorithm evaluating $\mid\left(\Theta,\left.f(,(A, B))\right|_{U, V} \quad\right.$ (where $j=1,2, \ldots, p$)
for $\Theta=\mu \Theta^{\prime}, U=\left\langle U_{1}, \ldots, U_{p}\right\rangle$
$A_{0}=A$
$A_{j}=\mid\left(\Theta^{\prime}, f^{\left.\left\llcorner A_{j-1},\left(A_{j-1}, B\right)\right)\right|_{U_{j}, V}}\right.$
return A_{p}
for $\Theta=v \Theta^{\prime}, V=\left\langle V_{1}, \ldots, V_{p}\right\rangle$

$$
B_{0}=B
$$

$$
B_{j}=\mid\left(\Theta^{\prime}, f^{\left.\left\llcorner B_{j-1},\left(A, B_{j-1}\right)\right)\right|_{U, V_{j}}}\right.
$$

return B_{p}

Symmetric algorithm based on universal trees

$U, V-($ universal $)$ trees
\approx the symmetric algorithm for parity games

Definition / Algorithm evaluating $|(\Theta, f,(A, B))|_{U, V} \quad$ (where $j=1,2, \ldots, p$)
for $\Theta=\mu \Theta^{\prime}, U=\left\langle U_{1}, \ldots, U_{p}\right\rangle$

$$
A_{0}=A
$$

$$
A_{j}=\left|\left(\Theta^{\prime}, f^{\left\llcorner A_{j-1}\right.},\left(A_{j-1}, B\right)\right)\right|_{U_{j}, V}
$$

return A_{p}

$$
\text { for } \Theta=v \Theta^{\prime}, V=\left\langle V_{1}, \ldots, V_{p}\right\rangle
$$

$$
B_{0}=B
$$

$$
B_{j}=\left|\left(\Theta^{\prime}, f^{\hookrightarrow B_{j-1}},\left(A, B_{j-1}\right)\right)\right|_{U, V_{j}}
$$

return B_{p}

Correctness
If U, V are $(n, d / 2)$-universal then $\mid\left(\Theta, f,\left.(\mathbf{0}, \mathbf{1})\right|_{U, V}=|(\Theta, f,(\mathbf{0}, \mathbf{1}))|\right.$.
Proof is based on:

- dominions
- dominion decomposition
adapted from parity games
[Jurdziński, Morvan 2020]

Symmetric algorithm based on universal trees

$U, V-$ (universal) trees
\approx the symmetric algorithm for parity games

Definition / Algorithm evaluating $|(\Theta, f,(A, B))|_{U, V} \quad$ (where $j=1,2, \ldots, p$)
for $\Theta=\mu \Theta^{\prime}, U=\left\langle U_{1}, \ldots, U_{p}\right\rangle$

$$
A_{0}=A
$$

$$
A_{j}=\left|\left(\Theta^{\prime}, f^{\left\llcorner A_{j-1}\right.},\left(A_{j-1}, B\right)\right)\right|_{U_{j}, V}
$$

return A_{p}
for $\Theta=v \Theta^{\prime}, V=\left\langle V_{1}, \ldots, V_{p}\right\rangle$

$$
B_{0}=B
$$

$$
B_{j}=\left|\left(\Theta^{\prime}, f^{\hookrightarrow B_{j-1}},\left(A, B_{j-1}\right)\right)\right|_{U, V_{j}}
$$

return B_{p}

Correctness

If U, V are $(n, d / 2)$-universal then $|(\Theta, f,(\mathbf{0}, \mathbf{1}))|_{U, V}=|(\Theta, f,(\mathbf{0}, \mathbf{1}))|$.
Proof is based on:

- dominions
- dominion decomposition
adapted from parity games
[Jurdziński, Morvan 2020]

Time complexity: $|\mathrm{U}| \cdot|\mathrm{V}|=\mathrm{n}^{2 \lg (\mathrm{~d} / \lg \mathrm{n})+\mathrm{O}(1)}$ (two universal trees)

- evaluate recursively time: n^{d}

Seidl '96

- create a system of least fixed point equations, and solve it time: $\mathrm{n}^{\mathrm{d} / 2+1}$
- universal trees
- restrictions
- evaluate recursively time: $n^{2 l g(d / l g n)+O(1)}$

\Downarrow

symmetric algorithm
for parity games

- universal trees
- restrictions
- create a system of least fixed point equations, and solve it
time: $n^{2 l g(d / l g n) / 2+O(1)}$
थ
asymmetric algorithm
for parity games

Asymmetric algorithm (Seidl's idea, 1996)

[exponential version]

Algorithm evaluating $|(\Theta, f,(A, B))|$
for $\Theta=\mu \Theta^{\prime}$:
create equation:
$x=\left|\left(\Theta^{\prime}, f^{\breve{ } x},(A, B)\right)\right|$
return x
(where x is a fresh variable)
(where $j=1,2, \ldots, n$)

$$
\text { for } \Theta=v \Theta^{\prime}:
$$

create equations:
$B_{0}=B$
$B_{j}=\left|\left(\Theta^{\prime}, f^{\left\llcorner B_{j-1},\right.},(A, B)\right)\right|$
return B_{n}
(where $B_{0}, B_{1}, \ldots, B_{n}$ are fresh variables)
the result is: $\mu x .\left|\left(\Theta^{\prime}, f^{\measuredangle x},(A, B)\right)\right|_{V}$

We obtain a system of least fixed point equations (only μ) of size $n^{d / 2}$. It can be solved in linear time.

Asymmetric algorithm based on universal trees

V - (universal) tree

Definition of $|(\Theta, f,(A, B))|_{V}$
for $\Theta=\mu \Theta^{\prime}$
return $\mu x .\left|\left(\Theta^{\prime}, f^{\llcorner x},(A, B)\right)\right|_{V}$

$$
\begin{aligned}
& \text { for } \Theta=v \Theta^{\prime}, V=\left\langle V_{1}, \ldots, V_{p}\right\rangle \\
& B_{0}=B \\
& B_{j}=\left|\left(\Theta^{\prime}, f^{\hookrightarrow B_{j-1}},\left(A, B_{j-1}\right)\right)\right|_{V_{j}} \\
& \text { return } B_{p}
\end{aligned}
$$

Asymmetric algorithm based on universal trees

V - (universal) tree
\approx the asymmetric algorithm for parity games

Algorithm evaluating $|(\Theta, f,(A, B))|_{V}$
for $\Theta=\mu \Theta^{\prime}$
create equation:
$x=\left|\left(\Theta^{\prime}, f^{\llcorner x},(A, B)\right)\right|_{V}$
return x
(where x is a fresh variable)

$$
\begin{aligned}
& \text { for } \Theta=v \Theta^{\prime}, V=\left\langle V_{1}, \ldots, V_{p}\right\rangle \\
& \text { create equations: } j=1,2, \ldots, p) \\
& B_{0}=B \\
& B_{j}=\left|\left(\Theta^{\prime}, f^{\hookrightarrow B_{j-1}},\left(A, B_{j-1}\right)\right)\right|_{V_{j}} \\
& \text { return } B_{p}
\end{aligned}
$$

(where $B_{0}, B_{1}, \ldots, B_{p}$ are fresh variables)

We obtain a system of least fixed point equations (only μ) of size $|V|=n \lg (\mathrm{~d} / \lg \mathrm{n})+\mathrm{O}(1)$.
It can be solved in linear time.

Correctness (of the symmetric variant)

Sup-dominion for $(\Theta, f,(A, B))$: a value D such that $D=|(\Theta, f,(A, D))|$ intuition: one can prove that $|(\Theta, f,(A, B))| \geq D$ without looking for bits outside of D
(like in parity games: Even can win from D without going outside of D)

Correctness (of the symmetric variant)

Sup-dominion for $(\Theta, f,(A, B))$: a value D such that $D=|(\Theta, f,(A, D))|$ intuition: one can prove that $|(\Theta, f,(A, B))| \geq D$ without looking for bits outside of D
(like in parity games: Even can win from D without going outside of D)
Sup-dominion decomposition for ($\Theta, f,(A, B)$)
a pair (D, H) such that D is a dominion for $(\Theta, f,(A, B))$ and if $\Theta=\mu \Theta^{\prime}$ then
$H=\left\langle\left(D_{1}, H_{1}\right), \ldots,\left(D_{k}, H_{k}\right)\right\rangle$ s.t. $D_{k}=D$ and for $D_{0}=A$
every $\left(D_{i}, H_{i}\right)$ is a sup-dominion decomposition for ($\Theta^{\prime}, f^{\left\llcorner D_{i-1}\right.},\left(D_{i-1}, D\right)$) if $\Theta=v \Theta^{\prime}$ then
(D, H) is a sup-dominion decomposition for $\left(\Theta^{\prime}, f^{\llcorner D},(A, D)\right)$
$\left.\left.\left.\left.\left(D,\left\langle\left(D_{1},\left\langle\left(D_{1,1},\langle \rangle\right),\left(D_{1,2},\right\rangle\right\rangle\right),\left(D_{1,3},\langle \rangle\right\rangle\right)\right),\left(D_{2},\left\langle\left(D_{2,1},\right\rangle\right\rangle\right),\left(D_{2,2},\langle \rangle\right\rangle\right\rangle\right)\right\rangle\right)$

Correctness (of the symmetric variant)

Theorem: If U, V are $(n, d / 2)$-universal, then $|(\Theta, f,(A, B))|=|(\Theta, f,(A, B))|_{U, V}$

Correctness (of the symmetric variant)

Theorem: If U, V are $(n, d / 2)$-universal, then $|(\Theta, f,(A, B))|=|(\Theta, f,(A, B))|_{U, V}$

Technical lemma: If $\mathrm{A} \leq \mathrm{C} \leq|(\Theta, f,(A, B))| \leq D \leq B$ then $|(\Theta, f,(A, B))|=|(\Theta, f,(C, D))|$

Proof: definition + induction

Correctness (of the symmetric variant)

Theorem: If U, V are $(n, d / 2)$-universal, then
$|(\Theta, f,(A, B))|=|(\Theta, f,(A, B))|_{U, V}$
Proof

- $D=|(\Theta, f,(A, B))|$ is a sup-dominion
- Lemma 1: every sup-dominion D has a sup-dominion decomposition (D, H)
- It has a shape of a tree T_{H} of height $d / 2$ with at most n leaves
- Lemma 2: if (D, H) is a sup-dominion decomposition for $|(\Theta, f,(A, B))|$ then $D \leq|(\Theta, f,(A, B))|_{T_{H} V}$ for every V
- If T embeds in U then $\mid\left(\Theta, f,\left.(A, B)\right|_{T, V} \leq|(\Theta, f,(A, B))|_{U, V}\right.$
- + other side - by symmetry

Technical lemma: If $\mathrm{A} \leq \mathrm{C} \leq|(\Theta, f,(A, B))| \leq D \leq B$ then

$$
|(\Theta, f,(A, B))|=|(\Theta, f,(C, D))|
$$

Proof: definition + induction

Correctness (of the symmetric variant)

Lemma 1: Every sup-dominion D has a sup-dominion decomposition (D, H)

Proof

Assumption: D is a sup-dominion for ($\Theta, f,(A, B)$)
Case $\Theta=v \Theta^{\prime}$

- [by definition: decomposition for $(\Theta, f,(A, B))=$ decomposition for $\left.\left(\Theta^{\prime}, f^{\llcorner D},(A, D)\right)\right]$
- immediate: D is also a sup-dominion for $\left(\Theta^{\prime}, f^{\llcorner D},(A, D)\right) \rightarrow$ we can use I.H.

Correctness (of the symmetric variant)

Lemma 1: Every sup-dominion D has a sup-dominion decomposition (D, H)

Proof

Assumption: D is a sup-dominion for ($\Theta, f,(A, B)$)
Case $\Theta=v \Theta^{\prime}$

- [by definition: decomposition for $(\Theta, f,(A, B))=$ decomposition for $\left.\left(\Theta^{\prime}, f^{\llcorner D},(A, D)\right)\right]$
- immediate: D is also a sup-dominion for $\left(\Theta^{\prime}, f^{\llcorner D},(A, D)\right) \rightarrow$ we can use I.H.

Case $\Theta=\mu \Theta^{\prime}$

- [by definition: we need $\left(D_{1}, H_{1}\right), . .,\left(D_{k}, H_{k}\right)$ s.t. $D_{k}=D$ and for $D_{0}=A$ every $\left(D_{i}, H_{i}\right)$ is a sup-dominion decomposition for $\left.\left(\Theta^{\prime}, f^{\left\llcorner D_{i-1},\right.}\left(D_{i-1}, B\right)\right)\right]$
- We take $D_{i}=\left|\left(\Theta^{\prime}, f^{\left\llcorner D_{i-1}\right.},\left(D_{i-1}, D\right)\right)\right|$ as long as $D_{i}<D$
- We construct decompositions H_{i} using I.H.

Correctness (of the symmetric variant)

Lemma 1: Every sup-dominion D has a sup-dominion decomposition (D, H)

Proof

Assumption: D is a sup-dominion for ($\Theta, f,(A, B)$)
Case $\Theta=v \Theta^{\prime}$

- [by definition: decomposition for $(\Theta, f,(A, B))=$ decomposition for $\left.\left(\Theta^{\top}, f^{\llcorner D},(A, D)\right)\right]$
- immediate: D is also a sup-dominion for $\left(\Theta^{\prime}, f^{\llcorner D},(A, D)\right) \rightarrow$ we can use I.H.

Case $\Theta=\mu \Theta^{\prime}$

- [by definition: we need $\left(D_{1}, H_{1}\right), . .,\left(D_{k}, H_{k}\right)$ s.t. $D_{k}=D$ and for $D_{0}=A$ every $\left(D_{i}, H_{i}\right)$ is a sup-dominion decomposition for ($\Theta^{\prime}, f^{\left\llcorner D_{i-1},\right.}\left(D_{i-1}, B\right)$)]
- We take $D_{i}=\left|\left(\Theta^{\prime}, f^{\left\llcorner D_{i-1}\right.},\left(D_{i-1}, D\right)\right)\right|$ as long as $D_{i}<D$
- We construct decompositions H_{i} using I.H.

Lemma 2: If (D, H) is a sup-dominion decomposition for $|(\Theta, f,(A, B))|$ then $D \leq|(\Theta, f,(A, B))|_{T_{H} V}$ for every V
Proof: definitions + induction

A lower bound (for our method)

Theorem: Fix n, d.
If $|(\Theta, f,(\mathbf{0}, \mathbf{1}))|=|(\Theta, f,(\mathbf{0}, \mathbf{1}))|_{U, V}$ for all f, then U, V are ($n, d / 2$)-universal.
If $|(\Theta, f,(\mathbf{0}, \mathbf{1}))|=|(\Theta, f,(\mathbf{0}, \mathbf{1}))|_{V}$ for all f, then V is $(n, d / 2)$-universal.

Corollary:
It is known that every universal tree has size at least $n \lg (\mathrm{~h} / \lg \mathrm{n})+\Omega(1)$
Thus our algorithm cannot work faster (using potentially some smaller tree).

A lower bound (for our method)

Theorem: Fix n, d.
If $|(\Theta, f,(\mathbf{0}, \mathbf{1}))|=|(\Theta, f,(\mathbf{0}, \mathbf{1}))|_{U, V}$ for all f, then U, V are ($n, d / 2$)-universal.
If $|(\Theta, f,(\mathbf{0}, \mathbf{1}))|=|(\Theta, f,(\mathbf{0}, \mathbf{1}))|_{V}$ for all f, then V is $(n, d / 2)$-universal.

Corollary:
It is known that every universal tree has size at least $n \lg (\mathrm{~h} / \lg \mathrm{n})+\Omega(1)$
Thus our algorithm cannot work faster (using potentially some smaller tree).

Remark:

It is enough to assume equality for functions f defined by parity games (so the lower bound applies also to parity games)

A lower bound (for our method)

Theorem: Fix n, d.
If $|(\Theta, f,(\mathbf{0}, \mathbf{1}))|=|(\Theta, f,(\mathbf{0}, \mathbf{1}))|_{U, V}$ for all f, then U, V are ($n, d / 2$)-universal.
If $|(\Theta, f,(\mathbf{0}, \mathbf{1}))|=|(\Theta, f,(\mathbf{0}, \mathbf{1}))|_{V}$ for all f, then V is $(n, d / 2)$-universal.

Corollary:
It is known that every universal tree has size at least $n \lg (\mathrm{~d} / \mathrm{lg} \mathrm{n})+\Omega(1)$
Thus our algorithm cannot work faster (using potentially some smaller tree).

Remark:

It is enough to assume equality for functions f defined by parity games (so the lower bound applies also to parity games)

Proof idea:
By contradiction: If some T (with n leaves) does not embed in U, then we can construct f such that the only sup-dominion decomposition has shape T. For this f the algorithms does not work.

Conclusions

- quasi-polynomial algorithms for fixed-point evaluation
- an abstract formulation using universal trees
- unified treatment of symmetric / asymmetric variants
- a lower bound for the method

Open problem:

- prove a (quasi-polynomial?) lower bound for the number of queries for black-box fixed point evaluation
[we only have $\Omega\left(n^{2} / \log n\right)$ - Parys 2009]

Thank you!

