

A Quasi-Polynomial Black-Box Algorithm
for Fixed Point Evaluation

André Arnold, Damian Niwiński, Paweł Parys

CSL 2021

Plan
● parity games ≈ modal m-calculus

(black-box) fixed point evaluation

● quasi-polynomial algorithms for parity games

quasi-polynomial black-box algorithms for fixed point evaluation

● Our algorithm is an abstract version of recent quasi-polynomial
algorithms solving parity games

● We unify two kinds of parity-games algorithms (asymmetric,
symmetric) in a common framework

● Some lower bounds for the method (universal trees are needed)

⊆

Considered problem: fixed point evaluation

Compute: nxd.mxd-1…nx2.mx1.f(x1,x2,...,xd-1,xd)

where xi ∈ {0,1}n

f : ({0,1}n)d→ {0,1}n monotone

access to f: only evaluation for given arguments (f is a black-box)

Considered problem: fixed point evaluation

Compute: nxd.mxd-1…nx2.mx1.f(x1,x2,...,xd-1,xd)

where xi ∈ {0,1}n

f : ({0,1}n)d→ {0,1}n monotone

access to f: only evaluation for given arguments (f is a black-box)

Relation to parity games

parity game
(n nodes, d priorities)

fixed point evaluation
(n bits, d arguments)

f of a special form

parity game
(exp(n) nodes, d priorities)

fixed point evaluation
(n bits, d arguments)

arbitrary f

Considered problem: fixed point evaluation

Compute: nxd.mxd-1…nx2.mx1.f(x1,x2,...,xd-1,xd)
f : ({0,1}n)d→ {0,1}n monotone

Relation to parity games

xi ⊆ V
f describes a game:
f(x1,x2,...,xd-1,xd) returns nodes from which Eve can reach in one step:
● a node in x1 via an edge of priority 1, or
● a node in x2 via an edge of priority 2, or
● …

Then nxd.mxd-1…nx2.mx1.f(x1,x2,...,xd-1,xd) is the set of nodes where Eve wins
the parity game

2

1

24
5

6

7

f(x1,x2)[4] = x1[7]∨x2[5]∨x2[6]

parity game
(n nodes, d priorities)

fixed point evaluation
(n bits, d arguments)

f of a special form

Parity games vs. fixed point evaluation

nxd.mxd-1…nx2.mx1.f(x1,x2,...,xd-1,xd)

For parity games:
● f is of a special form: every output bit is either AND or OR of some input bits
● the game graph can be accessed also in other ways, not only by evaluating f

Recent quasipolynomial algorithms for parity games:
● access the game graph only by evaluating f
● work for arbitrary f, not only for f coming from parity games

After a careful analysis, they give black-box algorithms for fixed point evaluation

This paper / this talk:
● Why?
● How to prove this in a nice way?

Recent results on parity games
● Calude, Jain, Khoussainov, Li, Stephan 2017
● Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
● Jurdziński, Lazić 2017
● Lehtinen 2018

● Parys 2019
● Lehtinen, Schewe, Wojtczak 2019
● Jurdziński, Morvan 2020

● Jurdziński, Morvan, Ohlmann, Thejaswini 2020 – symmetric, in nlg(d/lg n)+O(1) ≈ |Un,d|

fixed point evaluation:
● Hausmann, Schröder 2019
● Hausmann, Schröder 2020

asymmetric algo.
(separator approach)

complexity:
nlg(d/lg n)+O(1) ≈ |Un,d|

● Bojańczyk, Czerwiński 2018
● Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, Parys 2019

symmetric algo.
(recursive)

complexity:
n2lg(d/lg n)+O(1) ≈ |Un,d|2

(blue = after writing this paper)

Standard exponential algorithm

Notation: |(Q,f,(0,1))|=nxd.mxd-1…nx2.mx1.f(x1,x2,...,xd-1,xd) for Q=nm...nm

f ↳A(x1,x2,...,xd-1) = f (x1,x2,...,xd-1,A)

 for Q=n Q’:
B0= 1

Bj = |(Q’,f ↳Bj-1,(0,1))|
return Bn

(where j=1,2,…,n) Algorithm evaluating |(Q,f,(0,1))|
 for Q=m Q’:

A0= 0

Aj = |(Q’,f ↳Aj-1,(0,1))|
return An

Standard exponential algorithm

Notation: |(Q,f,(0,1))|=nxd.mxd-1…nx2.mx1.f(x1,x2,...,xd-1,xd) for Q=nm...nm

f ↳A(x1,x2,...,xd-1) = f (x1,x2,...,xd-1,A)

 for Q=n Q’:
B0= 1

Bj = |(Q’,f ↳Bj-1,(0,1))|
return Bn

(where j=1,2,…,n)

How to make it quasipolynomial?
● do not start from 0 / 1, but from some intermediate values (restrictions)
● perform less iterations (follow a structure of some universal trees)

Algorithm evaluating |(Q,f,(0,1))|
 for Q=m Q’:

A0= 0

Aj = |(Q’,f ↳Aj-1,(0,1))|
return An

Restrictions

Notation: fAB(x1,x2,...,xd) = A + B * f (x1,x2,...,xd)
A≤B

= sup
= bitwise OR

= inf
= bitwise AND

A

B

fAB

Restrictions

Notation: fAB(x1,x2,...,xd) = A + B * f (x1,x2,...,xd)
|(Q,f,(A,B))|=nxd.mxd-1…nx2.mx1.fAB(x1,x2,...,xd-1,xd) for Q=nm...nm

 for Q=n Q’:
B0= B

Bj = |(Q’,f ↳Bj-1,(A,Bj-1))|
return Bn

(where j=1,2,…,n) Algorithm evaluating |(Q,f,(A,B))|
 for Q=m Q’:

A0= A

Aj = |(Q’,f ↳Aj-1,(Aj-1,B))|
return An

A≤B

A

B

fAB

Universal trees

A tree U (of height h) is (n,h)-universal if every tree of height h with n leaves
embeds in U.

(2,2)-universal

Universal trees

A tree U (of height h) is (n,h)-universal if every tree of height h with n leaves
embeds in U.

(2,2)-universal

Examples:

Cn,h =

Cn,h-1Cn,h-1Cn,h-1

...

n

Pn,h =

P⌊n/2⌋,h-1 P⌊n/2⌋,h-1
...

Pn,h-1
P⌊n/2⌋,h-1 P⌊n/2⌋,h-1

...

⌊n/2⌋ ⌊n/2⌋

Sn,h =
S⌊n/2⌋,h

Sn,h-1

S⌊n/2⌋,h

Universal trees

A tree U (of height h) is (n,h)-universal if every tree of height h with n leaves
embeds in U.

(2,2)-universal

Examples:

Cn,h =

Cn,h-1Cn,h-1Cn,h-1

...

n

Pn,h =

P⌊n/2⌋,h-1 P⌊n/2⌋,h-1
...

Pn,h-1
P⌊n/2⌋,h-1 P⌊n/2⌋,h-1

...

⌊n/2⌋ ⌊n/2⌋

Sn,h =
S⌊n/2⌋,h

Sn,h-1

S⌊n/2⌋,h

size nlg(h/lg n)+O(1)

size nlg n + lg(h/lg n)+O(1)

size nh

U,V – (universal) trees

 for Q=n Q’, V=〈V1,...,Vp〉

B0= B

Bj = |(Q’,f ↳Bj-1,(A,Bj-1))|U,Vj

return Bp

(where j=1,2,…,p) Definition / Algorithm evaluating |(Q,f,(A,B))|U,V

 for Q=m Q’, U=〈U1,...,Up〉
A0= A

Aj = |(Q’,f ↳Aj-1,(Aj-1,B))|Uj,V

return Ap

Symmetric algorithm based on universal trees
≈ the symmetric algorithm for parity games

U,V – (universal) trees

 for Q=n Q’, V=〈V1,...,Vp〉

B0= B

Bj = |(Q’,f ↳Bj-1,(A,Bj-1))|U,Vj

return Bp

(where j=1,2,…,p) Definition / Algorithm evaluating |(Q,f,(A,B))|U,V

 for Q=m Q’, U=〈U1,...,Up〉
A0= A

Aj = |(Q’,f ↳Aj-1,(Aj-1,B))|Uj,V

return Ap

Symmetric algorithm based on universal trees
≈ the symmetric algorithm for parity games

Correctness
If U,V are (n,d/2)-universal then |(Q,f,(0,1))|U,V = |(Q,f,(0,1))|.
Proof is based on:
● dominions
● dominion decomposition

adapted from parity games
[Jurdziński, Morvan 2020]

U,V – (universal) trees

 for Q=n Q’, V=〈V1,...,Vp〉

B0= B

Bj = |(Q’,f ↳Bj-1,(A,Bj-1))|U,Vj

return Bp

(where j=1,2,…,p) Definition / Algorithm evaluating |(Q,f,(A,B))|U,V

 for Q=m Q’, U=〈U1,...,Up〉
A0= A

Aj = |(Q’,f ↳Aj-1,(Aj-1,B))|Uj,V

return Ap

Symmetric algorithm based on universal trees
≈ the symmetric algorithm for parity games

Correctness
If U,V are (n,d/2)-universal then |(Q,f,(0,1))|U,V = |(Q,f,(0,1))|.
Proof is based on:
● dominions
● dominion decomposition

Time complexity: |U|.|V| = n2lg(d/lg n)+O(1)

(two universal trees)

adapted from parity games
[Jurdziński, Morvan 2020]

Asymmetric algorithm (Seidl’s idea, 1996)

● evaluate recursively
time: nd

● create a system of least fixed point
equations, and solve it

time: nd/2+1

Seidl ‘96

● universal trees
● restrictions
● evaluate recursively

time: n2lg(d/lg n)+O(1)

● universal trees
● restrictions
● create a system of least fixed point

equations, and solve it
time: n2lg(d/lg n)/2+O(1)

symmetric algorithm
for parity games

≈

asymmetric algorithm
for parity games

≈

Asymmetric algorithm (Seidl’s idea, 1996)

[exponential version]

 for Q=n Q’:
create equations:
B0= B

Bj = |(Q’,f ↳Bj-1,(A,B))|
return Bn

 (where B0,B1,…,Bn are fresh variables)

(where j=1,2,…,n) Algorithm evaluating |(Q,f,(A,B))|
 for Q=m Q’:

create equation:
x = |(Q’,f ↳x,(A,B))|
return x

(where x is a fresh variable)

the result is: mx.|(Q’,f ↳x,(A,B))|V

We obtain a system of least fixed point equations (only m) of size nd/2.
It can be solved in linear time.

Asymmetric algorithm based on universal trees

V – (universal) tree

 for Q=n Q’, V=〈V1,...,Vp〉

B0= B

Bj = |(Q’,f ↳Bj-1,(A,Bj-1))|Vj

return Bp

(where j=1,2,…,p) Definition of |(Q,f,(A,B))|V
 for Q=m Q’

return mx.|(Q’,f ↳x,(A,B))|V

Asymmetric algorithm based on universal trees

V – (universal) tree

 for Q=n Q’, V=〈V1,...,Vp〉

create equations:
B0= B

Bj = |(Q’,f ↳Bj-1,(A,Bj-1))|Vj

return Bp

 (where B0,B1,…,Bp are fresh variables)

(where j=1,2,…,p) Algorithm evaluating |(Q,f,(A,B))|V
 for Q=m Q’

create equation:
x = |(Q’,f ↳x,(A,B))|V
return x

(where x is a fresh variable)

≈ the asymmetric algorithm for parity games

We obtain a system of least fixed point equations (only m) of size
|V|=nlg(d/lg n)+O(1).
It can be solved in linear time.

Correctness (of the symmetric variant)

Sup-dominion for (Q,f,(A,B)): a value D such that D=|(Q,f,(A,D))|
intuition: one can prove that |(Q,f,(A,B))|≥D without looking for bits outside of D

(like in parity games: Even can win from D without going outside of D)

Correctness (of the symmetric variant)

Sup-dominion for (Q,f,(A,B)): a value D such that D=|(Q,f,(A,D))|
intuition: one can prove that |(Q,f,(A,B))|≥D without looking for bits outside of D

(like in parity games: Even can win from D without going outside of D)

Sup-dominion decomposition for (Q,f,(A,B))
a pair (D,H) such that D is a dominion for (Q,f,(A,B)) and
 if Q=m Q’ then

H=〈(D1,H1),..,(Dk,Hk)〉 s.t. Dk=D and for D0=A

every (Di,Hi) is a sup-dominion decomposition for (Q’,f ↳Di-1,(Di-1,D))
 if Q=n Q’ then

(D,H) is a sup-dominion decomposition for (Q’,f ↳D,(A,D))

A=D0=D1,0

D1,1

D1,2

D1,3=D1=D2,0

D2,1

D2,2=D2=D

(D,〈(D1,〈(D1,1,〈〉),(D1,2,〈〉),(D1,3,〈〉)〉),(D2,〈(D2,1,〈〉),(D2,2,〈〉)〉)〉)

f(D1,1,D1,D0) ≥ D1,2

m mn

Correctness (of the symmetric variant)

Theorem: If U,V are (n,d/2)-universal, then
|(Q,f,(A,B))| = |(Q,f,(A,B))|U,V

Correctness (of the symmetric variant)

Theorem: If U,V are (n,d/2)-universal, then
|(Q,f,(A,B))| = |(Q,f,(A,B))|U,V

Proof
D=|(Q,f,(A,B))| is a sup-dominion
Lemma 1: every sup-dominion D has a sup-dominion decomposition (D,H)
It has a shape of a tree TH of height d/2 with at most n leaves
Lemma 2: if (D,H) is a sup-dominion decomposition for |(Q,f,(A,B))| then
D ≤ |(Q,f,(A,B))|TH,V for every V

If T embeds in U then |(Q,f,(A,B))|T,V ≤ |(Q,f,(A,B))|U,V

+ other side – by symmetry

Technical lemma: If A ≤ C ≤ |(Q,f,(A,B))| ≤ D ≤ B then
|(Q,f,(A,B))|=|(Q,f,(C,D))|

Proof: definition + induction

Correctness (of the symmetric variant)

Theorem: If U,V are (n,d/2)-universal, then
|(Q,f,(A,B))| = |(Q,f,(A,B))|U,V

Proof
● D=|(Q,f,(A,B))| is a sup-dominion
● Lemma 1: every sup-dominion D has a sup-dominion decomposition (D,H)
● It has a shape of a tree TH of height d/2 with at most n leaves
● Lemma 2: if (D,H) is a sup-dominion decomposition for |(Q,f,(A,B))| then

D ≤ |(Q,f,(A,B))|TH,V for every V

● If T embeds in U then |(Q,f,(A,B))|T,V ≤ |(Q,f,(A,B))|U,V
● + other side – by symmetry

Technical lemma: If A ≤ C ≤ |(Q,f,(A,B))| ≤ D ≤ B then
|(Q,f,(A,B))|=|(Q,f,(C,D))|

Proof: definition + induction

Correctness (of the symmetric variant)

Lemma 1: Every sup-dominion D has a sup-dominion decomposition (D,H)

Proof
Assumption: D is a sup-dominion for (Q,f,(A,B))
Case Q=n Q’
● [by definition: decomposition for (Q,f,(A,B)) = decomposition for (Q’,f ↳D,(A,D))]
● immediate: D is also a sup-dominion for (Q’,f ↳D,(A,D)) → we can use I.H.

Correctness (of the symmetric variant)

Lemma 1: Every sup-dominion D has a sup-dominion decomposition (D,H)

Proof
Assumption: D is a sup-dominion for (Q,f,(A,B))
Case Q=n Q’
● [by definition: decomposition for (Q,f,(A,B)) = decomposition for (Q’,f ↳D,(A,D))]
● immediate: D is also a sup-dominion for (Q’,f ↳D,(A,D)) → we can use I.H.
Case Q=m Q’
● [by definition: we need (D1,H1),..,(Dk,Hk) s.t. Dk=D and for D0=A

every (Di,Hi) is a sup-dominion decomposition for (Q’,f ↳Di-1,(Di-1,B))]

● We take Di=|(Q’,f ↳Di-1,(Di-1,D))| as long as Di<D
● We construct decompositions Hi using I.H.

Correctness (of the symmetric variant)

Lemma 1: Every sup-dominion D has a sup-dominion decomposition (D,H)

Proof
Assumption: D is a sup-dominion for (Q,f,(A,B))
Case Q=n Q’
● [by definition: decomposition for (Q,f,(A,B)) = decomposition for (Q’,f ↳D,(A,D))]
● immediate: D is also a sup-dominion for (Q’,f ↳D,(A,D)) → we can use I.H.
Case Q=m Q’
● [by definition: we need (D1,H1),..,(Dk,Hk) s.t. Dk=D and for D0=A

every (Di,Hi) is a sup-dominion decomposition for (Q’,f ↳Di-1,(Di-1,B))]

● We take Di=|(Q’,f ↳Di-1,(Di-1,D))| as long as Di<D
● We construct decompositions Hi using I.H.

Lemma 2: If (D,H) is a sup-dominion decomposition for |(Q,f,(A,B))| then
D ≤ |(Q,f,(A,B))|TH,V for every V

Proof: definitions + induction

A lower bound (for our method)

Theorem: Fix n,d.
If |(Q,f,(0,1))| = |(Q,f,(0,1))|U,V for all f, then U,V are (n,d/2)-universal.
If |(Q,f,(0,1))| = |(Q,f,(0,1))|V for all f, then V is (n,d/2)-universal.

Corollary:
It is known that every universal tree has size at least nlg(h/lg n)+W(1)

Thus our algorithm cannot work faster (using potentially some smaller tree).

A lower bound (for our method)

Theorem: Fix n,d.
If |(Q,f,(0,1))| = |(Q,f,(0,1))|U,V for all f, then U,V are (n,d/2)-universal.
If |(Q,f,(0,1))| = |(Q,f,(0,1))|V for all f, then V is (n,d/2)-universal.

Corollary:
It is known that every universal tree has size at least nlg(h/lg n)+W(1)

Thus our algorithm cannot work faster (using potentially some smaller tree).

Remark:
It is enough to assume equality for functions f defined by parity games
(so the lower bound applies also to parity games)

A lower bound (for our method)

Theorem: Fix n,d.
If |(Q,f,(0,1))| = |(Q,f,(0,1))|U,V for all f, then U,V are (n,d/2)-universal.
If |(Q,f,(0,1))| = |(Q,f,(0,1))|V for all f, then V is (n,d/2)-universal.

Corollary:
It is known that every universal tree has size at least nlg(d/lg n)+W(1)

Thus our algorithm cannot work faster (using potentially some smaller tree).

Remark:
It is enough to assume equality for functions f defined by parity games
(so the lower bound applies also to parity games)

Proof idea:
By contradiction: If some T (with n leaves) does not embed in U, then we can
construct f such that the only sup-dominion decomposition has shape T.
For this f the algorithms does not work.

Conclusions
● quasi-polynomial algorithms for fixed-point evaluation
● an abstract formulation using universal trees
● unified treatment of symmetric / asymmetric variants
● a lower bound for the method

Open problem:
● prove a (quasi-polynomial?) lower bound for the number of queries

for black-box fixed point evaluation
[we only have W(n2/log n) – Parys 2009]

Thank you!

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33

