A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

André Arnold, Damian Niwiński, Paweł Parys

Plan

parity games ≈ modal μ-calculus
 □

(black-box) fixed point evaluation

- quasi-polynomial algorithms for parity games
 quasi-polynomial black-box algorithms for fixed point evaluation
- Our algorithm is an abstract version of recent quasi-polynomial algorithms solving parity games
- We unify two kinds of parity-games algorithms (asymmetric, symmetric) in a common framework
- Some lower bounds for the method (universal trees are needed)

Considered problem: fixed point evaluation

Compute:
$$vx_d.\mu x_{d-1}...vx_2.\mu x_1.f(x_1,x_2,...,x_{d-1},x_d)$$

where
$$x_i \in \{0,1\}^n$$

 $f: (\{0,1\}^n)^d \to \{0,1\}^n$ monotone

access to *f*: only evaluation for given arguments (*f* is a black-box)

Considered problem: fixed point evaluation

Compute: $vx_d.\mu x_{d-1}...vx_2.\mu x_1.f(x_1,x_2,...,x_{d-1},x_d)$

where $x_i \in \{0,1\}^n$ $f: (\{0,1\}^n)^d \to \{0,1\}^n$ monotone

access to f: only evaluation for given arguments (f is a black-box)

Relation to parity games

parity game (n nodes, d priorities)

fixed point evaluation (n bits, d arguments) f of a special form

parity game (exp(n) nodes, d priorities)

fixed point evaluation (n bits, d arguments) arbitrary f

Considered problem: fixed point evaluation

Compute:
$$\forall x_d . \mu x_{d-1} ... \forall x_2 . \mu x_1 . f(x_1, x_2, ..., x_{d-1}, x_d)$$

 $f: (\{0,1\}^n)^d \to \{0,1\}^n$ monotone

Relation to parity games

parity game (*n* nodes, *d* priorities)

fixed point evaluation (n bits, d arguments) f of a special form

$$x_i \subseteq V$$
f describes a game:

 $f(x_1,x_2,...,x_{d-1},x_d)$ returns nodes from which Eve can reach in one step:

- a node in x_1 via an edge of priority 1, or
- a node in x_2 via an edge of priority 2, or
- ...

Then $vx_d.\mu x_{d-1}...vx_2.\mu x_1.f(x_1,x_2,...,x_{d-1},x_d)$ is the set of nodes where Eve wins the parity game

Parity games vs. fixed point evaluation

$$vx_d.\mu x_{d-1}...vx_2.\mu x_1.f(x_1,x_2,...,x_{d-1},x_d)$$

For parity games:

- *f* is of a special form: every output bit is either AND or OR of some input bits
- the game graph can be accessed also in other ways, not only by evaluating f

Recent quasipolynomial algorithms for parity games:

- access the game graph only by evaluating f
- work for arbitrary *f*, not only for *f* coming from parity games

After a careful analysis, they give black-box algorithms for fixed point evaluation

This paper / this talk:

- Why?
- How to prove this in a nice way?

Recent results on parity games

- Calude, Jain, Khoussainov, Li, Stephan 2017
- Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
- Jurdziński, Lazić 2017
- Lehtinen 2018

asymmetric algo. (separator approach)

complexity: $n^{\lg(d/\lg n) + O(1)} \approx |U_{n,d}|$

- Bojańczyk, Czerwiński 2018
- Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, Parys 2019

- Parys 2019
- Lehtinen, Schewe, Wojtczak 2019
- Jurdziński, Morvan 2020

symmetric algo (recursive)

complexity: $n^{2\lg(d/\lg n)+O(1)} \approx |U_{n,d}|^2$

• Jurdziński, Morvan, Ohlmann, Thejaswini 2020 – symmetric, in $n^{\lg(d/\lg n) + O(1)} \approx |U_{n,d}|$

fixed point evaluation:

- Hausmann, Schröder 2019
- Hausmann, Schröder 2020

Standard exponential algorithm

Notation:
$$|(\Theta, f, (\mathbf{0}, \mathbf{1}))| = vx_d \cdot \mu x_d \cdot \mu x_d \cdot \mu x_1 \cdot f(x_1, x_2, ..., x_{d-1}, x_d)$$
 for $\Theta = v\mu ... v\mu$
 $f^{\rightarrow A}(x_1, x_2, ..., x_{d-1}) = f(x_1, x_2, ..., x_{d-1}, A)$

Algorithm evaluating $|(\Theta, f, (\mathbf{0}, \mathbf{1}))|$ for $\Theta = \mu \Theta$ ':

$$A_0 = \mathbf{0}$$

 $A_j = |(\Theta', f^{\hookrightarrow A_{j-1}}, (\mathbf{0}, \mathbf{1}))|$

return A_n

(where
$$j=1,2,...,n$$
)

for
$$\Theta = v \Theta$$
':
$$B_0 = \mathbf{1}$$

$$B_j = |(\Theta', f^{\hookrightarrow B_{j-1}}, (\mathbf{0}, \mathbf{1}))|$$
return B_n

Standard exponential algorithm

Notation:
$$|(\Theta, f, (\mathbf{0}, \mathbf{1}))| = vx_d \cdot \mu x_{d-1} \dots vx_2 \cdot \mu x_1 \cdot f(x_1, x_2, \dots, x_{d-1}, x_d)$$
 for $\Theta = v\mu \dots v\mu$
 $f^{\rightarrow A}(x_1, x_2, \dots, x_{d-1}) = f(x_1, x_2, \dots, x_{d-1}, A)$

Algorithm evaluating $|(\Theta, f, (\mathbf{0}, \mathbf{1}))|$ (where j = 1, 2, ..., n) for $\Theta = \mu \Theta$ ': $A_0 = \mathbf{0}$ $B_0 = \mathbf{1}$ $A_j = |(\Theta', f^{\hookrightarrow A_{j-1}}, (\mathbf{0}, \mathbf{1}))|$ $B_j = |(\Theta', f^{\hookrightarrow B_{j-1}}, (\mathbf{0}, \mathbf{1}))|$ return A_n return B_n

How to make it quasipolynomial?

- do not start from 0 / 1, but from some intermediate values (restrictions)
- perform less iterations (follow a structure of some universal trees)

Restrictions

 $A \leq B$

Restrictions

Notation:
$$f_{AB}(x_1,x_2,...,x_d) = A + B * f(x_1,x_2,...,x_d)$$

 $|(\Theta,f,(A,B))| = vx_d \cdot \mu x_{d-1} ... vx_2 \cdot \mu x_1 \cdot f_{AB}(x_1,x_2,...,x_{d-1},x_d)$ for $\Theta = v\mu ... v\mu$

Algorithm evaluating
$$|(\Theta,f,(A,B))|$$
 (where $j=1,2,...,n$) for $\Theta=\mu\Theta$ ':
$$A_0=A \qquad B_0=B$$

$$A_j=|(\Theta',f^{\hookrightarrow A_{j-1}},(A_{j-1},B))| \qquad B_j=|(\Theta',f^{\hookrightarrow B_{j-1}},(A,B_{j-1}))|$$
 return A_n return B_n

Universal trees

A tree U (of height h) is (n,h)-universal if every tree of height h with n leaves embeds in U.

Universal trees

A tree U (of height h) is (n,h)-universal if every tree of height h with n leaves embeds in U.

Examples:

Universal trees

A tree U (of height h) is (n,h)-universal if every tree of height h with n leaves embeds in *U*.

Examples:

Symmetric algorithm based on universal trees

U,V- (universal) trees

 \approx the symmetric algorithm for parity games

Definition / Algorithm evaluating $|(\Theta,f,(A,B))|_{U,V}$ (where j=1,2,...,p) for $\Theta=\mu\Theta'$, $U=\langle U_1,...,U_p\rangle$ for $\Theta=\nu\Theta'$, $V=\langle V_1,...,V_p\rangle$ $A_0=A$ $B_0=B$ $A_j=|(\Theta',f^{\hookrightarrow A_{j-1}},(A_{j-1},B))|_{U_j,V}$ $B_j=|(\Theta',f^{\hookrightarrow B_{j-1}},(A,B_{j-1}))|_{U,V_j}$ return A_p return B_p

Symmetric algorithm based on universal trees

U,V- (universal) trees

 \approx the symmetric algorithm for parity games

```
\begin{array}{ll} \underline{\text{Definition}} \ / \ \underline{\text{Algorithm}} \ \text{ evaluating } |(\Theta,f,(A,B))|_{U,V} & \text{ (where } j=1,2,\ldots,p) \\ \text{ for } \Theta = \mu \, \Theta', \ U = \langle U_1,\ldots,U_p \rangle & \text{ for } \Theta = \nu \, \Theta', \ V = \langle V_1,\ldots,V_p \rangle \\ A_0 = A & B_0 = B \\ A_j = |(\Theta',f^{\, \hookrightarrow A_{j-1}},(A_{j-1},B))|_{U_j,V} & B_j = |(\Theta',f^{\, \hookrightarrow B_{j-1}},(A,B_{j-1}))|_{U,V_j} \\ \text{ return } A_p & \text{ return } B_p \end{array}
```

Correctness

If U,V are (n,d/2)-universal then $|(\Theta,f,(\mathbf{0},\mathbf{1}))|_{U,V} = |(\Theta,f,(\mathbf{0},\mathbf{1}))|$.

Proof is based on:

dominions

- adapted from parity games
- dominion decomposition
- [Jurdziński, Morvan 2020]

Symmetric algorithm based on universal trees

U,V- (universal) trees

 \approx the symmetric algorithm for parity games

```
\begin{array}{ll} \underline{\text{Definition}} \ / \ \underline{\text{Algorithm}} \ \text{ evaluating } |(\Theta,f,(A,B))|_{U,V} & \text{ (where } j=1,2,\ldots,p) \\ \text{ for } \Theta = \mu \, \Theta', \ U = \langle U_1,\ldots,U_p \rangle & \text{ for } \Theta = \nu \, \Theta', \ V = \langle V_1,\ldots,V_p \rangle \\ A_0 = A & B_0 = B \\ A_j = |(\Theta',f^{\, \hookrightarrow A_{j-1}},(A_{j-1},B))|_{U_j,V} & B_j = |(\Theta',f^{\, \hookrightarrow B_{j-1}},(A,B_{j-1}))|_{U,V_j} \\ \text{ return } A_p & \text{ return } B_p \end{array}
```

Correctness

If U,V are (n,d/2)-universal then $|(\Theta,f,(\mathbf{0},\mathbf{1}))|_{U,V} = |(\Theta,f,(\mathbf{0},\mathbf{1}))|$.

Proof is based on:

dominions

- adapted from parity games
- dominion decomposition

[Jurdziński, Morvan 2020]

<u>Time complexity</u>: $|U| \cdot |V| = n^{2\lg(d/\lg n) + O(1)}$ (two universal trees)

Asymmetric algorithm (Seidl's idea, 1996)

 evaluate recursively time: n^d

 create a system of **least** fixed point equations, and solve it time: nd/2+1

- universal trees
- restrictions
- evaluate recursively time: n^{2lg(d/lg n)+O(1)}

universal trees

- restrictions
- create a system of least fixed point equations, and solve it

time: n^{2|g(d/|g n)}/2+O(1)

 \mathcal{U}

asymmetric algorithm for parity games

Ù

symmetric algorithm for parity games

Asymmetric algorithm (Seidl's idea, 1996)

[exponential version]

```
Algorithm evaluating |(\Theta,f,(A,B))| (where j=1,2,...,n) for \Theta=\mu\Theta': create equation: create equations: x=|(\Theta',f^{\hookrightarrow x},(A,B))| B_0=B return x B_j=|(\Theta',f^{\hookrightarrow B_{j-1}},(A,B))| (where x is a fresh variable) return B_n (where B_0,B_1,...,B_n are fresh variables) the result is: \mu x.|(\Theta',f^{\hookrightarrow x},(A,B))|_V
```

We obtain a system of **least** fixed point equations (only μ) of size $n^{d/2}$. It can be solved in linear time.

Asymmetric algorithm based on universal trees

V- (universal) tree

```
Definition of |(\Theta, f, (A, B))|_V
for \Theta = \mu \Theta'
return \mu x. |(\Theta', f^{\rightarrow x}, (A, B))|_V
```

$$(\text{where } j=1,2,\ldots,p)$$
 for $\Theta=v\,\Theta$ ', $V=\langle V_1,\ldots,V_p\rangle$
$$B_0=B$$

$$B_j=|(\Theta',f^{\,\hookrightarrow B_{j-1}},(A,B_{j-1}))|_{V_j}$$
 return B_p

Asymmetric algorithm based on universal trees

```
V- (universal) tree
```

 \approx the asymmetric algorithm for parity games

```
Algorithm evaluating |(\Theta, f, (A, B))|_V
for \Theta = \mu \Theta'
create equation:
x = |(\Theta', f^{\rightarrow x}, (A, B))|_V
return x
(where x is a fresh <u>variable</u>)
```

```
(where j=1,2,...,p)
for \Theta=v\Theta', V=\langle V_1,...,V_p\rangle
create equations:
B_0=B
B_j=|(\Theta',f^{\mapsto B_{j-1}},(A,B_{j-1}))|_{V_j}
return B_p
(where B_0,B_1,...,B_p are fresh <u>variables</u>)
```

We obtain a system of **least** fixed point equations (only μ) of size $|V|=n^{\lg(d/\lg n)+O(1)}$.

It can be solved in linear time.

Sup-dominion for $(\Theta, f, (A, B))$: a value D such that $D = |(\Theta, f, (A, D))|$ intuition: one can prove that $|(\Theta, f, (A, B))| \ge D$ without looking for bits outside of D

(like in parity games: Even can win from D without going outside of D)

<u>Sup-dominion</u> for $(\Theta, f, (A, B))$: a value D such that $D = |(\Theta, f, (A, D))|$ intuition: one can prove that $|(\Theta, f, (A, B))| \ge D$ without looking for bits outside of D

(like in parity games: Even can win from D without going outside of D)

```
Sup-dominion decomposition for (\Theta, f, (A, B))
 a pair (D,H) such that D is a dominion for (\Theta,f,(A,B)) and
    if \Theta = \mu \Theta' then
       H=\langle (D_1,H_1),...,(D_k,H_k)\rangle s.t. D_k=D and for D_0=A
       every (D_i, H_i) is a sup-dominion decomposition for (\Theta', f^{\hookrightarrow D_{i-1}}, (D_{i-1}, D))
    if \Theta = v \Theta' then
       (D,H) is a sup-dominion decomposition for (\Theta',f^{\hookrightarrow D},(A,D))
(D,\langle (D_1,\langle (D_{1.1},\langle \rangle),(D_{1.2},\langle \rangle),(D_{1.3},\langle \rangle)\rangle),(D_2,\langle (D_{2,1},\langle \rangle),(D_{2,2},\langle \rangle)\rangle)\rangle)
                             D_{2,2} = D_2 = D
D_{2,1}
D_{1,3} = D_1 = D_{2,0}
                                                                                   f(D_{1.1},D_1,D_0) \ge D_{1,2}
                                     A = D_0 = D_{1,0}
```

<u>Theorem</u>: If U,V are (n,d/2)-universal, then $|(\Theta,f,(A,B))| = |(\Theta,f,(A,B))|_{U,V}$

Theorem: If U,V are (n,d/2)-universal, then $|(\Theta,f,(A,B))| = |(\Theta,f,(A,B))|_{U,V}$

Technical lemma: If $A \le C \le |(\Theta, f, (A, B))| \le D \le B$ then $|(\Theta, f, (A, B))| = |(\Theta, f, (C, D))|$

Proof: definition + induction

Theorem: If U,V are (n,d/2)-universal, then $|(\Theta,f,(A,B))| = |(\Theta,f,(A,B))|_{U,V}$

Proof

- $D=|(\Theta,f,(A,B))|$ is a sup-dominion
- Lemma 1: every sup-dominion D has a sup-dominion decomposition (D,H)
- It has a shape of a tree T_H of height d/2 with at most n leaves
- Lemma 2: if (D,H) is a sup-dominion decomposition for $|(\Theta,f,(A,B))|$ then $D \le |(\Theta,f,(A,B))|_{T_{IP},V}$ for every V
- If T embeds in U then $|(\Theta,f,(A,B))|_{T,V} \le |(\Theta,f,(A,B))|_{U,V}$
- + other side by symmetry

Technical lemma: If $A \le C \le |(\Theta, f, (A, B))| \le D \le B$ then $|(\Theta, f, (A, B))| = |(\Theta, f, (C, D))|$

Proof: definition + induction

<u>Lemma 1</u>: Every sup-dominion D has a sup-dominion decomposition (D,H)

Proof

Assumption: D is a sup-dominion for $(\Theta, f, (A,B))$ Case $\Theta = v \Theta'$

- [by definition: decomposition for $(\Theta, f, (A, B))$ = decomposition for $(\Theta', f^{\hookrightarrow D}, (A, D))$]
- immediate: D is also a sup-dominion for $(\Theta', f^{\hookrightarrow D}, (A, D)) \rightarrow \text{we can use I.H.}$

<u>Lemma 1</u>: Every sup-dominion D has a sup-dominion decomposition (D,H)

Proof

Assumption: D is a sup-dominion for $(\Theta, f, (A, B))$ Case $\Theta = v \Theta'$

- [by definition: decomposition for $(\Theta, f, (A,B)) = \text{decomposition for } (\Theta', f^{\hookrightarrow D}, (A,D))$]
- immediate: D is also a sup-dominion for $(\Theta', f^{\hookrightarrow D}, (A, D)) \rightarrow \text{we can use I.H.}$ Case $\Theta = \mu \, \Theta'$
- [by definition: we need $(D_1,H_1),...,(D_k,H_k)$ s.t. $D_k=D$ and for $D_0=A$ every (D_i,H_i) is a sup-dominion decomposition for $(\Theta',f^{\hookrightarrow D_{i-1}},(D_{i-1},B))$]
- We take $D_i = |(\Theta', f^{\hookrightarrow D_{i-1}}, (D_{i-1}, D))|$ as long as $D_i < D$
- We construct decompositions H_i using I.H.

<u>Lemma 1</u>: Every sup-dominion D has a sup-dominion decomposition (D,H)

Proof

Assumption: D is a sup-dominion for $(\Theta, f, (A, B))$ Case $\Theta = v \Theta'$

- [by definition: decomposition for $(\Theta, f, (A,B)) = \text{decomposition for } (\Theta', f^{\hookrightarrow D}, (A,D))$]
- immediate: D is also a sup-dominion for $(\Theta', f^{\hookrightarrow D}, (A, D)) \rightarrow \text{we can use I.H.}$ Case $\Theta = \mu \, \Theta'$
- [by definition: we need $(D_1,H_1),...,(D_k,H_k)$ s.t. $D_k=D$ and for $D_0=A$ every (D_i,H_i) is a sup-dominion decomposition for $(\Theta',f^{\hookrightarrow D_{i-1}},(D_{i-1},B))$]
- We take $D_i = |(\Theta', f^{\hookrightarrow D_{i-1}}, (D_{i-1}, D))|$ as long as $D_i < D$
- We construct decompositions H_i using I.H.

<u>Lemma 2:</u> If (D,H) is a sup-dominion decomposition for $|(\Theta,f,(A,B))|$ then $D \le |(\Theta,f,(A,B))|_{T_H,V}$ for every V

Proof: definitions + induction

A lower bound (for our method)

<u>Theorem</u>: Fix *n*,*d*.

If $|(\Theta,f,(\mathbf{0},\mathbf{1}))| = |(\Theta,f,(\mathbf{0},\mathbf{1}))|_{U,V}$ for all f, then U,V are (n,d/2)-universal.

If $|(\Theta,f,(\mathbf{0},\mathbf{1}))| = |(\Theta,f,(\mathbf{0},\mathbf{1}))|_V$ for all f, then V is (n,d/2)-universal.

Corollary:

It is known that every universal tree has size at least $n^{\lg(h/\lg n) + \Omega(1)}$. Thus our algorithm cannot work faster (using potentially some smaller tree).

A lower bound (for our method)

<u>Theorem</u>: Fix *n*,*d*.

If $|(\Theta,f,(\mathbf{0},\mathbf{1}))| = |(\Theta,f,(\mathbf{0},\mathbf{1}))|_{U,V}$ for all f, then U,V are (n,d/2)-universal.

If $|(\Theta, f, (\mathbf{0}, \mathbf{1}))| = |(\Theta, f, (\mathbf{0}, \mathbf{1}))|_V$ for all f, then V is (n, d/2)-universal.

Corollary:

It is known that every universal tree has size at least $n^{\lg(h/\lg n) + \Omega(1)}$ Thus our algorithm cannot work faster (using potentially some smaller tree).

Remark:

It is enough to assume equality for functions f defined by parity games (so the lower bound applies also to parity games)

A lower bound (for our method)

Theorem: Fix n,d.

If $|(\Theta,f,(\mathbf{0},\mathbf{1}))| = |(\Theta,f,(\mathbf{0},\mathbf{1}))|_{U,V}$ for all f, then U,V are (n,d/2)-universal.

If $|(\Theta,f,(\mathbf{0},\mathbf{1}))| = |(\Theta,f,(\mathbf{0},\mathbf{1}))|_V$ for all f, then V is (n,d/2)-universal.

Corollary:

It is known that every universal tree has size at least $n^{\lg(d/\lg n) + \Omega(1)}$ Thus our algorithm cannot work faster (using potentially some smaller tree).

Remark:

It is enough to assume equality for functions f defined by parity games (so the lower bound applies also to parity games)

Proof idea:

By contradiction: If some T (with n leaves) does not embed in U, then we can construct f such that the only sup-dominion decomposition has shape T. For this f the algorithms does not work.

Conclusions

- quasi-polynomial algorithms for fixed-point evaluation
- an abstract formulation using universal trees
- unified treatment of symmetric / asymmetric variants
- a lower bound for the method

Open problem:

• prove a (quasi-polynomial?) lower bound for the number of queries for black-box fixed point evaluation [we only have $\Omega(n^2/\log n)$ – Parys 2009]

Thank you!