

Higher-Order Nonemptiness Step by Step

Paweł Parys

University of Warsaw

RP 2020 (paper accepted to FST-TCS 2020)

What is it about?

Higher-Order = we consider higher-order recursion schemes

Nonemptiness = we solve the acceptance problem for
alternating reachability automata (= language nonemptiness)

Step by Step = we give a new method, working in multiple
simple steps

Higher-order recursion schemes – what is this?

Definition
Higher-order recursion schemes = a generalization of context-free
grammars, where nonterminals can take arguments. We use them
to generate trees.

Equivalent definition: simply-typed lambda-calculus + recursion

In other words:
● programs with recursion
● higher-order functions (i.e., functions taking other functions as

parameters)
● every function/parameter has a fixed type
● no data values, only functions

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)

a

A (D b) b c

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)

a

A (D b) b

c

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)

a

A (D b) b

c

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)

a

a

A (D (D b))

b

cD b c

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)
D b c → b (b c)

a

a

A (D (D b))

b

cb

c

b

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)
D b c → b (b c)
A (D (D b)) → a (A (D (D (D b)))) (D (D b) c)
D (D b) c → D b (D b c) → b (b (D b c))

a

a

a

A (D (D (D b)))

b

cb

c

bb

b

b

b

c

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

S → A b → a (A (D b)) (b c)
A (D b) → a (A (D (D b))) (D b c)
D b c → b (b c)
A (D (D b)) → a (A (D (D (D b)))) (D (D b) c)
D (D b) c → D b (D b c) → b (b (D b c))

a

a

a

a

b

cb

c

bb

b

b

b

b

b

b

b

b

b

b

b

c

c

...

Types

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S → A b
A f → a (A (D f)) (f c)
D f x → f (f x)

Every nonterminal (every argument) has assigned some type,
for example:
● o – a tree
● o→o – a function that takes a tree, and produces a tree
● o→(o→o)→o – a function that takes a tree and a function

 of type o→o, and produces a tree

Order of a type

ord(o) = 0
ord(a1→...→ak→o) = 1+max(ord(a1), …, ord(ak))

For example:
● ord(o) = 0,
● ord(o→o) = ord(o→o→o) = 1,
● ord(o→(o→o)→o) = 2

Order of a recursion scheme
= maximal order of (a type of) its nonterminal

Model-checking for recursion schemes

General goal: verifying properties of trees generated by schemes

Why? Recursion schemes are decidable models (abstractions) of
programs using higher-order recursion

Model-checking for recursion schemes

Input: alternating tree automaton (ATA) A, recursion scheme G
Qestion: does A accept the tree generated by G?

Theorem [Ong 2006]

This problem is decidable for parity ATA (i.e., for MSO).

Model-checking for recursion schemes

Input: alternating tree automaton (ATA) A, recursion scheme G
Qestion: does A accept the tree generated by G?

Theorem [Ong 2006]

This problem is decidable for parity ATA (i.e., for MSO).

Several proofs, using:
● game semantics
● collapsible pushdown automata
● intersection types
● Krivine machines
and several extensions.
Some proofs only for reachability ATA.

We show another, very simple algorithm for reachability ATA.

Model-checking for recursion schemes

Input: alternating tree automaton (ATA) A, recursion scheme G
Qestion: does A accept the tree generated by G?

Theorem [Ong 2006]

This problem is decidable for parity ATA (i.e., for MSO).

Complexity:
● n-EXPTIME-complete for recursion schemes of order n,
● FTP: linear in the size of G, when size of A and maximal arity of

types in G are fixed,
● the same for parity ATA and for reachability ATA
● (algorithms based on intersection types perform relatively well in practice)

Our algorithm achieves the same complexity.

Preprocessing

We consider an (appropriately defined) product of G and A.

It is a recursion scheme generating a tree labeled by:
∧ (AND),
∨ (OR),
with ⊤ (empty AND), ⊥ (empty OR) as special cases

We ask about alternating reachability.

⊥

... ⊥

...

⊤

⊤

∨

⊤

∨

∨

∨

∧

∧

General idea

We replace the recursion scheme Gn of order n by an equivalent

recursion scheme Gn-1 of order n-1. Size grows exponentially.

Gn Gn-1 Gn-2 G1 G0 ...

For recursion schemes of order 0 the problem becomes trivial.

Transformation

Consider an application KL, where L is of order 0 (generates a tree).
When is the tree generated by KL accepting?
● When K⊥ is accepting (i.e., K is accepting without using the argument)
● When both K⊤ and L are accepting

K

L L L

K

L L L

Transformation

Consider an application KL, where L is of order 0 (generates a tree).
When is the tree generated by KL accepting?
● When K⊥ is accepting (i.e., K is accepting without using the argument)
● When both K⊤ and L are accepting

We change KL into ∨ (K⊥) (∧ (K⊤) L)

K K

L

⊥⊥⊥ ⊤ ⊤ ⊤

∧

∨

Complete example (order 1)

X →Y Z
Y x →∨ ⊤ x
Z →⊤

X →∨ Y0 (∧ Y1 Z)

Y0 →∨ ⊤ ⊥ Y1 →∨ ⊤ ⊤

Z →⊤

(k order-0 arguments ⇒ 2k variants of the nonterminal)

order-0 argument

Complete example (order 2)

X →Z Y
Y x →∨ ⊤ x
Z y →y (y ⊤)

X →Z Y0 Y1

Y0 →∨ ⊤ ⊥ Y1 →∨ ⊤ ⊤

Z y0 y1 →∨ y0 (∧ y1 (∨ y0 (∧ y1 ⊤)))

order-0 arguments

Complete example (order 2)

X →Z Y
Y x →∨ ⊤ x
Z y →y (y ⊤)

X →Z Y0 Y1

Y0 →∨ ⊤ ⊥ Y1 →∨ ⊤ ⊤

Z y0 y1 →∨ y0 (∧ y1 (∨ y0 (∧ y1 ⊤)))

order-0 arguments

● easy to generalize
● easy (syntactical) correctness proof
● verified in Coq

Conclusion

● We consider the model-checking problem for recursion schemes
+ reachability ATA

● We propose a new, simpler method algorithm solving this
problem: we repeatedly reduce the order of a recursion scheme
by one, increasing its size exponentially

● We obtain optimal complexity
● Future work: extend this method to parity ATA / to the diagonal

problem (SUP)

Thank you!

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27

