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What is it about?

Higher-Order = we consider higher-order recursion schemes 

Nonemptiness = we solve the acceptance problem for
alternating reachability automata (= language nonemptiness)

Step by Step = we give a new method, working in multiple
simple steps



  

Higher-order recursion schemes – what is this?

Definition
Higher-order recursion schemes = a generalization of context-free
grammars, where nonterminals can take arguments. We use them
to generate trees.

Equivalent definition: simply-typed lambda-calculus + recursion

In other words:
● programs with recursion
● higher-order functions (i.e., functions taking other functions as

parameters)
● every function/parameter has a fixed type
● no data values, only functions



  

Higher-order recursion schemes – example

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D
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Types

Ranked alphabet: (rank = number of children)

a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:
S       → A b
A f     → a (A (D f)) (f c)
D f x → f (f x)

Every nonterminal (every argument) has assigned some type,
for example:
● o – a tree
● o→o – a function that takes a tree, and produces a tree
● o→(o→o)→o – a function that takes a tree and a function

    of type o→o, and produces a tree
    



  

Order of a type

      
ord(o) = 0
ord(a1→...→ak→o) = 1+max(ord(a1), …, ord(ak))

For example:
● ord(o) = 0,
● ord(o→o) = ord(o→o→o) = 1,
● ord(o→(o→o)→o) = 2 

Order of a recursion scheme 
= maximal order of (a type of) its nonterminal



  

Model-checking for recursion schemes

General goal: verifying properties of trees generated by schemes

Why? Recursion schemes are decidable models (abstractions) of 
programs using higher-order recursion



  

Model-checking for recursion schemes

Input: alternating tree automaton (ATA) A, recursion scheme G
Qestion: does A accept the tree generated by G?

Theorem [Ong 2006]

This problem is decidable for parity ATA (i.e., for MSO).



  

Model-checking for recursion schemes

Input: alternating tree automaton (ATA) A, recursion scheme G
Qestion: does A accept the tree generated by G?

Theorem [Ong 2006]

This problem is decidable for parity ATA (i.e., for MSO).

Several proofs, using:
● game semantics
● collapsible pushdown automata
● intersection types
● Krivine machines
and several extensions. 
Some proofs only for reachability ATA.

We show another, very simple algorithm for reachability ATA.



  

Model-checking for recursion schemes

Input: alternating tree automaton (ATA) A, recursion scheme G
Qestion: does A accept the tree generated by G?

Theorem [Ong 2006]

This problem is decidable for parity ATA (i.e., for MSO).

Complexity:
● n-EXPTIME-complete for recursion schemes of order n,
● FTP: linear in the size of G, when size of A and maximal arity of 

types in G are fixed,
● the same for parity ATA and for reachability ATA
● (algorithms based on intersection types perform relatively well in practice)

Our algorithm achieves the same complexity.



  

Preprocessing

We consider an (appropriately defined) product of G and A.

It is a recursion scheme generating a tree labeled by:
∧ (AND),
∨ (OR),
with ⊤ (empty AND), ⊥ (empty OR) as special cases

We ask about alternating reachability.

⊥

... ⊥

...

⊤

⊤

∨

⊤

∨

∨

∨

∧

∧



  

General idea

We replace the recursion scheme Gn of order n by an equivalent 

recursion scheme Gn-1 of order n-1. Size grows exponentially.

Gn Gn-1 Gn-2 G1 G0 ...

For recursion schemes of order 0 the problem becomes trivial.



  

Transformation

Consider an application KL, where L is of order 0 (generates a tree).
When is the tree generated by KL accepting?
● When K⊥ is accepting (i.e., K is accepting without using the argument) 
● When both K⊤ and L are accepting

K

L L L

K

L L L



  

Transformation

Consider an application KL, where L is of order 0 (generates a tree).
When is the tree generated by KL accepting?
● When K⊥ is accepting (i.e., K is accepting without using the argument) 
● When both K⊤ and L are accepting

We change KL into ∨ (K⊥) (∧ (K⊤) L)

K K

L

⊥⊥⊥ ⊤ ⊤ ⊤

∧

∨



  

Complete example (order 1)

X     →Y Z
Y x →∨ ⊤ x
Z    →⊤

X   →∨ Y0 (∧ Y1 Z)

Y0 →∨ ⊤ ⊥    Y1 →∨ ⊤ ⊤

Z   →⊤

(k order-0 arguments ⇒ 2k variants of the nonterminal)

order-0 argument



  

Complete example (order 2)

X     →Z Y
Y x →∨ ⊤ x
Z y →y (y ⊤) 

X   →Z Y0 Y1

Y0 →∨ ⊤ ⊥    Y1 →∨ ⊤ ⊤

Z y0 y1  →∨ y0 (∧ y1 (∨ y0 (∧ y1 ⊤)))

order-0 arguments



  

Complete example (order 2)

X     →Z Y
Y x →∨ ⊤ x
Z y →y (y ⊤) 

X   →Z Y0 Y1

Y0 →∨ ⊤ ⊥    Y1 →∨ ⊤ ⊤

Z y0 y1  →∨ y0 (∧ y1 (∨ y0 (∧ y1 ⊤)))

order-0 arguments

● easy to generalize
● easy (syntactical) correctness proof
● verified in Coq



  

Conclusion

● We consider the model-checking problem for recursion schemes 
+ reachability ATA

● We propose a new, simpler method algorithm solving this 
problem: we repeatedly reduce the order of a recursion scheme 
by one, increasing its size exponentially

● We obtain optimal complexity
● Future work: extend this method to parity ATA / to the diagonal 

problem (SUP)

Thank you!
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