Higher-Order Nonemptiness Step by Step

Paweł Parys

University of Warsaw

Higher-Order = we consider higher-order recursion schemes

Nonemptiness = we solve the acceptance problem for alternating reachability automata (= language nonemptiness)

Step by Step = we give a new method, working in multiple simple steps

Higher-order recursion schemes - what is this?

Definition

Higher-order recursion schemes $=$ a generalization of context-free grammars, where nonterminals can take arguments. We use them to generate trees.

Equivalent definition: simply-typed lambda-calculus + recursion
In other words:

- programs with recursion
- higher-order functions (i.e., functions taking other functions as parameters)
- every function/parameter has a fixed type
- no data values, only functions

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank $2, b$ of rank $1, c$ of rank 0

Nonterminals:
S (starting), A, D

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank $2, b$ of rank $1, c$ of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$S \rightarrow A b \rightarrow a(A(D b))(b c)$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$$
S \rightarrow A b \rightarrow a(A(D b))(b c)
$$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D

Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$$
S \rightarrow A b \rightarrow a(A(D b))(b c)
$$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \quad \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$S \rightarrow A b \rightarrow a(A(D b))(b c)$
$A(D b) \rightarrow a(A(D(D b)))(D b c)$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \quad \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$S \rightarrow A b \rightarrow a(A(D b))(b c)$
$A(D b) \rightarrow a(A(D(D b)))(D b c)$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$S \rightarrow A b \rightarrow a(A(D b))(b c)$
$A(D b) \rightarrow a(A(D(D b)))(D b c)$
$D b c \rightarrow b(b c)$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals: S (starting), A, D

Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$$
S \rightarrow A b \rightarrow a(A(D b))(b c)
$$

$$
A(D b) \rightarrow a(A(D(D b)))(D b c)
$$

$$
D b c \rightarrow b(b c)
$$

$$
A(D(D b)) \rightarrow a(A(D(D(D b))))(D(D b) c)
$$

$$
D(D b) c \rightarrow D b(D b c) \rightarrow b(b(D b c))
$$

Higher-order recursion schemes - example

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals: S (starting), A, D

Rules:

$$
\begin{aligned}
& S \rightarrow A b \\
& A f \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

$$
S \rightarrow A b \rightarrow a(A(D b))(b c)
$$

$$
A(D b) \rightarrow a(A(D(D b)))(D b c)
$$

$$
D b c \rightarrow b(b c)
$$

$$
A(D(D b)) \rightarrow a(A(D(D(D b))))(D(D b) c)
$$

$D(D b) c \rightarrow D b(D b c) \rightarrow b(b(D b c))$

Types

Ranked alphabet: (rank = number of children) a of rank 2, b of rank 1, c of rank 0

Nonterminals:
S (starting), A, D
Rules:

$$
\begin{aligned}
& S \quad \rightarrow A b \\
& A f \quad \rightarrow a(A(D f))(f c) \\
& D f x \rightarrow f(f x)
\end{aligned}
$$

Every nonterminal (every argument) has assigned some type, for example:

- o - a tree
- $o \rightarrow O$ - a function that takes a tree, and produces a tree
- $o \rightarrow(o \rightarrow o) \rightarrow o$ - a function that takes a tree and a function of type $o \rightarrow o$, and produces a tree

Order of a type

$$
\begin{aligned}
& \operatorname{ord}(o)=0 \\
& \operatorname{ord}\left(\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{k} \rightarrow o\right)=1+\max \left(\operatorname{ord}\left(\alpha_{1}\right), \ldots, \operatorname{ord}\left(\alpha_{k}\right)\right)
\end{aligned}
$$

For example:

- $\operatorname{ord}(o)=0$,
- $\operatorname{ord}(o \rightarrow o)=\operatorname{ord}(o \rightarrow o \rightarrow o)=1$,
- $\operatorname{ord}(o \rightarrow(o \rightarrow o) \rightarrow o)=2$

Order of a recursion scheme
= maximal order of (a type of) its nonterminal

Model-checking for recursion schemes

General goal: verifying properties of trees generated by schemes
Why? Recursion schemes are decidable models (abstractions) of programs using higher-order recursion

Model-checking for recursion schemes

Input: alternating tree automaton (ATA) \mathcal{A}, recursion scheme \mathcal{G} Qestion: does \mathcal{A} accept the tree generated by \mathcal{G} ?

Theorem [Ong 2006]
This problem is decidable for parity ATA (i.e., for MSO).

Model-checking for recursion schemes

Input: alternating tree automaton (ATA) \mathfrak{A}, recursion scheme \mathcal{G} Qestion: does \mathcal{A} accept the tree generated by \mathcal{G} ?

Theorem [Ong 2006]
This problem is decidable for parity ATA (i.e., for MSO).
Several proofs, using:

- game semantics
- collapsible pushdown automata
- intersection types
- Krivine machines
and several extensions.
Some proofs only for reachability ATA.
We show another, very simple algorithm for reachability ATA.

Model-checking for recursion schemes

Input: alternating tree automaton (ATA) \mathfrak{A}, recursion scheme \mathcal{G} Qestion: does \mathcal{A} accept the tree generated by \mathcal{G} ?

Theorem [Ong 2006]
This problem is decidable for parity ATA (i.e., for MSO).
Complexity:

- n-EXPTIME-complete for recursion schemes of order n,
- FTP: linear in the size of \mathcal{G}, when size of \mathcal{A} and maximal arity of types in \mathcal{G} are fixed,
- the same for parity ATA and for reachability ATA
- (algorithms based on intersection types perform relatively well in practice)

Our algorithm achieves the same complexity.

Preprocessing

We consider an (appropriately defined) product of \mathcal{G} and \mathcal{A}.
It is a recursion scheme generating a tree labeled by:
\wedge (AND),
v (OR),
with T (empty AND), \perp (empty OR) as special cases
We ask about alternating reachability.

General idea

We replace the recursion scheme \mathcal{G}_{n} of order n by an equivalent recursion scheme \mathcal{G}_{n-1} of order $n-1$. Size grows exponentially.

$$
\mathcal{G}_{n} \longrightarrow \mathcal{G}_{n-1} \longrightarrow \mathcal{G}_{n-2} \longrightarrow \cdots \longrightarrow \mathcal{G}_{1} \longrightarrow \mathcal{G}_{0}
$$

For recursion schemes of order 0 the problem becomes trivial.

Transformation

Consider an application KL , where L is of order 0 (generates a tree). When is the tree generated by KL accepting?

- When $\mathrm{K} \perp$ is accepting (i.e., K is accepting without using the argument)
- When both KT and L are accepting

Transformation

Consider an application KL , where L is of order 0 (generates a tree). When is the tree generated by KL accepting?

- When $K \perp$ is accepting (i.e., K is accepting without using the argument)
- When both KT and L are accepting

We change KL into $\vee(K \perp)(\wedge(K T) L)$

Complete example (order 1)

order-0 argument

$$
\begin{array}{ll}
X \rightarrow Y Z^{\prime} \\
Y X \rightarrow V T X \\
Z \rightarrow T
\end{array} \quad \begin{aligned}
& X \rightarrow V Y_{0}\left(\wedge Y_{1} Z\right) \\
& Y_{0} \rightarrow V T \perp \quad Y_{1} \rightarrow V T T \\
& Z \rightarrow T
\end{aligned}
$$

(k order- 0 arguments $\Rightarrow 2^{k}$ variants of the nonterminal)

Complete example (order 2)

$$
\begin{array}{ll}
\begin{array}{l}
\mathrm{X} \rightarrow \mathrm{ZY} \\
\mathrm{Yx} \rightarrow \mathrm{~V} \mathrm{TX} \\
\mathrm{Zy} \rightarrow \mathrm{y} \\
\underbrace{\mathrm{y} \mathrm{~T}}_{\text {order-0 arguments }})
\end{array} \quad \begin{array}{l}
\mathrm{X} \rightarrow \mathrm{Z} \mathrm{Y}_{0} \mathrm{Y}_{1} \\
\mathrm{Y}_{0} \rightarrow \mathrm{VT} \perp \\
\mathrm{Z} y_{0} y_{1} \rightarrow \vee y_{0}\left(\wedge y_{1}\left(\vee y_{0}\left(\wedge y_{1} \mathrm{~T}\right)\right)\right)
\end{array} \\
\mathrm{Y}_{1} \rightarrow \mathrm{VTT}
\end{array}
$$

Complete example (order 2)

$$
\begin{array}{ll}
\mathrm{X} \rightarrow \mathrm{ZY} \\
\mathrm{Yx} \rightarrow \mathrm{VTx} \\
\mathrm{Zy} \rightarrow \mathrm{~V} \\
\underbrace{\mathrm{yT} \mathrm{~T}}_{\text {order-0 arguments }}
\end{array} \quad \begin{aligned}
& \mathrm{X} \rightarrow \mathrm{ZY} \mathrm{Y}_{0} \mathrm{Y}_{1} \\
& \mathrm{Y}_{0} \rightarrow \vee \mathrm{~V} \perp \\
& \mathrm{Z} y_{0} y_{1} \rightarrow \mathrm{~V} y_{0}\left(\wedge y_{1}\left(\vee y_{0}\left(\wedge y_{1} \mathrm{~T}\right)\right)\right)
\end{aligned}
$$

- easy to generalize
- easy (syntactical) correctness proof
- verified in Coq

Conclusion

- We consider the model-checking problem for recursion schemes + reachability ATA
- We propose a new, simpler method algorithm solving this problem: we repeatedly reduce the order of a recursion scheme by one, increasing its size exponentially
- We obtain optimal complexity
- Future work: extend this method to parity ATA / to the diagonal problem (SUP)

Thank you!

