

Parity Games:
Zielonka's Algorithm in Quasi-Polynomial Time

Paweł Parys
University of Warsaw

Highlights of Algorithms 2019

Parity games

● Priorities on vertices
● Player owning the current vertex choses the next vertex
● Player  wins if the biggest priority seen infinitely often is even.

3
1

2

Parity games

● Priorities on vertices
● Player owning the current vertex choses the next vertex
● Player  wins if the biggest priority seen infinitely often is even.

Long standing open problem:
Decide in PTIME which player has a winning strategy.

3
1

2

Recent results

Long standing open problem:
Decide in PTIME which player has a winning strategy.

Recent result:
This can be decided in quasi-polynomial time, i.e. nlog(n)+O(1)

A few algorithms achieving this:
● Calude, Jain, Khoussainov, Li, Stephan 2017
● Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
● Jurdziński, Lazić 2018
● Lehtinen 2018

Recent results

Long standing open problem:
Decide in PTIME which player has a winning strategy.

Recent result:
This can be decided in quasi-polynomial time, i.e. nlog(n)+O(1)

A few algorithms achieving this:
● Calude, Jain, Khoussainov, Li, Stephan 2017
● Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
● Jurdziński, Lazić 2018
● Lehtinen 2018

Older results:
● multiple (sub-)exponential algorithms
● among them: Zielonka's algorithm 1998

➔ very simple recursive algorithm
➔ exponential in the worst case
➔ behaves quite well in practice

Our algorithm

We present a small modification
of the simple, recursive Zielonka's algorithm,
so that it works in quasi-polynomial time, i.e. nO(log(n))

Our algorithm

We present a small modification
of the simple, recursive Zielonka's algorithm,
so that it works in quasi-polynomial time, i.e. nO(log(n))

Idea of the recursion in the Zielonka's algorithm:
● for k=0,1,2,3,... find regions where Odd can win while visiting

the maximal even priority at most k times

Idea of the modification:
● at most one of these regions can have more than n/2 nodes

(because they are disjoint)

Our algorithm

We present a small modification
of the simple, recursive Zielonka's algorithm,
so that it works in quasi-polynomial time, i.e. nO(log(n))

Why our algorithm is interesting?
● simplicity
● different approach (all the other quasi-polynomial-time algorithms

follow so-called separation approach)

Thank you!

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8

