Parity Games: Zielonka's Algorithm in Quasi-Polynomial Time

Paweł Parys

University of Warsaw

Parity games

- Priorities on vertices
- Player owning the current vertex choses the next vertex
- Player \square wins if the biggest priority seen infinitely often is even.

Parity games

- Priorities on vertices
- Player owning the current vertex choses the next vertex
- Player \square wins if the biggest priority seen infinitely often is even.

Long standing open problem:

Decide in PTIME which player has a winning strategy.

Recent results

Long standing open problem:

Decide in PTIME which player has a winning strategy.

Recent result:

This can be decided in quasi-polynomial time, i.e. $n^{log(n)+O(1)}$

A few algorithms achieving this:

- Calude, Jain, Khoussainov, Li, Stephan 2017
- Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
- Jurdziński, Lazić 2018
- Lehtinen 2018

Recent results

Long standing open problem:

Decide in PTIME which player has a winning strategy.

Recent result:

This can be decided in quasi-polynomial time, i.e. $n^{log(n)+O(1)}$

A few algorithms achieving this:

- Calude, Jain, Khoussainov, Li, Stephan 2017
- Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
- Jurdziński, Lazić 2018
- Lehtinen 2018

Older results:

- multiple (sub-)exponential algorithms
- among them: **Zielonka's algorithm** 1998
 - → very simple recursive algorithm
 - → exponential in the worst case
 - → behaves quite well in practice

Our algorithm

We present a <u>small modification</u> of the simple, recursive <u>Zielonka's algorithm</u>, so that it works in <u>quasi-polynomial time</u>, i.e. $n^{O(log(n))}$

Our algorithm

We present a <u>small modification</u> of the simple, recursive <u>Zielonka's algorithm</u>, so that it works in <u>quasi-polynomial time</u>, i.e. $n^{O(log(n))}$

Idea of the recursion in the Zielonka's algorithm:

• for k=0,1,2,3,... find regions where Odd can win while visiting the maximal even priority at most k times

Idea of the modification:

• at most one of these regions can have more than n/2 nodes (because they are disjoint)

Our algorithm

We present a <u>small modification</u> of the simple, recursive <u>Zielonka's algorithm</u>, so that it works in <u>quasi-polynomial time</u>, i.e. $n^{O(log(n))}$

Why our algorithm is interesting?

- simplicity
- different approach (all the other quasi-polynomial-time algorithms follow so-called separation approach)

Thank you!