

Parity Games:
Zielonka's Algorithm in Quasi-Polynomial Time

Paweł Parys
University of Warsaw

MFCS 2019

Parity games

● Priorities on vertices
● Player owning the current vertex choses the next vertex
● Player wins if the biggest priority seen infinitely often is even.

3
1

2

Parity games

● Priorities on vertices
● Player owning the current vertex choses the next vertex
● Player wins if the biggest priority seen infinitely often is even.

Long standing open problem:
Decide in PTIME which player has a winning strategy.

3
1

2

Recent results

Long standing open problem:
Decide in PTIME which player has a winning strategy.

Recent result:
This can be decided in quasi-polynomial time, i.e. nO(log n)

A few algorithms achieving this:
● Calude, Jain, Khoussainov, Li, Stephan 2017
● Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
● Jurdziński, Lazić 2018
● Lehtinen 2018

Recent results

Long standing open problem:
Decide in PTIME which player has a winning strategy.

Recent result:
This can be decided in quasi-polynomial time, i.e. nO(log n)

A few algorithms achieving this:
● Calude, Jain, Khoussainov, Li, Stephan 2017
● Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
● Jurdziński, Lazić 2018
● Lehtinen 2018

Older results:
● multiple (sub-)exponential algorithms
● among them: Zielonka's algorithm 1998

➔ very simple recursive algorithm
➔ exponential in the worst case
➔ behaves quite well in practice

Our contribution

We present a small modification
of the simple, recursive Zielonka's algorithm,
so that it works in quasi-polynomial time, i.e. nO(log(n))

Zielonka’s algorithm

8

8

8

8

8

8

8

8

8

highest priority (8)

attractors

Even wins here Odd wins here

Zielonka’s algorithm

Idea of the recursion in the Zielonka's algorithm:
● Assume that reaching 8 is winning for Even (i.e., remove all 8,

and their attractors), and solve the game recursively.

8

8

8

8

8

8

8

8

8

highest priority (8)

attractors

Even wins here Odd wins here

Zielonka’s algorithm

Idea of the recursion in the Zielonka's algorithm:
● Assume that reaching 8 is winning for Even (i.e., remove all 8,

and their attractors), and solve the game recursively.
 Odd wins the Odd wins the original game
modified game without seeing any 8

8

8

8

8

8

8

8

8

8

highest priority (8)

attractors

Even wins here Odd wins here

Zielonka’s algorithm

Idea of the recursion in the Zielonka's algorithm:
● Assume that reaching 8 is winning for Even (i.e., remove all 8,

and their attractors), and solve the game recursively.
 Odd wins the Odd wins the original game
modified game without seeing any 8

● Remove the winning region of Odd, together with attractor;
solve the remaining game recursively

8

8

8

8

8

8

8

8

8

highest priority (8)

attractors

Even wins here Odd wins here

Zielonka’s algorithm

In other words:
● Assume that reaching 8 is winning for Even (i.e., remove all 8,

and their attractors), and solve the game recursively;
remove the winning region of Odd, together with attractor

● Assume that reaching 8 is winning for Even (i.e., remove all 8,
and their attractors), and solve the game recursively;
remove the winning region of Odd, together with attractor

● …
 (repeat as long as anything changes)

8

8

8

8

8

8

8

8

8

highest priority (8)

attractors

Even wins here Odd wins here

Zielonka’s algorithm

In other words:
● Assume that reaching 8 is winning for Even (i.e., remove all 8,

and their attractors), and solve the game recursively;
remove the winning region of Odd, together with attractor

● Assume that reaching 8 is winning for Even (i.e., remove all 8,
and their attractors), and solve the game recursively;
remove the winning region of Odd, together with attractor

● …
 (repeat as long as anything changes)

8

8

8

8

8

8

8

8

8

highest priority (8)

attractors

Even wins here Odd wins here

Zielonka’s algorithm

In other words:
● Assume that reaching 8 is winning for Even (i.e., remove all 8,

and their attractors), and solve the game recursively;
remove the winning region of Odd, together with attractor

● Assume that reaching 8 is winning for Even (i.e., remove all 8,
and their attractors), and solve the game recursively;
remove the winning region of Odd, together with attractor

● …
 (repeat as long as anything changes)

8

8

8

8

8

8

8

8

8

highest priority (8)

attractors

Even wins here Odd wins here

Zielonka’s algorithm

Formally:
procedure SolveE(G) // highest priority in G is even
do

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H)
G = G \ AttrO(WO)

while WO≠∅

8

8

8

8

8

8

8

8

8

highest priority (8)

attractors

Even wins here Odd wins here

My modification

Observation:
● At most one of the regions W0,W1,W2 has more than n/2 nodes

(they are disjoint)

8

8

8

8

8

8

8

8

8

highest priority (8)

attractors

Even wins here Odd wins here

W2 W0W1

My modification

Observation:
● At most one of the regions W0,W1,W2 has more than n/2 nodes

(they are disjoint)
Idea:
● Procedure that finds only small winning regions (dominions)

Def. Dominion = set of nodes W, such that the player wins from
 every node of W without leaving W

8

8

8

8

8

8

8

8

8

highest priority (8)

attractors

Even wins here Odd wins here

W2 W0W1

My modification

Idea: procedure that finds only small dominions

procedure solve(G, nE, nO) returns a set WE such that:
● if a node v belongs to Even’s dominion of size ≤nE then v∈WE
● if a node v belongs to Odd’s dominion of size ≤nO then v∉WE
● other nodes v are classified arbitrarily

8

8

8

8

8

8

8

8

8

highest priority (8)

attractors

Even wins here Odd wins here

W2 W0W1

procedure SolveE(G, nE, nO)
if nE < 1 then return ∅
do

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO/2)
G = G \ AttrO(WO)

while WO≠∅

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO)
G = G \ AttrO(WO)
do

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO/2)
G = G \ AttrO(WO)

while WO≠∅

Odd's dominion of size ≤nO

My modification

only smaller dominions

size unchanged (once)

8

8

8

8

8

8

8

procedure SolveE(G, nE, nO)
if nE < 1 then return ∅
do

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO/2)
G = G \ AttrO(WO)

while WO≠∅

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO)
G = G \ AttrO(WO)
do

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO/2)
G = G \ AttrO(WO)

while WO≠∅

Odd's dominion of size ≤nO

My modification

only smaller dominions

size unchanged (once)

8

8

8

8

8

8

8

procedure SolveE(G, nE, nO)
if nE < 1 then return ∅
do

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO/2)
G = G \ AttrO(WO)

while WO≠∅

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO)
G = G \ AttrO(WO)
do

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO/2)
G = G \ AttrO(WO)

while WO≠∅

Odd's dominion of size ≤nO

My modification

only smaller dominions

size unchanged (once)

8

8

8

8

8

8

8

procedure SolveE(G, nE, nO)
if nE < 1 then return ∅
do

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO/2)
G = G \ AttrO(WO)

while WO≠∅

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO)
G = G \ AttrO(WO)
do

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO/2)
G = G \ AttrO(WO)

while WO≠∅

Odd's dominion of size ≤nO

My modification

only smaller dominions

size unchanged (once)

8

8

8

8

8

8

8

procedure SolveE(G, nE, nO)
if nE < 1 then return ∅
do

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO/2)
G = G \ AttrO(WO)

while WO≠∅

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO)
G = G \ AttrO(WO)
do

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO/2)
G = G \ AttrO(WO)

while WO≠∅

8

8

8

8

8

Odd's dominion of size ≤nO

My modification

only smaller dominions

size unchanged (once)

8

8

Running time

Let:
n = number of nodes
h = maximal priority
l = log nE + log nO

Then the running time (number of recursive calls) is:
R(h,l) ≤ 1+n*R(h-1,l-1)+R(h-1,l)

This gives us:
R(h,l) ≤ nl*(h+l)l = nO(log n)

Running time

Let:
n = number of nodes
h = maximal priority
l = log nE + log nO

Then the running time (number of recursive calls) is:
R(h,l) ≤ 1+n*R(h-1,l-1)+R(h-1,l)

This gives us:
R(h,l) ≤ nl*(h+l)l = nO(log n)

 Follow up:

K. Lehtinen, S. Schewe, D. Wojtczak 2019:
the complexity can be improved to nO(log h)

Running time

Let:
n = number of nodes
h = maximal priority
l = log nE + log nO

Then the running time (number of recursive calls) is:
R(h,l) ≤ 1+n*R(h-1,l-1)+R(h-1,l)

This gives us:
R(h,l) ≤ nl*(h+l)l = nO(log n)

 Follow up:

K. Lehtinen, S. Schewe, D. Wojtczak 2019:
the complexity can be improved to nO(log h)

 Implementation?
● Zielonka’s algorithm – relatively fast in practice (usually)
● quasi-polynomial-time algorithms – much slower
● (a simple implementation of) my algorithm – also slow (similar to QPT)

Summary

We present a small modification
of the simple, recursive Zielonka's algorithm,
so that it works in quasi-polynomial time, i.e. nO(log(n))

Why our algorithm is interesting?
● simplicity
● different approach (all the other quasi-polynomial-time algorithms

follow so-called separation approach)

Thank you!

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26

