Parity Games: Zielonka's Algorithm in Quasi-Polynomial Time

Paweł Parys

University of Warsaw

Parity games

- Priorities on vertices
- Player owning the current vertex choses the next vertex
- Player \square wins if the biggest priority seen infinitely often is even.

Parity games

- Priorities on vertices
- Player owning the current vertex choses the next vertex
- Player \square wins if the biggest priority seen infinitely often is even.

Long standing open problem:

Decide in PTIME which player has a winning strategy.

Recent results

Long standing open problem:

Decide in PTIME which player has a winning strategy.

Recent result:

This can be decided in quasi-polynomial time, i.e. $n^{O(\log n)}$

A few algorithms achieving this:

- Calude, Jain, Khoussainov, Li, Stephan 2017
- Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
- Jurdziński, Lazić 2018
- Lehtinen 2018

Recent results

Long standing open problem:

Decide in PTIME which player has a winning strategy.

Recent result:

This can be decided in quasi-polynomial time, i.e. $n^{O(\log n)}$

A few algorithms achieving this:

- Calude, Jain, Khoussainov, Li, Stephan 2017
- Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
- Jurdziński, Lazić 2018
- Lehtinen 2018

Older results:

- multiple (sub-)exponential algorithms
- among them: **Zielonka's algorithm** 1998
 - → very simple recursive algorithm
 - → exponential in the worst case
 - → behaves quite well in practice

Our contribution

We present a <u>small modification</u> of the simple, recursive <u>Zielonka's algorithm</u>, so that it works in <u>quasi-polynomial time</u>, i.e. $n^{O(log(n))}$

Idea of the recursion in the Zielonka's algorithm:

• Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively.

Idea of the recursion in the Zielonka's algorithm:

Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively.
 Odd wins the coriginal game without seeing any 8

Idea of the recursion in the Zielonka's algorithm:

- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively.
 Odd wins the Odd wins the original game modified game without seeing any 8
- Remove the winning region of Odd, together with attractor; solve the remaining game recursively

In other words:

- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively; remove the winning region of Odd, together with attractor
- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively; remove the winning region of Odd, together with attractor

(repeat as long as anything changes)

In other words:

- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively; remove the winning region of Odd, together with attractor
- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively; remove the winning region of Odd, together with attractor

(repeat as long as anything changes)

In other words:

- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively; remove the winning region of Odd, together with attractor
- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively; remove the winning region of Odd, together with attractor

(repeat as long as anything changes)


```
Formally: \operatorname{procedure} \operatorname{Solve}_{\operatorname{E}}(G) \qquad // \operatorname{highest} \operatorname{priority} \operatorname{in} G \operatorname{is} \operatorname{even} \\ \operatorname{do} \qquad H = G \setminus \operatorname{Attr}_{\operatorname{E}}(\operatorname{nodes} \operatorname{of} \operatorname{highest} \operatorname{priority}) \\ W_{\operatorname{O}} = \operatorname{Solve}_{\operatorname{O}}(H) \\ G = G \setminus \operatorname{Attr}_{\operatorname{O}}(W_{\operatorname{O}}) \\ \operatorname{while} W_{\operatorname{O}} \neq \emptyset
```


Observation:

• At most one of the regions W_0, W_1, W_2 has more than n/2 nodes (they are disjoint)

Observation:

• At most one of the regions W_0, W_1, W_2 has more than n/2 nodes (they are disjoint)

<u>Idea:</u>

Procedure that finds only small winning regions (dominions)

Def. $\underline{Dominion}$ = set of nodes W, such that the player wins from every node of W without leaving W

<u>Idea:</u> procedure that finds only small dominions procedure $solve(G, n_E, n_O)$ returns a set W_E such that:

- if a node v belongs to Even's dominion of size $\le n_E$ then $v \in W_E$
- if a node v belongs to Odd's dominion of size $\le n_O$ then $v \notin W_E$
- other nodes *v* are classified arbitrarily

```
procedure Solve<sub>E</sub>(G, n_E, n_O)
if n_E < 1 then return \emptyset
                                                                  Odd's dominion of size \leq n_O
do
     H = G \setminus Attr_{E} (nodes of highest priority)
     W_{\rm O} = {\rm Solve}_{\rm O}(H, n_E, n_O/2)
     G = G \setminus Attr_O(W_O)
while W_{\Omega} \neq \emptyset
                                                                        only smaller dominions
H = G \setminus Attr_{F} (nodes of highest priority)
W_{\rm O} = {\rm Solve}_{\rm O}(H, n_E, n_O)
G = G \setminus Attr_{O}(W_{O})
                                                             size unchanged (once)
do
    H = G \setminus Attr_E(nodes of highest priority)
     W_{\rm O} = {\rm Solve}_{\rm O}(H, n_F, n_O/2)
     G = G \setminus Attr_{O}(W_{O})
while W_{O} \neq \emptyset
```

```
procedure Solve<sub>E</sub>(G, n_E, n_O) if n_E < 1 then return \emptyset do
```


Odd's dominion of size $\leq n_O$

```
H = G \setminus Attr_E(nodes of highest priority)
```

$$W_{\rm O} = {\rm Solve}_{\rm O}(H, n_E, n_O/2)_{\blacktriangleleft}$$

$$G = G \setminus Attr_{O}(W_{O})$$

while
$$W_{\rm O} \neq \emptyset$$

 $H = G \setminus Attr_E$ (nodes of highest priority)

$$W_{O} = \text{Solve}_{O}(H, n_{E}, n_{O})$$

$$G = G \setminus Attr_{O}(W_{O})$$

do

 $H = G \setminus Attr_E$ (nodes of highest priority)

$$W_{\rm O} = {\rm Solve}_{\rm O}(H, n_E, n_O/2)$$

$$G = G \setminus Attr_{O}(W_{O})$$

while
$$W_{\mathcal{O}} \neq \emptyset$$

only smaller dominions

size unchanged (once)

```
procedure Solve<sub>E</sub>(G, n_E, n_O) if n_E < 1 then return \emptyset do
```


Odd's dominion of size $\leq n_O$

$$H = G \setminus Attr_E$$
(nodes of highest priority)

$$W_{\rm O} = {\rm Solve}_{\rm O}(H, n_E, n_O/2)_{\blacktriangleleft}$$

$$G = G \setminus Attr_{O}(W_{O})$$

while
$$W_{\mathcal{O}} \neq \emptyset$$

 $H = G \setminus Attr_E$ (nodes of highest priority)

$$W_{O} = \text{Solve}_{O}(H, n_{E}, n_{O})$$

$$G = G \setminus Attr_{O}(W_{O})$$

do

 $H = G \setminus Attr_E(nodes of highest priority)$

$$W_{\rm O} = {\rm Solve}_{\rm O}(H, n_E, n_O/2)$$

$$G = G \setminus Attr_{O}(W_{O})$$

while
$$W_{\mathcal{O}} \neq \emptyset$$

only smaller dominions

size unchanged (once)

```
procedure Solve<sub>E</sub>(G, n_E, n_O) if n_E < 1 then return \emptyset do
```


Odd's dominion of size $\leq n_O$

$$H = G \setminus Attr_E$$
(nodes of highest priority)

$$W_{\rm O} = {\rm Solve_O}(H, n_E, n_O/2)_{\blacktriangleleft}$$

$$G = G \setminus Attr_{O}(W_{O})$$

while
$$W_{\mathcal{O}} \neq \emptyset$$

 $H = G \setminus Attr_{E}$ (nodes of highest priority)

$$W_{\rm O} = {\rm Solve}_{\rm O}(H, n_E, n_O)$$

$$G = G \setminus Attr_{O}(W_{O})$$

do

size unchanged (once)

 $H = G \setminus Attr_E$ (nodes of highest priority)

$$W_{\rm O} = \text{Solve}_{\rm O}(H, n_E, n_O/2)$$

$$G = G \setminus Attr_O(W_O)$$

while
$$W_{\mathcal{O}} \neq \emptyset$$

only smaller dominions

procedure Solve_E(G, n_E , n_O) if $n_E < 1$ then return \emptyset do

Odd's dominion of size $\leq n_O$

only smaller dominions

 $H = G \setminus Attr_E$ (nodes of highest priority)

$$W_{\rm O} = {\rm Solve_O}(H, n_E, n_O/2)_{\blacktriangleleft}$$

$$G = G \setminus Attr_{O}(W_{O})$$

while $W_{\mathcal{O}} \neq \emptyset$

 $H = G \setminus Attr_E$ (nodes of highest priority)

$$W_{O} = \text{Solve}_{O}(H, n_{E}, n_{O})$$

$$G = G \setminus Attr_{O}(W_{O})$$

do

size unchanged (once)

 $H = G \setminus Attr_E$ (nodes of highest priority)

$$W_{\rm O} = {\rm Solve}_{\rm O}(H, n_E, n_O/2)$$

$$G = G \setminus Attr_{O}(W_{O})$$

while $W_{\mathcal{O}} \neq \emptyset$

Running time

```
Let:
```

n = number of nodes

h = maximal priority

$$l = log n_E + log n_O$$

Then the running time (number of recursive calls) is:

$$R(h,l) \le 1 + n R(h-1,l-1) + R(h-1,l)$$

This gives us:

$$R(h,l) \le n^{l_*}(h+l)^l = n^{O(\log n)}$$

Running time

```
Let:
```

n = number of nodes

h = maximal priority

$$l = log n_E + log n_O$$

Then the running time (number of recursive calls) is:

$$R(h,l) \le 1 + n R(h-1,l-1) + R(h-1,l)$$

This gives us:

$$R(h,l) \le n^{l_*}(h+l)^l = n^{O(\log n)}$$

Follow up:

K. Lehtinen, S. Schewe, D. Wojtczak 2019: the complexity can be improved to $n^{O(\log h)}$

Running time

```
Let: n = n
```

n = number of nodes

h = maximal priority

 $l = log n_E + log n_O$

Then the running time (number of recursive calls) is:

$$R(h,l) \le 1 + n R(h-1,l-1) + R(h-1,l)$$

This gives us:

$$R(h,l) \le n^{l_*}(h+l)^l = n^{O(\log n)}$$

Follow up:

K. Lehtinen, S. Schewe, D. Wojtczak 2019: the complexity can be improved to $n^{O(\log h)}$

Implementation?

- Zielonka's algorithm relatively fast in practice (usually)
- quasi-polynomial-time algorithms much slower
- (a simple implementation of) my algorithm also slow (similar to QPT)

Summary

We present a <u>small modification</u> of the simple, recursive <u>Zielonka's algorithm</u>, so that it works in <u>quasi-polynomial time</u>, i.e. $n^{O(log(n))}$

Why our algorithm is interesting?

- simplicity
- different approach (all the other quasi-polynomial-time algorithms follow so-called separation approach)

Thank you!