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Parity games

● Priorities on vertices
● Player owning the current vertex choses the next vertex
● Player  wins if the biggest priority seen infinitely often is even.
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Older results:
● multiple (sub-)exponential algorithms
● among them: Zielonka's algorithm 1998

➔ very simple recursive algorithm
➔ exponential in the worst case
➔ behaves quite well in practice



  

Our contribution

We present a small modification 
of the simple, recursive Zielonka's algorithm,
so that it works in quasi-polynomial time, i.e. nO(log(n))



  

Zielonka’s algorithm
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Zielonka’s algorithm

Idea of the recursion in the Zielonka's algorithm:
● Assume that reaching 8 is winning for Even (i.e., remove all 8, 

and their attractors), and solve the game recursively.
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Zielonka’s algorithm

Idea of the recursion in the Zielonka's algorithm:
● Assume that reaching 8 is winning for Even (i.e., remove all 8, 

and their attractors), and solve the game recursively.
 Odd wins the          Odd wins the original game 
modified game              without seeing any 8
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Zielonka’s algorithm

Idea of the recursion in the Zielonka's algorithm:
● Assume that reaching 8 is winning for Even (i.e., remove all 8, 

and their attractors), and solve the game recursively.
 Odd wins the          Odd wins the original game 
modified game              without seeing any 8

● Remove the winning region of Odd, together with attractor;
solve the remaining game recursively
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Zielonka’s algorithm

In other words:
● Assume that reaching 8 is winning for Even (i.e., remove all 8, 

and their attractors), and solve the game recursively;
remove the winning region of Odd, together with attractor

● Assume that reaching 8 is winning for Even (i.e., remove all 8, 
and their attractors), and solve the game recursively;
remove the winning region of Odd, together with attractor

● …
      (repeat as long as anything changes)

8

8

8

8

8

8

8

8

8

highest priority (8)

attractors

Even wins here Odd wins here



  

Zielonka’s algorithm

In other words:
● Assume that reaching 8 is winning for Even (i.e., remove all 8, 

and their attractors), and solve the game recursively;
remove the winning region of Odd, together with attractor

● Assume that reaching 8 is winning for Even (i.e., remove all 8, 
and their attractors), and solve the game recursively;
remove the winning region of Odd, together with attractor

● …
      (repeat as long as anything changes)

8

8

8

8

8

8

8

8

8

highest priority (8)

attractors

Even wins here Odd wins here



  

Zielonka’s algorithm

In other words:
● Assume that reaching 8 is winning for Even (i.e., remove all 8, 

and their attractors), and solve the game recursively;
remove the winning region of Odd, together with attractor

● Assume that reaching 8 is winning for Even (i.e., remove all 8, 
and their attractors), and solve the game recursively;
remove the winning region of Odd, together with attractor

● …
      (repeat as long as anything changes)

8

8

8

8

8

8

8

8

8

highest priority (8)

attractors

Even wins here Odd wins here



  

Zielonka’s algorithm

Formally:
procedure SolveE(G)              // highest priority in G is even
do

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H)
G = G \ AttrO(WO)

while WO≠∅
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My modification

Observation:
● At most one of the regions W0,W1,W2 has more than n/2 nodes

(they are disjoint)
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My modification

Observation:
● At most one of the regions W0,W1,W2 has more than n/2 nodes

(they are disjoint)
Idea:
● Procedure that finds only small winning regions (dominions)

Def. Dominion = set of nodes W, such that the player wins from 
  every node of W without leaving W
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My modification

Idea: procedure that finds only small dominions

procedure solve(G, nE, nO) returns a set WE such that:
● if a node v belongs to Even’s dominion of size ≤nE then v∈WE
● if a node v belongs to Odd’s dominion of size ≤nO then v∉WE
● other nodes v are classified arbitrarily
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procedure SolveE(G, nE, nO)    
if nE < 1 then return ∅
do

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO/2)
G = G \ AttrO(WO)

while WO≠∅

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO)
G = G \ AttrO(WO)
do

H = G \ AttrE(nodes of highest priority)
WO = SolveO(H, nE, nO/2)
G = G \ AttrO(WO)

while WO≠∅

Odd's dominion of size ≤nO

My modification

only smaller dominions

size unchanged (once)
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Running time

Let:
n = number of nodes
h = maximal priority
l = log nE + log nO

Then the running time (number of recursive calls) is:
R(h,l) ≤ 1+n*R(h-1,l-1)+R(h-1,l)

This gives us:
R(h,l) ≤ nl*(h+l)l = nO(log n)
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the complexity can be improved to nO(log h)
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This gives us:
R(h,l) ≤ nl*(h+l)l = nO(log n)

  Follow up:

K. Lehtinen, S. Schewe, D. Wojtczak 2019: 
the complexity can be improved to nO(log h)

  Implementation?
● Zielonka’s algorithm – relatively fast in practice (usually)
● quasi-polynomial-time algorithms – much slower
● (a simple implementation of) my algorithm – also slow (similar to QPT)



  

Summary

We present a small modification 
of the simple, recursive Zielonka's algorithm,
so that it works in quasi-polynomial time, i.e. nO(log(n))

Why our algorithm is interesting?
● simplicity
● different approach (all the other quasi-polynomial-time algorithms

follow so-called separation approach)

Thank you!
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