Parity Games: Zielonka's Algorithm in Quasi-Polynomial Time

Paweł Parys
University of Warsaw

- Priorities on vertices
- Player owning the current vertex choses the next vertex
- Player \square wins if the biggest priority seen infinitely often is even.

- Priorities on vertices
- Player owning the current vertex choses the next vertex
- Player \square wins if the biggest priority seen infinitely often is even.

Long standing open problem:
Decide in PTIME which player has a winning strategy.

Recent results

Long standing open problem:
Decide in PTIME which player has a winning strategy.
Recent result:
This can be decided in quasi-polynomial time, i.e. $n^{O(\log n)}$
A few algorithms achieving this:

- Calude, Jain, Khoussainov, Li, Stephan 2017
- Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
- Jurdziński, Lazić 2018
- Lehtinen 2018

Recent results

Long standing open problem:
Decide in PTIME which player has a winning strategy.
Recent result:
This can be decided in quasi-polynomial time, i.e. $n^{O(\log n)}$
A few algorithms achieving this:

- Calude, Jain, Khoussainov, Li, Stephan 2017
- Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
- Jurdziński, Lazić 2018
- Lehtinen 2018

Older results:

- multiple (sub-)exponential algorithms
- among them: Zielonka's algorithm 1998
\rightarrow very simple recursive algorithm
\rightarrow exponential in the worst case
\rightarrow behaves quite well in practice

Our contribution

We present a small modification of the simple, recursive Zielonka's algorithm, so that it works in quasi-polynomial time, i.e. $n^{0(\log (n))}$

Zielonka's algorithm
highest priority (8)

Zielonka's algorithm

highest priority (8)

Idea of the recursion in the Zielonka's algorithm:

- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively.

Zielonka's algorithm

highest priority (8)

Idea of the recursion in the Zielonka's algorithm:

- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively.

Odd wins the \Leftrightarrow Odd wins the original game modified game without seeing any 8

Zielonka's algorithm

highest priority (8)

Idea of the recursion in the Zielonka's algorithm:

- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively.

Odd wins the \Leftrightarrow Odd wins the original game modified game without seeing any 8

- Remove the winning region of Odd, together with attractor; solve the remaining game recursively

Zielonka's algorithm

highest priority (8)

In other words:

- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively; remove the winning region of Odd, together with attractor
- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively; remove the winning region of Odd, together with attractor

(repeat as long as anything changes)

Zielonka's algorithm

 highest priority (8)

In other words:

- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively; remove the winning region of Odd, together with attractor
- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively; remove the winning region of Odd, together with attractor

(repeat as long as anything changes)

Zielonka's algorithm

highest priority (8)

In other words:

- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively; remove the winning region of Odd, together with attractor
- Assume that reaching 8 is winning for Even (i.e., remove all 8, and their attractors), and solve the game recursively; remove the winning region of Odd, together with attractor

(repeat as long as anything changes)

Zielonka's algorithm

highest priority (8)

Formally: procedure Solve $_{\mathrm{E}}(G)$
// highest priority in G is even do

$$
\begin{aligned}
& H=G \backslash \operatorname{Attr}_{\mathrm{E}} \text { (nodes of highest priority) } \\
& W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}(H) \\
& G=G \backslash \operatorname{Attr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)
\end{aligned}
$$

while $W_{\mathrm{O}} \neq \varnothing$

Observation:

- At most one of the regions W_{0}, W_{1}, W_{2} has more than $n / 2$ nodes (they are disjoint)

Observation:

- At most one of the regions W_{0}, W_{1}, W_{2} has more than $n / 2$ nodes (they are disjoint)
Idea:
- Procedure that finds only small winning regions (dominions)

Def. $\underline{\text { Dominion }}=$ set of nodes W, such that the player wins from every node of W without leaving W

Idea: procedure that finds only small dominions procedure solve $\left(G, n_{E}, n_{O}\right)$ returns a set W_{E} such that:

- if a node v belongs to Even's dominion of size $\leq n_{E}$ then $v \in W_{E}$
- if a node v belongs to Odd's dominion of size $\leq n_{O}$ then $v \notin W_{E}$
- other nodes v are classified arbitrarily

My modification

procedure $\operatorname{Solve}_{\mathrm{E}}\left(G, n_{E}, n_{O}\right)$
if $n_{E}<1$ then return \varnothing do

$$
\begin{aligned}
& H=G \backslash \operatorname{Attr}_{\mathrm{E}} \text { (nodes of highest priority) } \\
& W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O} / 2\right) \\
& G=G \backslash \operatorname{Attr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)
\end{aligned}
$$

while $W_{\mathrm{O}} \neq \varnothing$
only smaller dominions
$H=G \backslash$ Attr $_{\mathrm{E}}$ (nodes of highest priority)
$W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O}\right)$
$G=G \backslash \operatorname{Attr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)$
do
size unchanged (once)

$$
H=G \backslash \operatorname{Attr}_{\mathrm{E}} \text { (nodes of highest priority) }
$$

$W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O} \not 2\right)$
$G=G \backslash \operatorname{Attr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)$
while $W_{\mathrm{O}} \neq \varnothing$

My modification

procedure $\operatorname{Solve}_{E}\left(G, n_{E}, n_{O}\right)$
if $n_{E}<1$ then return \varnothing do

$$
\begin{aligned}
& H=G \backslash \operatorname{Attr}_{\mathrm{E}} \text { (nodes of highest priority) } \\
& W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O} / 2\right) \\
& G=G \backslash \operatorname{Atr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)
\end{aligned}
$$

while $W_{\mathrm{O}} \neq \varnothing$
only smaller dominions
$H=G \backslash \operatorname{Attr}_{\mathrm{E}}$ (nodes of highest priority)
$W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O}\right)$
$G=G \backslash \operatorname{Attr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)$
do
size unchanged (once)

$$
H=G \backslash \operatorname{Attr}_{\mathrm{E}} \text { (nodes of highest priority) }
$$

$$
W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O} \not 2\right)
$$

$$
G=G \backslash \operatorname{Attr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)
$$

while $W_{\mathrm{O}} \neq \varnothing$

My modification

procedure $\operatorname{Solve}_{E}\left(G, n_{E}, n_{O}\right)$
if $n_{E}<1$ then return \varnothing do

$$
\begin{aligned}
& H=G \backslash \operatorname{Attr}_{\mathrm{E}} \text { (nodes of highest priority) } \\
& W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O} / 2\right) \\
& G=G \backslash \operatorname{Atr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)
\end{aligned}
$$

while $W_{\mathrm{O}} \neq \varnothing$
only smaller dominions
$H=G \backslash \operatorname{Attr}_{\mathrm{E}}$ (nodes of highest priority)
$W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O}\right)$
$G=G \backslash \operatorname{Attr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)$
do
size unchanged (once)

$$
H=G \backslash \operatorname{Attr}_{\mathrm{E}} \text { (nodes of highest priority) }
$$

$$
W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O} \not 2\right)
$$

$$
G=G \backslash \operatorname{Attr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)
$$

while $W_{\mathrm{O}} \neq \varnothing$

My modification

procedure $\operatorname{Solve}_{E}\left(G, n_{E}, n_{O}\right)$
if $n_{E}<1$ then return \varnothing do

$$
\begin{aligned}
& H=G \backslash \operatorname{Attr}_{\mathrm{E}} \text { (nodes of highest priority) } \\
& W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O} / 2\right) \\
& G=G \backslash \operatorname{Atr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)
\end{aligned}
$$

while $W_{\mathrm{O}} \neq \varnothing$
only smaller dominions
$H=G \backslash \operatorname{Attr}_{\mathrm{E}}$ (nodes of highest priority)
$W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O}\right)$
$G=G \backslash \operatorname{Attr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)$
do
size unchanged (once)

$$
H=G \backslash \operatorname{Attr}_{\mathrm{E}} \text { (nodes of highest priority) }
$$

$W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O} \not 2\right)$
$G=G \backslash \operatorname{Attr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)$
while $W_{\mathrm{O}} \neq \varnothing$

My modification

procedure $\operatorname{Solve}_{\mathrm{E}}\left(G, n_{E}, n_{O}\right)$
if $n_{E}<1$ then return \varnothing do

$$
\begin{aligned}
& H=G \backslash \operatorname{Attr}_{\mathrm{E}} \text { (nodes of highest priority) } \\
& W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O} / 2\right) \\
& G=G \backslash \operatorname{Attr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)
\end{aligned}
$$

while $W_{\mathrm{O}} \neq \varnothing$
only smaller dominions
$H=G \backslash \operatorname{Attr}_{\mathrm{E}}$ (nodes of highest priority)
$W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O}\right)$
$G=G \backslash \operatorname{Attr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)$
do
size unchanged (once)

$$
H=G \backslash \operatorname{Attr}_{\mathrm{E}} \text { (nodes of highest priority) }
$$

$W_{\mathrm{O}}=\operatorname{Solve}_{\mathrm{O}}\left(H, n_{E}, n_{O} \not 2\right)$
$G=G \backslash \operatorname{Attr}_{\mathrm{O}}\left(W_{\mathrm{O}}\right)$
while $W_{\mathrm{O}} \neq \varnothing$

Running time

Let:
$n=$ number of nodes
$h=$ maximal priority
$l=\log n_{E}+\log n_{O}$
Then the running time (number of recursive calls) is:

$$
R(h, l) \leq 1+n \cdot R(h-1, l-1)+R(h-1, l)
$$

This gives us:

$$
R(h, l) \leq n^{l} \cdot(h+l)^{l}=n^{O}(\log n)
$$

Running time

Let:
$n=$ number of nodes
$h=$ maximal priority
$l=\log n_{E}+\log n_{O}$
Then the running time (number of recursive calls) is:

$$
R(h, l) \leq 1+n \cdot R(h-1, l-1)+R(h-1, l)
$$

This gives us:

$$
R(h, l) \leq n^{l} \cdot(h+l)^{l}=n^{O}(\log n)
$$

Follow up:

K. Lehtinen, S. Schewe, D. Wojtczak 2019: the complexity can be improved to $\left.n^{O(l o g} h\right)$

Running time

Let:
$n=$ number of nodes
$h=$ maximal priority
$l=\log n_{E}+\log n_{O}$
Then the running time (number of recursive calls) is:

$$
R(h, l) \leq 1+n \cdot R(h-1, l-1)+R(h-1, l)
$$

This gives us:

$$
R(h, l) \leq n^{l} \cdot(h+l)^{l}=n^{O}(\log n)
$$

Follow up:

K. Lehtinen, S. Schewe, D. Wojtczak 2019: the complexity can be improved to $\left.n^{O(l o g} h\right)$

Implementation?

- Zielonka's algorithm - relatively fast in practice (usually)
- quasi-polynomial-time algorithms - much slower
- (a simple implementation of) my algorithm - also slow (similar to QPT)

Summary

We present a small modification
of the simple, recursive Zielonka's algorithm, so that it works in quasi-polynomial time, i.e. $n^{\circ(\log (n))}$

Why our algorithm is interesting?

- simplicity
- different approach (all the other quasi-polynomial-time algorithms follow so-called separation approach)

Thank you!

