

Extensions
of the Caucal Hierarchy?

Paweł Parys

University of Warsaw

LATA 2019

Caucal hierarchy – a hierarchy of graphs

We consider directed, edge-labeled graphs without isolated vertices

Caucal hierarchy – a hierarchy of graphs

We consider directed, edge-labeled graphs without isolated vertices

Graph(0) = finite graphs

Graph(1)Tree(1)

Tree(2) Graph(2)

unfoldings

MSO-interpretations

unfoldings

MSO-interpretations

Tree(3) Graph(3)

unfoldings

MSO-interpretations

Caucal hierarchy – a hierarchy of graphs

We consider directed, edge-labeled graphs without isolated vertices

Graph(0) = finite graphs

Graph(1)Tree(1)

Tree(2) Graph(2)

unfoldings

MSO-interpretations

unfoldings

MSO-interpretations

Defined by Caucal (2002)
Studied intensively by Carayol & Wöhrle (2003)

Unfoldings

G – graph
r – a selected node in G

Unf(G, r) – unfolding of G from r (a new graph)
 nodes: paths in G starting from r
 edges: for every edge u→v in G,

 and for every path p ending in u
 if p‘ is the extension of p by the edge u→v
 we create an a-labeled edge from p to p‘

a

a

Unfoldings

ab c

r

GGraph(0) a

a a

a a

b c

b c

a a

b c

b cc b cc b cc b cc

Unf(G,r)Tree(1)

unfolding

MSO-interpretations

MSO logic – a logic, where you can quantify over nodes
and over sets of nodes, and reason about edges between nodes

MSO-interpretations

MSO logic – a logic, where you can quantify over nodes
and over sets of nodes, and reason about edges between nodes

MSO interpretation:
● a graph G
● a tuple of MSO formulas fa(x,y), for every letter aS

This defines a new graph:
● there is an a-labeled edge between x and y if fa(x,y) holds
● nodes = nodes of G incident with at least one edge

MSO-interpretations

a

a a

a a

b c

b c

a

b

b cc b cc b cc

y(x) = “x is on the (ab)* branch”
fa(x,y) = y(x)∧∃z (x→z∧z→y)

fb(x,y) = y(x)∧∃z (y→z∧(z→x∨z=x))
a

a

a

a b

b a

b
b

b
b

b
b

MSO-interpretations

y(x) = “x is on the (ab)* branch”
fa(x,y) = y(x)∧∃z (x→z∧z→y)

fb(x,y) = y(x)∧∃z (y→z∧(z→x∨z=x))
a

a

a

a b

b a

b
b

b
b

b
b

Graph(1)

unfolding again

a

a

a
b

b

b
b

b
b

Graph(1)

unfolding

a

a

a

a

a

a

b

b

bb

bb

bb

ba b b

b

Tree(2)

∉Tree(1)

but

Caucal hierarchy – a hierarchy of graphs

We consider directed, edge-labeled graphs without isolated vertices

Graph(0) = finite graphs

Graph(1)Tree(1)

Tree(2) Graph(2)

unfoldings

MSO-interpretations

unfoldings

MSO-interpretations

Tree(3) Graph(3)

unfoldings

MSO-interpretations

What is interesting about the Caucal hierarchy?

Graphs in the Caucal hierarchy have decidable MSO theory
i.e. for every graph G in the hierarchy there is a procedure that
given an MSO sentence f says whether f holds in G

Reason:
● unfoldings preserve decidability of MSO [Courcelle & Walukiewicz 1998]
● MSO-interpretations preserve decidability of MSO

What is interesting about the Caucal hierarchy?

Graphs in the Caucal hierarchy have decidable MSO theory
i.e. for every graph G in the hierarchy there is a procedure that
given an MSO sentence f says whether f holds in G

Reason:
● unfoldings preserve decidability of MSO [Courcelle & Walukiewicz 1998]
● MSO-interpretations preserve decidability of MSO

Remark:
For many graphs the MSO theory is undecidable,
e.g. for the infinite grid (thus the infinite grid is not in the Caucal hierarchy)

What is interesting about the Caucal hierarchy?

There are other, equivalent definitions of the hierarchy:
● instead of MSO-interpretations we can use:

● MSO-transductions (=create multiple copies + MSO-interpretation)
[Courcelle 1994]

● inverse rational mappings (a “special form” of MSO-interpretations:
we can only analyze some path between the nodes) [Caucal 1996]

● FO-interpretations (first-order logic with descendant relation)
[Colcombet 2007]

What is interesting about the Caucal hierarchy?

There are other, equivalent definitions of the hierarchy:
● instead of MSO-interpretations we can use:

● MSO-transductions (=create multiple copies + MSO-interpretation)
[Courcelle 1994]

● inverse rational mappings (a “special form” of MSO-interpretations:
we can only analyze some path between the nodes) [Caucal 1996]

● FO-interpretations (first-order logic with descendant relation)
[Colcombet 2007]

Remark: when we have a fixed graph G, then
by using MSO-transductions from G we can obtain more graphs
than by using FO-interpretations from G
But: there is another graph G’ on the same level of the hierarchy
such that the MSO-transduction in G
can be replaced by an FO-interpretation in G’

G

G’

HGraph(n)

MSO-transduction

FO-interpretationTree(n)

What is interesting about the Caucal hierarchy?

There are other, equivalent definitions of the hierarchy:
● instead of MSO-interpretations we can use:

● MSO-transductions (=create multiple copies + MSO-interpretation)
[Courcelle 1994]

● inverse rational mappings (a “special form” of MSO-interpretations:
we can only analyze some path between the nodes) [Caucal 1996]

● FO-interpretations (first-order logic with descendant relation)
[Colcombet 2007]

● instead of unfoldings we can use the “treegraph” operation
(create infinitely many copies of the graph, and connect them in a
”tree-shaped manner”) [Walukiewicz 2002]

What is interesting about the Caucal hierarchy?

There are other, equivalent definitions of the hierarchy:
● instead of MSO-interpretations we can use:

● MSO-transductions (=create multiple copies + MSO-interpretation)
[Courcelle 1994]

● inverse rational mappings (a “special form” of MSO-interpretations:
we can only analyze some path between the nodes) [Caucal 1996]

● FO-interpretations (first-order logic with descendant relation)
[Colcombet 2007]

● instead of unfoldings we can use the “treegraph” operation
(create infinitely many copies of the graph, and connect them in a
”tree-shaped manner”) [Walukiewicz 2002]

● Graph(n) = e-closures of configuration graphs of
 order-n pushdown automata

(a generalization of pushdown automata:
 they use a stack of order n – a stack of stacks of … of stacks)
[Maslov 1976]

Our contribution:

1) Using WMSO+U-interpretations, we obtain the same hierarchy
 (i.e. every level of the hierarchy is closed under WMSO+U-interpretations)

2) Using MSO+U-interpretations, we can obtain graphs with
 undecidable MSO theory
 (i.e. we obtain more graphs, but without nice properties)

Logic MSO+U

MSO+U extends MSO by a new quantifier „U” [Bojańczyk, 2004]

UX.f(X)

f(X) holds for finite sets of arbitrarily large size
n∈ℕ X (n<|X|< ∧ f(X))

WMSO+U = “weak” MSO+U – we can quantify only over finite sets
(X /X means: exists a finite set X / for all finite sets X)

Decision problems for MSO+U
Satisfiability (the problem usually considered for MSO+U):
input: sentence f, question: is f true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]

Decision problems for MSO+U
Satisfiability (the problem usually considered for MSO+U):
input: sentence f, question: is f true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]

HORS model-checking is decidable [P. 2018]
input: sentence fÎMSO+U, higher-order recursion scheme G,
question: is f true in the tree generated by G

We use this result here!!

Decision problems for MSO+U
Satisfiability (the problem usually considered for MSO+U):
input: sentence f, question: is f true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]

HORS model-checking is decidable [P. 2018]
input: sentence fÎMSO+U, higher-order recursion scheme G,
question: is f true in the tree generated by G

Moreover, we have the reflection property:
input: formula f(x)ÎMSO+U, higher-order recursion scheme G,
output: a scheme G+ generating a tree of the same shape, but

 with additional label in every node saying whether f holds
 for this node

We use this result here!!

Higher-order recursion schemes
A generalization of context-free grammars:
● nonterminals can take arguments
● these arguments may be used on the right side of productions
● arguments may take further arguments
● deterministic (one rule for every nonterminal)
● we want to generate an infinite tree:

on the right side of productions we may use constructors of nodes
[Damm 1986, Knapik, Niwiński, Urzyczyn 2002]

Higher-order recursion schemes
A generalization of context-free grammars:
● nonterminals can take arguments
● these arguments may be used on the right side of productions
● arguments may take further arguments
● deterministic (one rule for every nonterminal)
● we want to generate an infinite tree:

on the right side of productions we may use constructors of nodes
[Damm 1986, Knapik, Niwiński, Urzyczyn 2002]

Thm. Trees generated by deterministic order-n pushdown automata
 = trees generated by safe order-n recursion schemes
where “safe” is some syntactic restriction on the schemes

How do we prove our theorems?
Thm 1. Every level of the Caucal hierarchy is closed under
 WMSO+U-interpretations

Step 1: establish relation between the Caucal hierarchy and
 trees generated by recursion schemes

How do we prove our theorems?
Thm 1. Every level of the Caucal hierarchy is closed under
 WMSO+U-interpretations

Step 1: establish relation between the Caucal hierarchy and
 trees generated by recursion schemes

We know that:
Fact 1. Every GGraph(n) is an e-closure of the configuration graph
of some order-n pushdown automaton
Fact 2. Trees generated by deterministic order-n pushdown
automata = trees generated by safe order-n recursion schemes

How do we prove our theorems?
Thm 1. Every level of the Caucal hierarchy is closed under
 WMSO+U-interpretations

Step 1: establish relation between the Caucal hierarchy and
 trees generated by recursion schemes

We know that:
Fact 1. Every GGraph(n) is an e-closure of the configuration graph
of some order-n pushdown automaton
Fact 2. Trees generated by deterministic order-n pushdown
automata = trees generated by safe order-n recursion schemes

Problems here:
1) deterministic vs nondeterministic automata
2) recursion schemes & deterministic automata can generate only
 finitely branching trees, while in Tree(n) we also have infinitely
 branching trees
3) (superficial) node-labeled / edge-labeled trees

How do we prove our theorems?
Thm 1. Every level of the Caucal hierarchy is closed under
 WMSO+U-interpretations

Step 1: establish relation between the Caucal hierarchy and
 trees generated by recursion schemes

It is possible to prove that:

Lemma 1. A graph is in Graph(n) iff it can be obtained by applying
an MSO-interpretation to a tree generated by some safe order-(n-1)
recursion scheme.

How do we prove our theorems?
Thm 1. Every level of the Caucal hierarchy is closed under
 WMSO+U-interpretations

Step 2 – we prove that:

Lemma 2. Every WMSO+U formula f(x,y) can be rewritten as an
MSO formula f’(x,y) having WMSO+U subformulas y(z).

Idea: Using f’ we describe the top (finite) part
of the tree, containing x and y, where U is useless,
and we use subformulas y to reason about infinite
subtrees.

x

y

f’

y

How do we prove our theorems?
Thm 1. Every level of the Caucal hierarchy is closed under
 WMSO+U-interpretations

Step 2 – we prove that:

Lemma 2. Every WMSO+U formula f(x,y) can be rewritten as an
MSO formula f’(x,y) having WMSO+U subformulas y(z).

Using the WMSO+U-reflection property for recursion schemes
[P. 2008], we obtain:

Lemma 3. Every WMSO+U interpretation in a tree T generated
by a safe order-n recursion scheme G can be rewritten as an
MSO-interpretation in a tree T+ generated by a safe order-n

recursion scheme G+.

How do we prove our theorems?
Thm 2. By applying some MSO+U-interpretation to some tree
TTree(2) we can obtain a graph with undecidable MSO theory

This is obtained by inspecting / modifying the proof that satisfiability
of MSO+U is undecidable.

Conclusions
Thm 1. Every level of the Caucal hierarchy is closed under
WMSO+U-interpretations.

Thm 2. By applying some MSO+U-interpretation to some tree
TTree(2) we can obtain a graph with undecidable MSO theory
(hence outside of the Caucal hierarchy).

Open problem:
● Find a larger class of graphs with decidable MSO theory.
● In particular, trees generated by all recursion schemes have

decidable MSO theory. But only trees generated by safe recursion
schemes are in the Caucal hierarchy.
Is there a class with a nice logical characterization that contains
all these trees?

Conclusions
Thm 1. Every level of the Caucal hierarchy is closed under
WMSO+U-interpretations.

Thm 2. By applying some MSO+U-interpretation to some tree
TTree(2) we can obtain a graph with undecidable MSO theory
(hence outside of the Caucal hierarchy).

Open problem:
● Find a larger class of graphs with decidable MSO theory.
● In particular, trees generated by all recursion schemes have

decidable MSO theory. But only trees generated by safe recursion
schemes are in the Caucal hierarchy.
Is there a class with a nice logical characterization that contains
all these trees?

Thank you!

Thank you!

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35

