

Recursion Schemes
and the WMSO+U Logic

Paweł Parys

University of Warsaw

STACS 2018

Higher-order recursion schemes – what is this?

Definition
Recursion schemes = simply-typed lambda-calculus + recursion

In other words:
● programs with recursion
● higher-order functions (i.e., functions taking other functions as

parameters)
● every function/parameter has a fixed type
● no data values, only functions

Higher-order recursion schemes – example

fun f(x) {
a(x);
if * then f(x);
b(x);

}
f(x)

recursion

branching (we are not sure what
 will be chosen)

uniterpreted constants
(unknown functions)

Higher-order recursion schemes – example

fun f(x) {
a(x);
if * then f(x);
b(x);

}
f(x)

 a

if

 b a

....

 if

 b a

 if

 a b

 if

 b a

 b

 b

 b
 b

 b

 b

We are interested in trees representing
the control flow of such programs.

Observation: these trees need not
 to be regular

⊥

⊥

⊥

⊥

Higher-order recursion schemes – example

fun A(f,x) {
 if * then A(D(f),x) else f(x);
}
fun D(f)(x) {
 f(x); f(x);
}
fun P(x) {
 b(x);
}
A(P,x)

if

if

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

...

⊥

⊥

⊥

⊥

if

if

This program uses higher-order recursion
(passes functions as parameters)

k

2k

Model-checking

Theorem [Ong 2006]

MSO model-checking on trees generated by recursion schemes
is decidable.

Input: MSO formula f, recursion scheme G
Question: is f true in the (infinite) tree generated by G?

Model-checking

● a program in a functio-
nal programming lan-
guage (e.g. OCAML)

● a property y

does the program
satisfy y?

Model-checking

● a program in a functio-
nal programming lan-
guage (e.g. OCAML)

● a property y

● a recursion scheme G
● a formula f

is f true in the tree
generated by G?

ignore some details,

simulate some details
using functions

Approximation

decidable

does the program
satisfy y?

Model-checking

● a program in a functio-
nal programming lan-
guage (e.g. OCAML)

● a property y

● a recursion scheme G
● a formula f

is f true in the tree
generated by G?
● yes
● no

ignore some details,

simulate some details
using functions

does the program
satisfy y?
● yes
● ?

Approximation

decidable

There exist tools that take (short) programs in Ocaml and can
verify some useful properties.

This work – can we go beyond MSO?

What about checking properties not expressible in MSO,
e.g., talking about boundedness?

This work – can we go beyond MSO?

What about checking properties not expressible in MSO,
e.g., talking about boundedness?

We consider the WMSO+U logic.

“+U” = we add a new quantifier „U” [Bojańczyk, 2004]

UX.f(X)

f(X) holds for finite sets of arbitrarily large size
n∈ℕ X (n<|X|< ∧ f(X))

This work – can we go beyond MSO?

What about checking properties not expressible in MSO,
e.g., talking about boundedness?

We consider the WMSO+U logic.

“+U” = we add a new quantifier „U” [Bojańczyk, 2004]

UX.f(X)

f(X) holds for finite sets of arbitrarily large size
n∈ℕ X (n<|X|< ∧ f(X))

“W” = weak – we can quantify only over finite sets
(X /X means: exists a finite set X / for all finite sets X)

Decision problems for MSO+U

Satisfiability (the problem usually considered for MSO+U):
input: formula f, question: is f true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]

Decision problems for MSO+U

Satisfiability (the problem usually considered for MSO+U):
input: formula f, question: is f true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]

HORS model-checking
input: formula f, HORS G,
question: is f true in the tree generated by G
● decidable for fÎMSO [Ong 2006]
● undecidable for fÎMSO+U (generalizes satifiability)

● Contribution: decidable for fÎWMSO+U

About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Key ingredients:
● decidability of the “diagonal problem” for HORSes:

input: HORS G, letter a
question: are there paths with arbitrarily many letters a in the tree

 generated by G?
[Hague, Kochems, Ong 2016, Clemente, P., Salvati, Walukiewicz 2016]
Remark 1: this property is not regular
Remark 2: this is a „universal” property that can be expressed by

 a single „U” quantifier

About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Key ingredients:
● decidability of the “diagonal problem” for HORSes:

input: HORS G, letter a
question: are there paths with arbitrarily many letters a in the tree

 generated by G?
[Hague, Kochems, Ong 2016, Clemente, P., Salvati, Walukiewicz 2016]
Remark 1: this property is not regular
Remark 2: this is a „universal” property that can be expressed by

 a single „U” quantifier
● „reflection” for the diagonal problem: [P. 2017]

input: HORS G, letter a

output: HORS H, generating the same tree as G, but with additional
 labels – in each node it is written whether there are paths

 starting in this node with arbitrarily many letters a

(step 3)

About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Key ingredients:
● „reflection” for the diagonal problem: [P. 2017]

input: HORS G, letter a

output: HORS H, generating the same tree as G, but with additional
 labels – in each node it is written whether there are paths

 starting in this node with arbitrarily many letters a
● „reflection” for (W)MSO: [Broadbent, Carayol, Ong, Serre 2010]

input: HORS G, formula y(x)ÎWMSO

output: HORS H, generating the same tree as G, but with additional
 labels – in each node it is written whether y holds in this node

(step 3)

(step 4)

About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Key ingredients:
● translation: formulas ⇒ automata

We define a new model of automata: nested U-prefix automata.
(step 1)

About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Key ingredients:
● translation: formulas ⇒ automata

We define a new model of automata: nested U-prefix automata.
● This is a sequence of automata – A1, A2, ..., Ak

Every Ai is a nondeterministic automaton, where
➔ there is special state  meaning “end of run” – only a finite prefix of

a run can use other states, from some moment there are only  states
➔ some states are marked as “important”

(step 1)

About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Key ingredients:
● translation: formulas ⇒ automata

We define a new model of automata: nested U-prefix automata.
● This is a sequence of automata – A1, A2, ..., Ak

Every Ai is a nondeterministic automaton, where
➔ there is special state  meaning “end of run” – only a finite prefix of

a run can use other states, from some moment there are only  states
➔ some states are marked as “important”

● Effect of running Ai on a tree t: we mark every node v such that in the
subtree of t starting in v there are runs of Ai with arbitrarily many

important states (alphabet changes from S to S{0,1})

(step 1)

About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Key ingredients:
● translation: formulas ⇒ automata

We define a new model of automata: nested U-prefix automata.
● This is a sequence of automata – A1, A2, ..., Ak

Every Ai is a nondeterministic automaton, where
➔ there is special state  meaning “end of run” – only a finite prefix of

a run can use other states, from some moment there are only  states
➔ some states are marked as “important”

● Effect of running Ai on a tree t: we mark every node v such that in the
subtree of t starting in v there are runs of Ai with arbitrarily many

important states (alphabet changes from S to S{0,1})
● The translation (formula ⇒ nested automaton) is not difficult

Every quantifier corresponds to one Ai

(step 1)

About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Key ingredients:
Step 1: formula ⇒ nested automaton A1, A2, ..., Ak

For every Ai and HORS Gi generating a tree ti we want to create

a HORS Gi+1 generating ti+1=Ai(ti) (i.e., the effect of running Ai on ti):

Step 2: Create Hi that generates ti enriched with all possible runs of Ai
 (on additional new branches below every node of Ai)

 This tree is an effect of running a finite-state transducer on ti
 HORSes can be composed with transducers

Step 3: Use diagonal reflection to see whether there are runs having
 arbitrarily many “important” states

Step 4: Move the new information to the original tree, and remove
 the additional branches (MSO reflection is useful here)

About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Conclusion of the proof:
● The proof consists of a few (clearly separated) steps
● The technical difficulty is hidden in the “diagonal reflection” theorem

Future work

The diagonal problem for HORS is decidable in a more general version:
input: HORS G, letters a1,...,ak

question: are there paths with arbitrarily many appearances of every
 letter a1,...,ak in the tree generated by G?
[Hague, Kochems, Ong 2016, Clemente, P., Salvati, Walukiewicz 2016]
(and we have the reflection property for this problem)

Future work

The diagonal problem for HORS is decidable in a more general version:
input: HORS G, letters a1,...,ak

question: are there paths with arbitrarily many appearances of every
 letter a1,...,ak in the tree generated by G?
[Hague, Kochems, Ong 2016, Clemente, P., Salvati, Walukiewicz 2016]
(and we have the reflection property for this problem)

1) In our proof we use only the one-letter case.
2) It seems that the multi-letter case cannot be expressed in WMSO+U

 (U says that one quality is unbounded, not that many qualities are
 unbounded simultaneously)

Future work

The diagonal problem for HORS is decidable in a more general version:
input: HORS G, letters a1,...,ak

question: are there paths with arbitrarily many appearances of every
 letter a1,...,ak in the tree generated by G?
[Hague, Kochems, Ong 2016, Clemente, P., Salvati, Walukiewicz 2016]
(and we have the reflection property for this problem)

1) In our proof we use only the one-letter case.
2) It seems that the multi-letter case cannot be expressed in WMSO+U

 (U says that one quality is unbounded, not that many qualities are
 unbounded simultaneously)

Question: Design a more general logic, capable to express the multi-
letter diagonal problem (and prove its decidability for trees generated by
HORSes, via a reduction to this version of the diagonal problem)

Thank you!

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27

