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Higher-order recursion schemes – what is this?

Definition
Recursion schemes = simply-typed lambda-calculus + recursion

In other words:
● programs with recursion
● higher-order functions (i.e., functions taking other functions as

parameters)
● every function/parameter has a fixed type
● no data values, only functions



  

Higher-order recursion schemes – example

fun f(x) { 
a(x);
if * then f(x);
b(x);

}
f(x)

recursion

branching (we are not sure what
                  will be chosen)

uniterpreted constants 
(unknown functions)



  

Higher-order recursion schemes – example

fun f(x) { 
a(x);
if * then f(x);
b(x);

}
f(x)
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We are interested in trees representing
the control flow of such programs.

Observation: these trees need not
  to be regular
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Higher-order recursion schemes – example

fun A(f,x) {
   if * then A(D(f),x) else f(x);
}
fun D(f)(x) {
   f(x); f(x);
}
fun P(x) { 
   b(x); 
}
A(P,x)
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This program uses higher-order recursion 
(passes functions as parameters)
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Model-checking

Theorem [Ong 2006]

MSO model-checking on trees generated by recursion schemes
is decidable.

Input: MSO formula f, recursion scheme G
Question: is f true in the (infinite) tree generated by G?



  

Model-checking

● a program in a functio-
nal programming lan-
guage (e.g. OCAML)

● a property y

does the program 
satisfy y?
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simulate some details
using functions
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does the program 
satisfy y?



  

Model-checking

● a program in a functio-
nal programming lan-
guage (e.g. OCAML)

● a property y

● a recursion scheme G
● a formula f

is f true in the tree 
generated by G?
● yes
● no

ignore some details,

simulate some details
using functions

does the program 
satisfy y?
● yes
● ?

Approximation

decidable

There exist tools that take (short) programs in Ocaml and can
verify some useful properties.



  

This work – can we go beyond MSO?

What about checking properties not expressible in MSO, 
e.g., talking about boundedness?
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“+U” = we add a new quantifier „U”    [Bojańczyk, 2004]

UX.f(X)

f(X) holds for finite sets of arbitrarily large size
n∈ℕ X ( n<|X|< ∧ f(X) )



  

This work – can we go beyond MSO?

What about checking properties not expressible in MSO, 
e.g., talking about boundedness?

We consider the WMSO+U logic.

“+U” = we add a new quantifier „U”    [Bojańczyk, 2004]

UX.f(X)

f(X) holds for finite sets of arbitrarily large size
n∈ℕ X ( n<|X|< ∧ f(X) )

“W” = weak – we can quantify only over finite sets
( X /X means: exists a finite set X / for all finite sets X)



  

Decision problems for MSO+U

Satisfiability (the problem usually considered for MSO+U):
input: formula f, question: is f true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]



  

Decision problems for MSO+U

Satisfiability (the problem usually considered for MSO+U):
input: formula f, question: is f true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]

HORS model-checking
input: formula f, HORS G,
question: is f true in the tree generated by G 
● decidable for fÎMSO [Ong 2006]
● undecidable for fÎMSO+U (generalizes satifiability)

● Contribution: decidable for fÎWMSO+U



  

About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Key ingredients:
● decidability of the “diagonal problem” for HORSes:

input: HORS G, letter a
question: are there paths with arbitrarily many letters a in the tree 

     generated by G?
[Hague, Kochems, Ong 2016, Clemente, P., Salvati, Walukiewicz 2016]
Remark 1: this property is not regular
Remark 2: this is a „universal” property that can be expressed by

  a single „U” quantifier
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  a single „U” quantifier
● „reflection” for the diagonal problem: [P. 2017]

input: HORS G, letter a

output: HORS H, generating the same tree as G, but with additional
            labels – in each node it is written whether there are paths 

 starting in this node with arbitrarily many letters a 

(step 3)



  

About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Key ingredients:
● „reflection” for the diagonal problem: [P. 2017]

input: HORS G, letter a

output: HORS H, generating the same tree as G, but with additional
            labels – in each node it is written whether there are paths  

 starting in this node with arbitrarily many letters a 
● „reflection” for (W)MSO: [Broadbent, Carayol, Ong, Serre 2010]

input: HORS G, formula y(x)ÎWMSO

output: HORS H, generating the same tree as G, but with additional
            labels – in each node it is written whether y holds in this node

(step 3)

(step 4)



  

About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Key ingredients:
● translation: formulas ⇒ automata

We define a new model of automata: nested U-prefix automata.
(step 1)
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About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Key ingredients:
● translation: formulas ⇒ automata

We define a new model of automata: nested U-prefix automata.
● This is a sequence of automata – A1, A2, ..., Ak

Every Ai is a nondeterministic automaton, where
➔ there is special state  meaning “end of run” – only a finite prefix of

a run can use other states, from some moment there are only  states
➔ some states are marked as “important”

● Effect of running Ai on a tree t: we mark every node v such that in the
subtree of t starting in v there are runs of Ai with arbitrarily many 

important states (alphabet changes from S to S{0,1})
● The translation (formula ⇒ nested automaton) is not difficult

Every quantifier corresponds to one Ai 

(step 1)



  

About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Key ingredients:
Step 1: formula ⇒ nested automaton A1, A2, ..., Ak

For every Ai and HORS Gi generating a tree ti we want to create

a HORS Gi+1 generating ti+1=Ai(ti) (i.e., the effect of running Ai on ti):

Step 2: Create Hi that generates ti enriched with all possible runs of Ai 
  (on additional new branches below every node of Ai) 

  This tree is an effect of running a finite-state transducer on ti
   HORSes can be composed with transducers

Step 3: Use diagonal reflection to see whether there are runs having
  arbitrarily many “important” states

Step 4: Move the new information to the original tree, and remove 
  the additional branches (MSO reflection is useful here)



  

About the proof

Theorem – the following problem is decidable:
input: formula f, HORS G,
question: is f true in the tree generated by G?

Conclusion of the proof:
● The proof consists of a few (clearly separated) steps
● The technical difficulty is hidden in the “diagonal reflection” theorem



  

Future work

The diagonal problem for HORS is decidable in a more general version:
input: HORS G, letters a1,...,ak

question: are there paths with arbitrarily many appearances of every
                letter a1,...,ak in the tree generated by G?
[Hague, Kochems, Ong 2016, Clemente, P., Salvati, Walukiewicz 2016]
(and we have the reflection property for this problem)
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1) In our proof we use only the one-letter case.
2) It seems that the multi-letter case cannot be expressed in WMSO+U

 (U says that one quality is unbounded, not that many qualities are
  unbounded simultaneously)



  

Future work

The diagonal problem for HORS is decidable in a more general version:
input: HORS G, letters a1,...,ak

question: are there paths with arbitrarily many appearances of every
                letter a1,...,ak in the tree generated by G?
[Hague, Kochems, Ong 2016, Clemente, P., Salvati, Walukiewicz 2016]
(and we have the reflection property for this problem)

1) In our proof we use only the one-letter case.
2) It seems that the multi-letter case cannot be expressed in WMSO+U

 (U says that one quality is unbounded, not that many qualities are
  unbounded simultaneously)

Question: Design a more general logic, capable to express the multi-
letter diagonal problem (and prove its decidability for trees generated by 
HORSes, via a reduction to this version of the diagonal problem)



  

Thank you!
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