Universal trees grow inside separating automata: Quasi-polynomial lower bounds for parity games

Wojciech Czerwiński, Laure Daviaud, Nathanaël Fijalkow Marcin Jurdziński, Ranko Lazić, <u>Paweł Parys</u>

(University of Warsaw, University of Warwick, CNRS, The Alan Turing Institute)

Parity games

- Priorities on edges
- Player owning the current vertex choses the next vertex
- Player \square wins if the biggest priority seen infinitely often is even.

Parity games

- Priorities on edges
- Player owning the current vertex choses the next vertex
- Player \square wins if the biggest priority seen infinitely often is even.

Long standing open problem:

Decide in PTIME which player has a winning strategy.

Recent results

Long standing open problem:

Decide in PTIME which player has a winning strategy.

Recent result:

This can be decided in quasipolynomial time, i.e. $n^{log(n)+O(1)}$

Several algorithms achieving this:

- Calude, Jain, Khoussainov, Li, Stephan 2017
- Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
- Jurdziński, Lazić 2018
- Lehtinen 2018

Recent results

Long standing open problem:

Decide in PTIME which player has a winning strategy.

Recent result:

This can be decided in quasipolynomial time, i.e. $n^{log(n)+O(1)}$

Several algorithms achieving this:

- Calude, Jain, Khoussainov, Li, Stephan 2017
- Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
- Jurdziński, Lazić 2018
- Lehtinen 2018

Our contributions:

- 1) All these algorithms use "the separation approach"
- 2) Quasipolynomial lower bound for the separation approach

Corollary: A polynomial algorithm has to work differently.

The separation approach

Encoding of infinite plays – a sequence of pairs:

- vertex number
- the priority read from this vertex
- \rightarrow (1,1),(2,2),(2,3),(3,1),(2,3),...

The separation approach

Encoding of infinite plays – a sequence of pairs:

- vertex number
- the priority read from this vertex
- \rightarrow (1,1),(2,2),(2,3),(3,1),(2,3),...

plays consistent with a <u>positional</u> winning strategy (in some game graph)

<u>Theorem</u>

If a player has a winning strategy, then it has a positional winning strategy (a move does not depend on the history, only on the current vertex)

The separation approach

- 1) Construct a safety automaton A which
 - accepts plays compatible with a positional strategy for Even
 - rejects plays lost by Even
- 2) Consider the product game $G \times A$ (safety game)
- 3) Solve this safety game (running time \approx size of A)

Remark: A does not depend on G, only on n and d

The lower bound

Theorem

Every safety automaton A which

- accepts plays compatible with a positional strategy for Even
- rejects plays lost by Even

has at least quasipolynomial size

The lower bound

Theorem

Every safety automaton A which

- accepts plays compatible with a positional strategy for Even
- rejects plays lost by Even

has at least quasipolynomial size

Step 1

Every such automaton has a structure of a universal tree

Step 2

Every universal tree has at least quasipolynomial size

Open problem

Observation:

To solve parity games it is enough to separate PosCyclEven_{n,d} from PosCyclOdd_{n,d}.

Open problem:

Does the lower bound apply to automata that separate $PosCyclEven_{n,d}$ from $PosCyclOdd_{n,d}$?

Open problem

Observation:

To solve parity games it is enough to separate PosCyclEven_{n,d} from PosCyclOdd_{n,d}.

Open problem:

Does the lower bound apply to automata that separate PosCyclEven_{n,d} from PosCyclOdd_{n,d}?

Thank you!