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Parity games

● Priorities on edges
● Player owning the current vertex choses the next vertex
● Player  wins if the biggest priority seen infinitely often is even.
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Parity games

● Priorities on edges
● Player owning the current vertex choses the next vertex
● Player  wins if the biggest priority seen infinitely often is even.

Long standing open problem:
Decide in PTIME which player has a winning strategy.
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Recent results

Long standing open problem:
Decide in PTIME which player has a winning strategy.

Recent result: 
This can be decided in quasipolynomial time, i.e. nlog(n)+O(1)

Several algorithms achieving this:
● Calude, Jain, Khoussainov, Li, Stephan 2017
● Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
● Jurdziński, Lazić 2018
● Lehtinen 2018



  

Recent results

Long standing open problem:
Decide in PTIME which player has a winning strategy.

Recent result: 
This can be decided in quasipolynomial time, i.e. nlog(n)+O(1)

Several algorithms achieving this:
● Calude, Jain, Khoussainov, Li, Stephan 2017
● Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
● Jurdziński, Lazić 2018
● Lehtinen 2018

Our contributions:
1) All these algorithms use „the separation approach”
2) Quasipolynomial lower bound for the separation approach

Corollary: A polynomial algorithm has to work differently.



  

The separation approach

Encoding of infinite plays – a sequence of pairs: 
● vertex number
● the priority read from this vertex
➔(1,1),(2,2),(2,3),(3,1),(2,3),...

Infinite plays

LimsupEvenn,d LimsupOddn,d



  

The separation approach

Encoding of infinite plays – a sequence of pairs: 
● vertex number
● the priority read from this vertex
➔(1,1),(2,2),(2,3),(3,1),(2,3),...

Infinite plays

plays consistent with a positional winning strategy (in some game graph)

Theorem
If a player has a winning strategy, then it has a positional winning 
strategy (a move does not depend on the history, only on the current
vertex)

LimsupEvenn,d LimsupOddn,d

PosCyclEvenn,d



  

The separation approach
Infinite plays

LimsupEvenn,d LimsupOddn,d

PosCyclEvenn,d

1) Construct a safety automaton A which
● accepts plays compatible with a positional strategy for Even
● rejects plays lost by Even

2) Consider the product game GA (safety game)
3) Solve this safety game

(running time  size of A)

Remark: A does not depend on G, only on n and d



  

The lower bound
Infinite plays

Theorem
Every safety automaton A which

● accepts plays compatible with a positional strategy for Even
● rejects plays lost by Even

has at least quasipolynomial size

LimsupEvenn,d LimsupOddn,d

PosCyclEvenn,d



  

The lower bound
Infinite plays

Theorem
Every safety automaton A which

● accepts plays compatible with a positional strategy for Even
● rejects plays lost by Even

has at least quasipolynomial size

Step 1
Every such automaton has a structure of a universal tree

Step 2
Every universal tree has at least quasipolynomial size

LimsupEvenn,d LimsupOddn,d

PosCyclEvenn,d



  

Open problem
Infinite plays

Observation:
To solve parity games it is enough to separate PosCyclEvenn,d 
from PosCyclOddn,d.

Open problem: 
Does the lower bound apply to automata that separate PosCyclEvenn,d 
from PosCyclOddn,d?

PosCyclOddn,d

LimsupEvenn,d LimsupOddn,d

PosCyclEvenn,d



  

Open problem
Infinite plays

Observation:
To solve parity games it is enough to separate PosCyclEvenn,d 
from PosCyclOddn,d.

Open problem: 
Does the lower bound apply to automata that separate PosCyclEvenn,d 
from PosCyclOddn,d?

Thank you!

PosCyclOddn,d

LimsupEvenn,d LimsupOddn,d

PosCyclEvenn,d
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