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Parity games

* Priorities on edges
* Player owning the current vertex choses the next vertex
« Player L1 wins if the biggest priority seen infinitely often is even.
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Our contributions:
1) All these algorithms use ,the separation approach”
2) Quasipolynomial lower bound for the separation approach

Corollary: A polynomial algorithm has to work differently.



The separation approach

Encoding of infinite plays — a sequence of pairs:
* vertex number

* the priority read from this vertex
=2(1,1),(2,2),(2,3),(3,1),(2,3),...
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The separation approach

Encoding of infinite plays — a sequence of pairs:
* vertex number
* the priority read from this vertex

=2(1,1),(2,2),(2,3),(3,1),(2,3),...
Infinite plays
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plays consistent with a positional winning strategy (in some game graph)

Theorem

If a player has a winning strategy, then it has a positional winning
strategy (a move does not depend on the history, only on the current
vertex)




The separation approach

Infinite plays

LimsupKyven, ; LimsupOdd, 4

PosCyclEven,, 4

~

1) Construct a safety automaton A which
e accepts plays compatible with a positional strategy for Even

e rejects plays lost by Even
2) Consider the product game GXxA (safety game)

3) Solve this safety game
(running time ~ size of A)

Remark: A does not depend on G, only on n and d
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Infinite plays
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Theorem

Every safety automaton A which
« accepts plays compatible with a positional strategy for Even
e rejects plays lost by Even

has at least quasipolynomial size

Step 1
Every such automaton has a structure of a universal tree

Step 2
Every universal tree has at least quasipolynomial size




Open problem

Infinite plays
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Observation:

To solve parity games it is enough to separate PosCyclEven, 4
from PosCyclOdd, ;.

Open problem:
Does the lower bound apply to automata that separate PosCyclEven,, ,

from PosCyclOdd, ;?
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Thank you!
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