Intersection Types for Unboundedness Problems

Paweł Parys

University of Warsaw

Our setting

Intersection types can be used as:

- an extension of simple types (mostly undecidable)
- a refinement of simple types (mostly decidable)
this talk

Our setting

We consider infinitary, simply-typed λ-calculus and simply-typed λY-calculus.

Our setting

We consider infinitary, simply-typed λ-calculus and simply-typed λY-calculus.
Simple types (sorts): $0,0 \rightarrow(0 \rightarrow 0),(0 \rightarrow 0) \rightarrow 0,(0 \rightarrow 0) \rightarrow(((0 \rightarrow 0) \rightarrow 0) \rightarrow 0)$

Our setting

We consider infinitary, simply-typed λ-calculus and simply-typed λY-calculus.

Simple types (sorts): $0,0 \rightarrow 0 \rightarrow 0,(0 \rightarrow 0) \rightarrow 0,(0 \rightarrow 0) \rightarrow((0 \rightarrow 0) \rightarrow 0) \rightarrow 0$

Order: $\operatorname{ord}(0)=0, \operatorname{ord}(\alpha \rightarrow \beta)=\max (\operatorname{ord}(\alpha)+1, \operatorname{ord}(\beta))$

Our setting

We consider infinitary, simply-typed λ-calculus and simply-typed λY-calculus.

Simple types (sorts): $0,0 \rightarrow 0 \rightarrow 0,(0 \rightarrow 0) \rightarrow 0,(0 \rightarrow 0) \rightarrow((0 \rightarrow 0) \rightarrow 0) \rightarrow 0$

Order: $\operatorname{ord}(0)=0, \operatorname{ord}(\alpha \rightarrow \beta)=\max (\operatorname{ord}(\alpha)+1, \operatorname{ord}(\beta))$
λ-terms:

- variables: $x^{\alpha}, y^{\beta}, \ldots$
- constants: $\mathrm{a}^{\alpha}, \mathrm{b}^{\beta}, \ldots-$ only for sorts of order ≤ 1
- λ-abstraction: $\left(\lambda x^{\alpha} . K^{\beta}\right)^{\alpha \rightarrow \beta}$
- application: $\left(\mathrm{K}^{\alpha \rightarrow \beta} \mathrm{L}^{\alpha}\right)^{\beta}$ + coinduction

Every term has a particular sort.
We assume that all arguments of constants are already applied:
$a^{0 \rightarrow 0 \rightarrow 0} \mathrm{~K}^{0} \mathrm{~L}^{0}$ is allowed, but $\mathrm{a}^{0 \rightarrow 0 \rightarrow 0} \mathrm{~K}^{0}$ is not allowed

Our setting - λY-calculus

λY-term is a finite representation of an infinite λ-term:

- In a λ Y-term we may use a binder "Y"
- Meaning:
$\left(Y x^{\alpha} \cdot M^{\alpha}\right)^{\alpha}$ - this is the unique (infinite) λ-term such that

$$
Y x . M=M[Y x . M / x]
$$

Example:

the λY-term: Yx.((גy.ay) x)
represents the λ-term: ((גy.ay) ((גy.ay) ((גy.ay) (($\lambda y . a y) ~ . .)))$.

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.
- Every (infinite) λ-term K reduces to term in head- β-normal form, i.e.: $\lambda x_{1} \cdots . \lambda x_{n} \cdot y M_{1} \ldots M_{k}$ or $\lambda x_{1} \cdots . \lambda x_{n} \cdot a M_{1} \ldots M_{k}$

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.
- Every (infinite) λ-term K reduces to term in head- β-normal form, i.e.: $\lambda x_{1} \cdots . \lambda x_{n} \cdot y M_{1} \ldots M_{k}$ or $\lambda x_{1} \cdots . \lambda x_{n} \cdot a M_{1} \ldots M_{k}$
- We may reduce each M_{1}, \ldots, M_{k} to head- β-normal form, etc.
- The limit is called the Böhm tree of K .

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.
- Every (infinite) λ-term K reduces to term in head- β-normal form, i.e.: $\lambda x_{1} \cdot \cdots . \lambda x_{n} \cdot y M_{1} \ldots M_{k}$ or $\lambda x_{1} \cdot \cdots . \lambda x_{n} \cdot a M_{1} \ldots M_{k}$
- We may reduce each M_{1}, \ldots, M_{k} to head- β-normal form, etc.
- The limit is called the Böhm tree of K .

Suppose that:
$\rightarrow \mathrm{K}$ is of sort o
$\rightarrow K$ has no free variables
\rightarrow we only use constants of order ≤ 1.
Then the Böhm tree is a tree built out of constants.

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.
- Every (infinite) λ-term K reduces to term in head- β-normal form, i.e.: $\lambda x_{1} \cdot \cdots . \lambda x_{n} \cdot y M_{1} \ldots M_{k}$ or $\lambda x_{1} \cdot \cdots . \lambda x_{n} \cdot a M_{1} \ldots M_{k}$
- We may reduce each M_{1}, \ldots, M_{k} to head- β-normal form, etc.
- The limit is called the Böhm tree of K .

Suppose that:
$\rightarrow \mathrm{K}$ is of sort o
$\rightarrow K$ has no free variables
\rightarrow we only use constants of order ≤ 1.
Then the Böhm tree is a tree built out of constants.

Example:

Yx.((גy.ay) x) $=((\lambda y \cdot a y)((\lambda y \cdot a y)((\lambda y \cdot a y)((\lambda y \cdot a y) \ldots))))$

$$
\left(\text { a }\left(\left(\lambda y \cdot{ }^{\prime}{ }^{\prime}\right)((\lambda y \cdot a y)((\lambda y \cdot a y) \ldots))\right)\right)
$$

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.
- Every (infinite) λ-term K reduces to term in head- β-normal form, i.e.: $\lambda x_{1} \cdot \cdots . \lambda x_{n} \cdot y M_{1} \ldots M_{k}$ or $\lambda x_{1} \cdot \cdots . \lambda x_{n} \cdot a M_{1} \ldots M_{k}$
- We may reduce each M_{1}, \ldots, M_{k} to head- β-normal form, etc.
- The limit is called the Böhm tree of K .

Suppose that:
$\rightarrow \mathrm{K}$ is of sort o
$\rightarrow K$ has no free variables
\rightarrow we only use constants of order ≤ 1.
Then the Böhm tree is a tree built out of constants.

Example:

Yx.((גy.ay) x) $=((\lambda y \cdot a y)((\lambda y \cdot a y)((\lambda y \cdot a y)((\lambda y \cdot a y) \ldots))))$

$$
(a(a((\lambda y . a y)((\lambda y . a y) \ldots))))
$$

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.
- Every (infinite) λ-term K reduces to term in head- β-normal form, i.e.: $\lambda x_{1} \cdot \cdots . \lambda x_{n} \cdot y M_{1} \ldots M_{k}$ or $\lambda x_{1} \cdot \cdots . \lambda x_{n} \cdot a M_{1} \ldots M_{k}$
- We may reduce each M_{1}, \ldots, M_{k} to head- β-normal form, etc.
- The limit is called the Böhm tree of K .

Suppose that:
$\rightarrow \mathrm{K}$ is of sort o
$\rightarrow K$ has no free variables
\rightarrow we only use constants of order ≤ 1.
Then the Böhm tree is a tree built out of constants.

Example:

Yx.((גy.ay) x) $=((\lambda y \cdot a y)((\lambda y \cdot a y)((\lambda y \cdot a y)((\lambda y \cdot a y) \ldots))))$

$$
\left(a\left(a\left(a^{\gamma}((\lambda y . a y) \ldots)\right)\right)\right.
$$

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.
- Every (infinite) λ-term K reduces to term in head- β-normal form, i.e.: $\lambda x_{1} \cdot \cdots . \lambda x_{n} \cdot y M_{1} \ldots M_{k}$ or $\lambda x_{1} \cdot \cdots . \lambda x_{n} \cdot a M_{1} \ldots M_{k}$
- We may reduce each M_{1}, \ldots, M_{k} to head- β-normal form, etc.
- The limit is called the Böhm tree of K .

Suppose that:
$\rightarrow \mathrm{K}$ is of sort o
$\rightarrow K$ has no free variables
\rightarrow we only use constants of order ≤ 1.
Then the Böhm tree is a tree built out of constants.
Example:
Yx.((גy.ay) $x)=((\lambda y \cdot a y)((\lambda y \cdot a y)((\lambda y \cdot a y)((\lambda y \cdot a y) \ldots))))$

$$
\left(a\left(a^{\nabla}\left(a^{\gamma} \ldots\right)\right)\right)
$$

Our setting - Böhm trees

Example:
Yx.((גy.byy) x) = ((גy.byy) ((גy.byy) ((خy.byy) ((גy.byy) ...))))

$$
(b(b(b \ldots)(b \ldots))(b(b \ldots)(b \ldots))
$$

Equivalent formalisms - trees generated by:

- higher-order recursion schemes (HORSes)
- collapsible pushdown automata
- ordered tree-pushdown automata

Intersection types for λY-calculus - general setting
In the context of λY-calculus (recursion schemes), intersection types were used for:

- model checking -
this talk
- transformation of schemes
- pumping

Plan

1) model checking for co-trivial tree automata (via intersection types)
2) transformation "words \rightarrow trees" (via intersection types) + how to use it to solve unboundedness problems
3) unboundedness problems (directly via intersection types)

Motivation: from program verification to recursion schemes

Example

open(x, "foo")
$\mathrm{a}:=0$
while $a<100$ do
\quad read(x)
$a:=a+1$
close (x)

is the file "foo"
accessed according to open,read*,close?

Motivation: from program verification to recursion schemes

Example

Step 1: information about infinite data domains is approximated.

open(x, "foo")
$\mathrm{a}:=0$
while $\mathrm{a}<100$ do
read(x$)$
$\mathrm{a}:=\mathrm{a}+1$
close (x)

$$
\begin{array}{|l}
\hline \text { open(x, "foo") } \\
\text { while * do } \\
\text { read(} x \text {) } \\
\text { close }(x) \\
\hline
\end{array}
$$

is the file "foo" accessed according to open,read ${ }^{*}$,close?

is the file "foo" accessed according to open,read ${ }^{*}$,close?

Motivation: from program verification to recursion schemes

Example

Step 2: consider the tree of possible control flows.

open(x, "foo")
while * do
$\operatorname{read}(x)$
$\operatorname{close}(x)$

is the file "foo"
accessed according to open,read*,close?
is each path labelled by open,read*,close?

Motivation: from program verification to recursion schemes

What about higher order programs?

```
let f(x,g)=
    if * then g(x)
    else f(x, fun h x -> h(x); h(x))
open(x)
f(x, read)
close(x)
```


- For programs without recursion, each path of the tree is a regular language.
- Programs with (higher-order) recursion can be approximated by recursion schemes

Intersection types describing co-trivial ATA

We fix some alternating tree automaton:
Q - set of states
Δ - set of transitions of the form $(q, a) \rightarrow\left(Q_{1}, \ldots, Q_{r}\right)$ where $r=\operatorname{arity}(a)$
q_{0} - initial state (for the root of the tree)

Intersection types describing co-trivial ATA

We fix some alternating tree automaton:
Q - set of states
Δ - set of transitions of the form $(q, a) \rightarrow\left(Q_{1}, \ldots, Q_{r}\right)$ where $r=\operatorname{arity}(a)$
q_{0} - initial state (for the root of the tree)
Run on a tree $t=$ labeling of nodes of t by sets of states

- if a node v is labeled by S, and its children by S_{1}, \ldots, S_{r}, then for every $q \in S$ there is a transition $(q, a) \rightarrow\left(Q_{1}, \ldots, Q_{r}\right)$ with $Q_{1} \subseteq S_{1}, \ldots, Q_{r} \subseteq S_{r}$

Intersection types describing co-trivial ATA
We fix some alternating tree automaton:
Q - set of states
Δ - set of transitions of the form $(q, a) \rightarrow\left(Q_{1}, \ldots, Q_{r}\right)$ where $r=\operatorname{arity}(a)$
q_{0} - initial state (for the root of the tree)
Run on a tree $t=$ labeling of nodes of t by sets of states

- if a node v is labeled by S, and its children by S_{1}, \ldots, S_{r}, then for every $q \in S$ there is a transition $(q, a) \rightarrow\left(Q_{1}, \ldots, Q_{r}\right)$ with $Q_{1} \subseteq S_{1}, \ldots, Q_{r} \subseteq S_{r}$
- co-trivial accepting condition: only finitely many nodes are labeled by nonempty sets

Intersection types describing co-trivial ATA

We fix some alternating tree automaton:
Q - set of states
Δ - set of transitions of the form $(q, a) \rightarrow\left(Q_{1}, \ldots, Q_{r}\right)$ where $r=\operatorname{arity}(a)$
q_{0} - initial state (for the root of the tree)
Run on a tree $t=$ labeling of nodes of t by sets of states

- if a node v is labeled by S, and its children by S_{1}, \ldots, S_{r}, then for every $q \in S$ there is a transition $(q, a) \rightarrow\left(Q_{1}, \ldots, Q_{r}\right)$ with $Q_{1} \subseteq S_{1}, \ldots, Q_{r} \subseteq S_{r}$
- co-trivial accepting condition: only finitely many nodes are labeled by nonempty sets

Goal: given an automaton A and a term K, decide whether A accepts the Böhm tree of K.
We can achieve this goal using a type system of intersection types:
a type τ can be derived for $K \Leftrightarrow A$ accepts $B T(K)$
[Broadbent, Kobayashi - CSL 2013]

Intersection types describing co-trivial ATA

Intersection types:

- describe behavior of the automaton
- refine simple types (sorts): for every sort α we have a set Types ${ }^{\alpha}$ of types refining sort α
Type judgments:
$\Gamma \vdash \mathrm{K}: \tau$

Intersection types describing co-trivial ATA

Intersection types:

- describe behavior of the automaton
- refine simple types (sorts): for every sort α we have a set Types ${ }^{\alpha}$ of types refining sort α
Type judgments:

$$
\Gamma \vdash K: \tau
$$

Types $^{\circ}=Q$
A term of sort o (a tree, or a term that generates a tree) has type q (where $q \in Q$) if the tree can be accepted from state q

Intersection types describing co-trivial ATA

Intersection types:

- describe behavior of the automaton
- refine simple types (sorts): for every sort α we have a set Types ${ }^{\alpha}$ of types refining sort α
Type judgments:

$$
\Gamma \vdash K: \tau
$$

Types $^{0}=Q$
A term of sort o (a tree, or a term that generates a tree) has type q (where $q \in Q$) if the tree can be accepted from state q

For each transition $(q, a) \rightarrow\left(Q_{1}, \ldots, Q_{r}\right)$ of A we have a typing rule:
$\Gamma \vdash K_{i}: p$ for each $i \in\{1, \ldots, r\}$ and each $p \in Q_{i}$

$$
\Gamma \vdash a K_{1} \ldots K_{r}: q
$$

Intersection types describing co-trivial ATA

Terms of order 1 describe fragments of trees:
Types ${ }^{0 \rightarrow o \rightarrow o}=P(Q) \times P(Q) \times Q$
such a type is of the form $Q_{x} \rightarrow Q_{y} \rightarrow q$
(it says that if the subtree given as the first
 argument is accepted from all states in Q_{X}, and the subtree given as the second argument is accepted from all states in Q_{y}, then the whole tree can be accepted from q)

Remark: Q_{X} has to be a set of states, not a single state, even if we consider nondeterministic automata instead of alternating automata, because x can appear multiple times in K.

Intersection types describing co-trivial ATA

In general:
Types ${ }^{\circ}=Q$
Types ${ }^{\alpha \rightarrow \beta}=P\left(\right.$ Types $\left.^{\alpha}\right) \times$ Types $^{\beta}$
Elements of Types ${ }^{\alpha \rightarrow \beta}$ are written as $\Psi \rightarrow \boldsymbol{\tau}$

Intersection types describing co-trivial ATA

In general:
Types ${ }^{0}=Q$
Types ${ }^{\alpha \rightarrow \beta}=P\left(\right.$ Types $\left.^{\alpha}\right) \times$ Types $^{\beta}$
Elements of Types ${ }^{\alpha \rightarrow \beta}$ are written as $\Psi \rightarrow \boldsymbol{\tau}$
Typing rules:
$\Gamma \vdash K_{i}: p$ for each $i \in\{1, \ldots, r\}$ and each $p \in Q_{i}$ $\Gamma \vdash a K_{1} \ldots K_{r}: q$

$$
\frac{\Gamma \vdash K: \Psi \rightarrow \tau \quad \Gamma \vdash L: \sigma \text { for each } \sigma \in \Psi}{\Gamma \vdash K L: \tau}
$$

$$
\begin{array}{r}
\tau \in \Gamma(x) \\
\Gamma \vdash x: \tau
\end{array}
$$

$$
\frac{\Gamma[x \rightarrow \Psi] \vdash K: \tau}{\Gamma \vdash \lambda x \cdot K: \Psi \rightarrow \tau}
$$

Intersection types describing co-trivial ATA
Typing rules:

$$
\frac{\Gamma \vdash K_{i}: p \text { for each } i \in\{1, \ldots, r\} \text { and each } p \in Q_{i}}{\Gamma \vdash a K_{1} \ldots K_{r}: q}
$$

$$
\frac{\Gamma \vdash K: \Psi \rightarrow \tau \quad \Gamma \vdash L: \sigma \text { for each } \sigma \in \Psi}{\Gamma \vdash K L: \tau}
$$

$$
\begin{aligned}
& \tau \in \Gamma(x) \\
& \Gamma \vdash x: \tau \frac{\Gamma[x \rightarrow \Psi] \vdash K: \tau}{\Gamma \vdash \lambda x . K: \Psi \rightarrow \tau}
\end{aligned}
$$

K may be infinite
Lemma: For a closed term K of sort o, and for a state q,
there is a finite derivation $\Leftrightarrow A$ accepts $B T(K)$ from state q of $\varepsilon \vdash K: q$

Intersection types describing co-trivial ATA
Typing rules:

$$
\frac{\Gamma \vdash K_{i}: p \text { for each } i \in\{1, \ldots, r\} \text { and each } p \in Q_{i}}{\Gamma \vdash a K_{1} \ldots K_{r}: q}
$$

$$
\frac{\Gamma \vdash K: \Psi \rightarrow \tau \quad \Gamma \vdash L: \sigma \text { for each } \sigma \in \Psi}{\Gamma \vdash K L: \tau}
$$

$$
\begin{array}{ll}
\tau \in \Gamma(x) \\
\Gamma \vdash x: \tau & \frac{\Gamma[x \rightarrow \Psi] \vdash K: \tau}{\Gamma \vdash \lambda x . K: \Psi \rightarrow \tau}
\end{array}
$$

K may be infinite
Lemma: For a closed term K of sort o, and for a state q,
there is a finite derivation $\Leftrightarrow A$ accepts $B T(K)$ from state q of $\varepsilon \vdash K: q$

Lemma 2: If we consider A with trivial accepting condition, instead of co-trivial (if we allow infinite runs of A), we have the equivalence
there is a derivation
(arbitrary - possibly infinite)
$\Longleftrightarrow A$ accepts $B T(K)$ from state q of $\varepsilon \vdash K: q$

Intersection types describing co-trivial ATA
Lemma: For a closed term K of sort o, and for a state q,
there is a finite derivation $\Leftrightarrow A$ accepts $B T(K)$ from state q of $\varepsilon \vdash K: q$

Proof sketch:

1) If $M \rightarrow{ }_{\beta} N$, then $\Gamma \vdash M: \tau \Leftrightarrow \Gamma \vdash N: \tau$
2) For $K=B T(K)$ the lemma is trivial (only rules for a constant are used)
3) Both sides of the lemma talk only about finite prefixes of the term, so we can assume that K is finite. Then $K \rightarrow{ }_{\beta}^{*} B T(K)$.

Intersection types describing co-trivial ATA
Lemma: For a closed λ-term K of sort o, and for a state q,
there is a finite derivation $\Leftrightarrow A$ accepts $B T(K)$ from state q of $\varepsilon \vdash K: q$
$\underline{\text { Goal: }}$ given an automaton A and a finite λY-term K^{\prime}, decide whether A accepts $B T\left(K^{\prime}\right)$.

Intersection types describing co-trivial ATA
Lemma: For a closed λ-term K of sort o, and for a state q,
there is a finite derivation $\Leftrightarrow A$ accepts $B T(K)$ from state q of $\varepsilon \vdash K: q$
Goal: given an automaton A and a finite λY-term K^{\prime}, decide whether A accepts $B T\left(K^{\prime}\right)$.

- Recall that K^{\prime} is a finite representation of an infinite λY-term K.
- Seeing K^{\prime} we have to check whether a type judgment can be derived for K.
- I.e., seeing Yx.M, we have to check which type judgments can be derived for $M[M[M[M[M[\ldots] / x] / x] / x] / x]$.
- This is an easy fixpoint computation.

Unboundedness - basic problem

Input: closed λY-term K of sort o (i.e. infinite λ-term represented in a finite way) Question: In the Böhm tree of K, are there (finite) branches with arbitrarily many symbols "a"?
($\forall n \exists$ branch with $>n$ appearances of a)

Unboundedness - basic problem

Input: closed λY-term K of sort o (i.e. infinite λ-term represented in a finite way)
Question: In the Böhm tree of K, are there (finite) branches with arbitrarily many symbols "a"?
($\forall n \exists$ branch with $>n$ appearances of a)

Notice:
There may be no path with infinitely many „a".
Our property is not regular!!!
(regular properties can be checked e.g. by [Ong - LICS 2006])

Unboundedness - basic problem

Input: closed λY-term K of sort o (i.e. infinite λ-term represented in a finite way)
Question: In the Böhm tree of K, are there (finite) branches with arbitrarily many symbols "a"?
($\forall n \exists$ branch with $>n$ appearances of a)

This is an instance of a more general problem, called diagonal problem or simultaneous unboundedness problem (SUP): Input: closed λ Y-term K of sort o, set A of symbols Question: In the Böhm tree of K, are there (finite) branches with arbitrarily many appearances of every symbol from A?
($\forall n \exists$ branch $\forall a \in A$ there are $>n$ appearances of a on the branch)
This problem is decidable
[Hague, Kochems, Ong - POPL 2016],
[Clemente, P., Salvati, Walukiewicz - LICS 2016]

Unboundedness - basic problem

Input: closed λ Y-term K of sort 0 (i.e. infinite λ-term represented in a finite way)
Question 1: In the Böhm tree of K, are there finite branches with arbitrarily many symbols "a"?
($\forall n \exists$ branch with $>n$ appearances of a)
Solution - preparation:
We generalize the problem to nondeterministic terms
(aka nondeterministic recursion schemes).

- We add a new construct: $n d K^{\alpha} L^{\alpha}$
- We add reduction rules: nd $K L \rightarrow K$ and $n d K L \rightarrow L$
- Now there is no one unique Bohm tree Instead, we have a set of finite trees (normal forms) of a (closed, of sort 0 , potentially infinite) lambda-term K; we denote this set $\mathcal{L}(K)$

Unboundedness - basic problem

Input: closed λ Y-term K of sort 0 (i.e. infinite λ-term represented in a finite way)
Question 1: In the Böhm tree of K, are there finite branches with arbitrarily many symbols "a"?
($\forall n \exists$ branch with $>n$ appearances of a)
Solution - preparation:
We generalize the problem to nondeterministic terms (aka nondeterministic recursion schemes).

- We add a new construct: $n d K^{\alpha} L^{\alpha}$
- We add reduction rules: nd $K L \rightarrow K$ and $n d K L \rightarrow L$
- Now there is no one unique Bohm tree Instead, we have a set of finite trees (normal forms) of a (closed, of sort o, potentially infinite) lambda-term K; we denote this set $\mathcal{L}(K)$
- New question: are there trees in $\mathcal{L}(K)$ with arbitrarily many symbols "a"?
- Easy reduction from question 1 to the new question: replace every appearance of $a M N$ by a ($n d M N$); then $\mathcal{L}\left(K^{\prime}\right)$ is the set of branches $B T(K)$
- In particular all symbols in K^{\prime} are of arity 0 and 1

Unboundedness - basic problem

Input: nondeterministic closed λ Y-term K of sort o (symbols of arity 0 \& 1) Question: are there trees (paths) in $\mathcal{L}(K)$ with arb. many symbols "a"? How to solve it?
a term K of order m, where $\xrightarrow{\text { step } 1}$ a term K^{\prime} of order m - 1 , where $\mathcal{L}(K)$ is a set of words written on branches
 in $\mathcal{L}\left(K^{\prime}\right)$ these words are written in leaves

Unboundedness - basic problem

Input: nondeterministic closed λ Y-term K of sort o (symbols of arity 0 \& 1) Question: are there trees (paths) in $\mathcal{L}(K)$ with arb. many symbols "a"? How to solve it?
a term K of order m, where $\xrightarrow{\text { step } 1}$ a term K^{\prime} of order m - 1 , where $\mathcal{L}(K)$ is a set of words written on branches
step 2 in $\mathcal{L}\left(K^{\prime}\right)$ these words are written in leaves
a term $K^{\prime \prime}$ of order $m-1$, where $\mathcal{L}\left(K^{\prime \prime}\right)$ has similar ${ }^{\star}$ words written on branches

Unboundedness - basic problem

Input: nondeterministic closed λY-term K of sort o (symbols of arity 0 \& 1) Question: are there trees (paths) in $\mathcal{L}(K)$ with arb. many symbols "a"? How to solve it?
a term K of order m, where step $1 \leadsto$ a term K^{\prime} of order m - 1 , where $\mathcal{L}(K)$ is a set of words written on branches
step 2 in $\mathcal{L}\left(K^{\prime}\right)$ these words are written in leaves
a term $K^{\prime \prime}$ of order $m-1$, where $\mathcal{L}\left(K^{\prime \prime}\right)$ has similar ${ }^{\wedge}$
words written on branches

Repeat these steps until the order drops down to 0 , and solve the diagonal problem for a regular language.

Unboundedness - basic problem

Input: nondeterministic closed λ Y-term K of sort o (symbols of arity 0 \& 1) Question: are there trees (paths) in $\mathcal{L}(K)$ with arb. many symbols "a"? a term K^{\prime} of order $m-1$, where a term $K^{\prime \prime}$ of order $m-1, \quad$ step 2 in $\mathcal{L}\left(K^{\prime}\right)$ these words are where $\mathcal{L}\left(K^{\prime \prime}\right)$ has similar written in leaves

Example:

Idea:

1) Choose (nondeterministically) only one branch.
2) For every removed subtree with a, write a new a just above.

Unboundedness - basic problem

Input: nondeterministic closed λ Y-term K of sort o (symbols of arity 0 \& 1) Question: are there trees (paths) in $\mathcal{L}(K)$ with arb. many symbols "a"?
a term $K^{\prime \prime}$ of order $m-1, \quad$ step 2 in $\mathcal{L}\left(K^{\prime}\right)$ these words are where $\mathcal{L}\left(K^{\prime \prime}\right)$ has similar $_$ words written on branches
a term K^{\prime} of order $m-1$, where written in leaves

Example: $\quad a$

Idea:

1) Choose (nondeterministically) only one branch.
2) For every removed subtree with a, write a new a just above.
3) The number of a 's decreases at most logarithmically,
if the branch is chosen correctly (always go to the subtree with more a^{\prime} s). We skip the details.

Unboundedness - basic problem

Input: nondeterministic closed λ Y-term K of sort o (symbols of arity 0 \& 1) Question: are there trees (paths) in $\mathcal{L}(K)$ with arb. many symbols "a"? a term K of order m, where step $1 \leadsto$ a term K^{\prime} of order m - 1 , where $\mathcal{L}(K)$ is a set of words written on branches in $\mathcal{L}\left(K^{\prime}\right)$ these words are written in leaves

[Asada, Kobayashi - ICALP 2016]

Unboundedness - basic problem

Input: nondeterministic closed λ Y-term K of sort o (symbols of arity 0 \& 1) Question: are there trees (paths) in $\mathcal{L}(K)$ with arb. many symbols "a"? a term K of order m, where step $1 \leadsto$ a term K^{\prime} of order m - 1 , where $\mathcal{L}(K)$ is a set of words written on branches in $\mathcal{L}\left(K^{\prime}\right)$ these words are written in leaves

$$
\left.\begin{array}{ll}
\text { Example: } & S \rightarrow A e c \\
& A x y \rightarrow a(A(b x)(d x)) \longrightarrow A \rightarrow \backsim A e \\
& A x y \rightarrow x
\end{array} \quad A \rightarrow a(\bullet A b)\right)
$$

Idea: 1) Observe that an argument of type o can be used at most once.

Unboundedness - basic problem

Input: nondeterministic closed λY-term K of sort o (symbols of arity 0 \& 1) Question: are there trees (paths) in $\mathcal{L}(K)$ with arb. many symbols "a"? a term K of order m, where $\xrightarrow{\text { step } 1}$ a term K^{\prime} of order m - 1 , where $\mathcal{L}(K)$ is a set of words written on branches in $\mathcal{L}\left(K^{\prime}\right)$ these words are written in leaves

Example: $\begin{array}{ll}S \rightarrow A e c \\ A x y \rightarrow a(A(b x)(d x)) \longrightarrow \\ A x y \rightarrow x\end{array} \quad \begin{aligned} & S \rightarrow \backsim A e \\ & \\ & \\ & \\ & \\ & A \rightarrow \bullet a(\bullet A b)) \\ & A \rightarrow \bullet\end{aligned}$
Idea: 1) Observe that an argument of type o can be used at most once.
2) All arguments of type o are dropped (\Rightarrow order decreases).
3) Every subterm $M N$ with N of type o can be replaced
a) either by $\cdot M N$ (when the argument is used in M),
b) or by M (when the argument is ignored in M).

Unboundedness - basic problem

Input: nondeterministic closed $\lambda \mathrm{Y}$-term K of sort o (symbols of arity 0 \& 1)
Question: are there trees (paths) in $\mathcal{L}(K)$ with arb. many symbols "a"?
a term K of order m, where step $1 \rightarrow$ a term K^{\prime} of order $m-1$, where
$\mathcal{L}(K)$ is a set of words written on branches
in $\mathscr{L}\left(K^{\prime}\right)$ these words are written in leaves

Example: $S \rightarrow A e c \quad S \rightarrow \bullet A e$

$$
\left.\begin{array}{l}
A x y \rightarrow a(A(b x)(d x)) \longrightarrow \\
A x y \rightarrow x
\end{array}\right) A \rightarrow \begin{gathered}
A \rightarrow(\bullet A b)) \\
A \rightarrow \bullet
\end{gathered}
$$

Idea: 1) Observe that an argument of type o can be used at most once.
2) All arguments of type o are dropped (\Rightarrow order decreases).
3) Every subterm $M N$ with N of type o can be replaced
a) either by $\bullet M N$ (when the argument is used in M),
b) or by M (when the argument is ignored in M).
4) Additional work is required to choose correctly a) or b).

We use intersection types here.

Type-guided transformation

Difficulty to overcome: given a nondeterministic closed λY-term K of sort o, with symbols of arity $0 \& 1$ only, we want to say for every its subterm M of order 0 whether M

- is "used in the generated tree", or (equivalently)
- is "responsible for creating the leaf of the generated tree"

We use intersection types to achieve this goal!

Type-guided transformation

Difficulty to overcome: given a nondeterministic closed λ Y-term K of sort o, with symbols of arity $0 \& 1$ only, we want to say for every its subterm M of order 0 whether M

- is "used in the generated tree", or (equivalently)
- is "responsible for creating the leaf of the generated tree"

We use intersection types to achieve this goal!
Before we start:

- Notice that the considered property depends of the choice of the generated tree: maybe one tree uses M to generate the leaf, and another tree does not.
- Thus, we first guess whether M generates the leaf (nondeterministic choice), and then we make sure that the choice is respected.

Type-guided transformation

Difficulty to overcome: given a nondeterministic closed λ Y-term K of sort o, with symbols of arity 0 \& 1 only, we want to say for every its subterm M of order 0 whether M

- is "used in the generated tree", or (equivalently)
- is "responsible for creating the leaf of the generated tree"

We use intersection types to achieve this goal!
Before we start:

- Notice that the considered property depends of the choice of the generated tree: maybe one tree uses M to generate the leaf, and another tree does not.
- Thus, we first guess whether M generates the leaf (nondeterministic choice), and then we make sure that the choice is respected.

Let us first present the type system itself; then, we present the transformation.

Type-guided transformation

For terms of sort o we need two types:

- this term is responsible for creating the leaf - denoted (1,0);
- this term is not responsible for creating the leaf - denoted $(0,0)$.

Types ${ }^{0}=\{0,1\} \times\{0\}$

Type-guided transformation

For terms of sort o we need two types:

- this term is responsible for creating the leaf - denoted (1,o);
- this term is not responsible for creating the leaf - denoted $(0,0)$.

Types $^{0}=\{0,1\} \times\{0\}$
Rules:

$$
\Gamma \vdash e:(1, o)
$$

$$
\frac{\Gamma \vdash K:(s, o)}{\Gamma \vdash a K:(s, o)}
$$

Type-guided transformation

In general, for terms of sort $\alpha=\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{k} \rightarrow 0$:

- a type is of the form $\left(s, \Psi_{1} \rightarrow \ldots \rightarrow \Psi_{k} \rightarrow o\right)$, where $s \in\{0,1\}$, and $\Psi_{i} \subseteq$ Types $^{\alpha_{i}}$
- In other words: Types ${ }^{\alpha}=\{0,1\} \times P\left(\right.$ Types $\left.^{\alpha_{1}}\right) \times \ldots \times P\left(\right.$ Types $\left.^{\alpha_{1}}\right) \times\{o\}$ - s says whether the term is responsible for creating the leaf
- Ψ_{i} is the set of types needed for the i-th argument

Type-guided transformation

In general, for terms of sort $\alpha=\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{k} \rightarrow 0$:

- a type is of the form $\left(s, \Psi_{1} \rightarrow \ldots \rightarrow \Psi_{k} \rightarrow 0\right)$, where $s \in\{0,1\}$, and $\Psi_{i} \subseteq$ Types $^{\alpha_{i}}$
- In other words: Types ${ }^{\alpha}=\{0,1\} \times P\left(\right.$ Types $\left.^{\alpha_{1}}\right) \times \ldots \times P\left(\right.$ Types $\left.^{\alpha_{1}}\right) \times\{o\}$
- s says whether the term is responsible for creating the leaf
- Ψ_{i} is the set of types needed for the i-th argument

Rules:

$$
\begin{array}{cc}
\frac{\Gamma \vdash e:(1, o)}{} & \frac{\Gamma \vdash K:(s, o)}{\Gamma \vdash a K:(s, o)} \\
\frac{\Gamma \vdash K: \tau}{\Gamma \vdash n d K L: \tau} & \frac{\Gamma \vdash L: \tau}{\Gamma \vdash n d K L: \tau}
\end{array}
$$

Type-guided transformation

In general, for terms of sort $\alpha=\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{k} \rightarrow 0$:

- a type is of the form $\left(s, \Psi_{1} \rightarrow \ldots \rightarrow \Psi_{k} \rightarrow o\right)$, where $s \in\{0,1\}$, and $\Psi_{i} \subseteq$ Types $^{\alpha_{i}}$
- In other words: Types ${ }^{\alpha}=\{0,1\} \times P\left(\right.$ Types $\left.^{\alpha_{1}}\right) \times \ldots \times P\left(\right.$ Types $\left.^{\alpha_{1}}\right) \times\{o\}$
- s says whether the term is responsible for creating the leaf
- Ψ_{i} is the set of types needed for the i-th argument

Rules:

$$
\begin{array}{lc}
\frac{\Gamma \vdash-(1, o)}{\Gamma \vdash e:(s, o)} \\
\frac{\Gamma \vdash K: \tau}{\Gamma \vdash a K:(s, o)} \\
\hline \Gamma \vdash n d K L: \tau & \frac{\Gamma \vdash L: \tau}{\Gamma \vdash n d K L: \tau} \\
\frac{\tau \in \Gamma(x)}{\Gamma \vdash x: \tau} &
\end{array}
$$

Type-guided transformation

In general, for terms of sort $\alpha=\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{k} \rightarrow 0$:

- a type is of the form $\left(s, \Psi_{1} \rightarrow \ldots \rightarrow \Psi_{k} \rightarrow o\right)$, where $s \in\{0,1\}$, and $\Psi_{i} \subseteq$ Types $^{\alpha_{i}}$
- In other words: Types ${ }^{\alpha}=\{0,1\} \times P\left(\right.$ Types $\left.^{\alpha_{1}}\right) \times \ldots \times P\left(\right.$ Types $\left.^{\alpha_{1}}\right) \times\{o\}$
- s says whether the term is responsible for creating the leaf
- Ψ_{i} is the set of types needed for the i-th argument

Rules:

$\overline{\Gamma \vdash e:(1, o)}$	$\frac{\Gamma \vdash K:(s, o)}{\Gamma \vdash a K:(s, o)}$
$\frac{\Gamma \vdash K: \tau}{\Gamma \vdash n d K L: \tau}$	$\frac{\Gamma \vdash L: \tau}{\Gamma \vdash n d K L: \tau}$
$\frac{\tau \in \Gamma(x)}{\Gamma \vdash x: \tau}$	$\Gamma \vdash x \rightarrow \Psi] \vdash K:(s, \sigma)$ $\Gamma \vdash \lambda x . K:\left(s^{\prime}, \Psi \rightarrow \sigma\right)$ where $s^{\prime}=0, s=1$ if Ψ contains a pair $(1, ?)$ and $s^{\prime}=s$ otherwise

Type-guided transformation

Rules:

$$
\begin{aligned}
& \overline{\Gamma \vdash e:(1, o)} \\
& \frac{\Gamma \vdash K: \tau}{\Gamma \vdash n d K L: \tau} \\
& \frac{\tau \in \Gamma(x)}{\Gamma \vdash x: \tau}
\end{aligned}
$$

$$
\frac{\Gamma \vdash K:(s, o)}{\Gamma \vdash a K:(s, o)}
$$

$$
\frac{\Gamma \vdash L: \tau}{\Gamma \vdash n d K L: \tau}
$$

$$
\frac{\Gamma[x \rightarrow \Psi] \vdash K:(s, \sigma)}{\Gamma \vdash \lambda x \cdot K:\left(s^{\prime}, \Psi \rightarrow \sigma\right)}
$$

$$
\text { where } s^{\prime}=0, s=1 \text { if } \Psi \text { contains a pair }(1, ?)
$$

$$
\text { and } s^{\prime}=s \text { otherwise }
$$

$$
\frac{\Gamma \vdash K:\left(s_{K},\left\{\left(s_{1}, \sigma_{1}\right), \ldots,\left(s_{n}, \sigma_{n}\right)\right\} \rightarrow \sigma\right) \quad \Gamma \vdash L:\left(s_{i}, \sigma_{i}\right) \text { for each } i}{\Gamma \vdash K L:\left(s_{K}+s_{1}+\ldots+s_{n}, \sigma\right)}
$$

Type-guided transformation

It is not enough to derive types; we need to transform terms (basing on derived types)
We enrich type judgments:
$\Gamma \vdash M: \tau \Rightarrow N$
In environment Γ the term M can have type τ and then it should be transformed to term N.

Type-guided transformation

Transformation:

$$
\begin{array}{cc}
\hline \Gamma \vdash e:(1, o) \Rightarrow e & \Gamma \vdash a K:(s, o) \Rightarrow \square a N \\
\frac{\Gamma \vdash K: \tau \Rightarrow N}{\Gamma \vdash n d K L: \tau \Rightarrow N} & \frac{\Gamma \vdash L: \tau \Rightarrow N}{\Gamma \vdash n d K L: \tau \Rightarrow N}
\end{array}
$$

Type-guided transformation
Transformation:

$$
\begin{array}{cc}
\hline \vdash e:(1, o) \Rightarrow e & \Gamma \vdash a K:(s, o) \Rightarrow \square a N \\
\frac{\Gamma \vdash K: \tau \Rightarrow N}{\Gamma \vdash n d K L: \tau \Rightarrow N} & \frac{\Gamma \vdash L: \tau \Rightarrow N}{\Gamma \vdash n d K L: \tau \Rightarrow N} \\
\frac{\tau \in \Gamma(x) \operatorname{ord}(x)=0}{\Gamma \vdash x: \tau \Rightarrow} & \frac{\tau \in \Gamma(x) \operatorname{ord}(x)>0}{\Gamma \vdash x: \tau \Rightarrow x_{\tau}}
\end{array}
$$

Arguments of order 0 disappear!

Type-guided transformation

Transformation:

$$
\begin{array}{cc}
\Gamma \vdash e:(1,0) \Rightarrow e & \Gamma \vdash a K:(s, o) \Rightarrow \bullet a N \\
\frac{\Gamma \vdash K: \tau \Rightarrow N}{\Gamma \vdash n d K L: \tau \Rightarrow N} & \frac{\Gamma \vdash L: \tau \Rightarrow N}{\Gamma \vdash n d K L: \tau \Rightarrow N} \\
\frac{\tau \in \Gamma(x) \operatorname{ord}(x)=0}{\Gamma \vdash x: \tau \Rightarrow \bullet} & \frac{\tau \in \Gamma(x) \operatorname{ord}(x)>0}{\Gamma \vdash x: \tau \Rightarrow x_{\tau}}
\end{array}
$$

$$
\left.\frac{\Gamma[x \rightarrow \Psi] \vdash K:(s, \sigma) \Rightarrow N}{\Gamma \vdash \lambda x \cdot K:\left(s^{\prime}, \Psi \rightarrow \sigma\right) \Rightarrow N} \quad \operatorname{ord}(x)=0\right) \quad \begin{gathered}
\Gamma[x \rightarrow \Psi] \vdash K:(s, \sigma) \Rightarrow N \\
\text { where } \Psi=\left\{\tau_{1}, \ldots, \tau_{n}\right\} \text { and } s^{\prime}=0, s=1 \text { if } \quad \operatorname{ord}(x)>0 \\
\left.\Gamma \vdash \lambda x \cdot K:\left(s_{i}^{\prime}, \Psi \rightarrow \sigma\right) \Rightarrow \lambda x_{\tau_{i}} \cdot \cdots \cdot \lambda x_{\tau_{n}} \cdot N\right) \text { for some } i \text {, and } s^{\prime}=s \text { otherwise }
\end{gathered}
$$

Arguments of order 0 disappear!

Type-guided transformation
Transformation:

$$
\operatorname{ard}(x)>0
$$

$$
\Gamma \vdash K:\left(s_{K},\left\{\left(s_{1}, \sigma_{1}\right), \ldots,\left(s_{n}, \sigma_{n}\right)\right\} \rightarrow \sigma\right) \Rightarrow N \quad \Gamma \vdash L:\left(s_{i}, \sigma_{i}\right) \Rightarrow M_{i} \text { for each } i
$$

$$
\Gamma \vdash K L:\left(s_{K}+s_{1}+\ldots+s_{n}, \sigma\right) \Rightarrow N M_{1} \ldots M_{n}
$$

Type-guided transformation

Transformation:

$$
\operatorname{ard}(x)>0
$$

$$
\Gamma \vdash K:\left(s_{K},\left\{\left(s_{1}, \sigma_{1}\right), \ldots,\left(s_{n}, \sigma_{n}\right)\right\} \rightarrow \sigma\right) \Rightarrow N \quad \Gamma \vdash L:\left(s_{i}, \sigma_{i}\right) \Rightarrow M_{i} \text { for each } i
$$

$$
\Gamma \vdash K L:\left(s_{K}+s_{1}+\ldots+s_{n}, \sigma\right) \Rightarrow N M_{1} \ldots M_{n}
$$

$$
s_{1}+\ldots+s_{n}=0, \operatorname{ord}(x)=0
$$

$$
\Gamma \vdash K:\left(s_{K},\left\{\left(s_{1}, \sigma_{1}\right), \ldots,\left(s_{n}, \sigma_{n}\right)\right\} \rightarrow \sigma\right) \Rightarrow N \quad \Gamma \vdash L:\left(s_{i}, \sigma_{i}\right) \Rightarrow M_{i} \text { for each } i
$$

$$
\Gamma \vdash K L:\left(s_{K}+s_{1}+\ldots+s_{n}, \sigma\right) \Rightarrow N
$$

$$
s_{j}=1, \operatorname{ord}(x)=0
$$

$$
\Gamma \vdash K:\left(s_{K},\left\{\left(s_{1}, \sigma_{1}\right), \ldots,\left(s_{n}, \sigma_{n}\right)\right\} \rightarrow \sigma\right) \Rightarrow N \quad \Gamma \vdash L:\left(s_{i}, \sigma_{i}\right) \Rightarrow M_{i} \text { for each } i
$$

$$
\Gamma \vdash K L:\left(s_{K}+s_{1}+\ldots+s_{n}, \sigma\right) \Rightarrow N M_{j}
$$

Type-guided transformation

Transformation:

$$
\operatorname{ord}(x)>0
$$

$$
\begin{array}{cc}
\Gamma \vdash K:\left(s_{K},\left\{\left(s_{1}, \sigma_{1}\right), \ldots,\left(s_{n}, \sigma_{n}\right)\right\} \rightarrow \sigma\right) \Rightarrow N & \Gamma \vdash L:\left(s_{i}, \sigma_{i}\right) \Rightarrow M_{i} \text { for each } i \\
\Gamma \vdash K L:\left(s_{K}+s_{1}+\ldots+s_{n}, \sigma\right) \Rightarrow N M_{1} \ldots M_{n} \\
s_{1}+\ldots+s_{n}=0, & \operatorname{ord}(x)=0 \\
\Gamma \vdash K:\left(s_{K},\left\{\left(s_{1}, \sigma_{1}\right), \ldots,\left(s_{n}, \sigma_{n}\right)\right\} \rightarrow \sigma\right) \Rightarrow N & \Gamma \vdash L:\left(s_{i}, \sigma_{i}\right) \Rightarrow M_{i} \text { for each } i
\end{array}
$$

$$
\Gamma \vdash K L:\left(s_{K}+s_{1}+\ldots+s_{n}, \sigma\right) \Rightarrow N
$$

$$
s_{j}=1, \operatorname{ord}(x)=0
$$

$$
\Gamma \vdash K:\left(s_{K},\left\{\left(s_{1}, \sigma_{1}\right), \ldots,\left(s_{n}, \sigma_{n}\right)\right\} \rightarrow \sigma\right) \Rightarrow N \quad \Gamma \vdash L:\left(s_{i}, \sigma_{i}\right) \Rightarrow M_{i} \text { for each } i
$$

$$
\Gamma \vdash K L:\left(s_{K}+s_{1}+\ldots+s_{n}, \sigma\right) \Rightarrow N M_{j}
$$

M_{1}, \ldots, M_{n} are all terms such that $\Gamma \vdash K: \tau \Rightarrow M_{i}$

$$
\Gamma \vdash K: \tau \Rightarrow n d M_{1}\left(\ldots\left(n d M_{n-1} M_{n}\right) \ldots\right)
$$

We have seen so far:

- A type system describing behavior of a (co-trivial) alternating tree automaton
- A type system that helps in transforming path-generating lambda-terms to tree-generating lambda-terms of order lower by one.
\rightarrow This allows to solve the unboundedness problem
Next:
- A type system that solves the unboundedness problem directly.

Unboundedness directly via intersection types - idea

- Böhm tree of K

path P in Böhm tree
derivation for K approximating the number of , a^{2} on P
single letter: [P. - ITRS 2016] multiple letters: [P. - FSTTCS 2017]

Property to describe (unboundedness): In the Böhm tree of K, are there finite paths with arbitrarily many symbols "a"?

Unboundedness directly via intersection types - idea

derivation for K approximating the number of „a" on P

Easy to say using intersection types:

- which „a" of K will appear in the Böhm tree

Unboundedness directly via intersection types - idea

- Böhm tree of K

path P in Böhm tree derivation for K
approximating the \triangleleft number of „a" on P

Quite easy to say using intersection types:

- which „a" of K will appear on P in the Böhm tree

Unboundedness directly via intersection types - idea

path P in Böhm tree approximating the \longleftarrow number of „a" on P

Quite easy to say using intersection types:

- which „a" of K will appear on P in the Böhm tree

Difficulty:

- single „a" of K may result in many „a" on P $\left(\lambda y \cdot y\left(y b^{0}\right)\right) \cdot a^{0 \rightarrow 0}$

Idea of solution:

- detect (and count) places where variable containing „a" is duplicated

Intersection types

Solution: type derivations are labeled by flags and markers.
Intersection types refining sort o:

$$
\mathcal{T}^{\mathrm{o}}=\{(\mathrm{F}, \mathrm{M}, \mathrm{o})\}
$$

flags used in the derivation
markers used in the derivation
(for each order m we have flags of order m, and a marker of order m)

Intersection types

Solution: type derivations are labeled by flags and markers.
Intersection types refining sort $\alpha=\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{k} \rightarrow 0$:

$$
\mathcal{T} \alpha=\left\{\left(F, M, T_{1} \rightarrow \ldots \rightarrow T_{k} \rightarrow 0\right)\right\}
$$

flags used in the derivation

$$
\text { sets of types refining } \alpha_{1}, \ldots, \alpha_{k}
$$

markers used in the derivation
(for each order m we have flags of order m, and a marker of order m)

Only finite derivations!
No weakening! (every type for an argument have to be used)
For every sort there are only finitely many types refining it!

Flags \& markers
one marker of order 0 (= end of path) flags of order 1 (= „a" on the path)

Flags \& markers
one marker of order 0 (= end of path) flags of order 1 (= „a" on the path)

Flags \& markers
one marker of order 0
flags of order 1
the type system ensures that a variable with marker is used exactly once!

number of order-1 flags unchanged!

Flags \& markers
one marker of order 0 flags of order 1
one marker of order 1

number of order-1 flags unchanged!

Flags \& markers

one marker of order 0
flags of order 1
one marker of order 1
flags of order 2 - places on the path to order-1 marker having a descendant with order-1 flag

number of order-1 flags unchanged!

Flags \& markers

one marker of order 0
flags of order 1
one marker of order 1
flags of order 2 - places on the path to order-1 marker having a descendant with order-1 flag
for some location of order-1 marker

number of order-1 flags unchanged!

Flags \& markers

Flags \& markers

We put all the flags \& markers in derivations for K.
The number of order-n flags approximates the number of „a" on some path in the Böhm tree of K .
there exist derivations for K with arbitrarily many order-n flags
in the Böhm tree of K there exist paths with arbitrarily many „a"
easy to decide

Intersection types
Intersection types refining sort $\alpha=\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{k} \rightarrow 0$:

$$
\mathcal{T}^{\alpha}=\left\{\left(\mathrm{F}, \mathrm{M}, \mathrm{~T}_{1} \rightarrow \ldots \rightarrow \mathrm{~T}_{\mathrm{k}} \rightarrow 0\right)\right\}
$$

flags used in the derivation

$$
\text { sets of types refining } \alpha_{1}, \ldots, \alpha_{k}
$$

markers used in the derivation
4
(for each order m we have flags of order m, and a marker of order m)
Type judgments: $\Gamma \stackrel{ }{ }^{\complement} K: \tau$, where c is the number of flag of order n

- Only finite derivations!
- No weakening! (every type for an argument have to be used)
- Some types are idemponent (when no marker is present) - can be used arbitrarily many times
- Some types are not idempotent (when a marker is present) - can be used only once
- But every kind of marker can be placed only in one place.
- In effect, for every sort there are only finitely many types refining it!

Advantages of the approach via intersection types:

- Better complexity
- We can obtain a reflection property:

Given a lambda-term K (closed, of sort o), we can compute a lambda-term K^{\prime} such that $B T\left(K^{\prime}\right)$ is an enriched version of $B T(K)$ namely, for every node v of $\mathrm{BT}\left(\mathrm{K}^{\prime}\right)$ we have an additional bit saying whether there are finite paths with arbitrarily many symbols "a" starting in v.

Advantages of the approach via intersection types:

- Better complexity
- We can obtain a reflection property:

Given a lambda-term K (closed, of sort o), we can compute a lambda-term K^{\prime} such that $B T\left(K^{\prime}\right)$ is an enriched version of $B T(K)$ namely, for every node v of $\mathrm{BT}\left(\mathrm{K}^{\prime}\right)$ we have an additional bit saying whether there are finite paths with arbitrarily many symbols "a" starting in v.

- Consequence: We can decide the WMSO+U logic on those Bohm trees - given a sentence ϕ of WMSO+U, and a lambda-term K (closed, of sort o), we can decide whether ϕ holds in BT(K). [P. - STACS 2018]

WMSO+U

MSO+U logic (introduced by Bojańczyk in 2004)

MSO+U extends MSO by the following „U" quantifier:

UX. $\phi(\mathrm{X})$

$\phi(X)$ holds for sets of arbitrarily large size

$$
\forall n \in \mathbb{N} \exists X(n<|X|<\infty \wedge \phi(X))
$$

This construction may be nested inside other quantifiers, and ϕ may have free variables other than X .

WMSO+U

WMSO+U logic (introduced by Bojańczyk in 2004)

MSO+U extends MSO by the following „U" quantifier:

UX. $\phi(\mathrm{X})$

$\phi(X)$ holds for sets of arbitrarily large size

$$
\forall n \in \mathbb{N} \exists X(n<|X|<\infty \wedge \phi(X))
$$

This construction may be nested inside other quantifiers, and ϕ may have free variables other than X .

We consider Weak MSO+U (quantification over finite sets only):

$$
\exists X \rightarrow \exists_{\mathrm{fin}} X
$$

e.g. we can express that there exist paths with arbitrarily many „a"

Thank you!

