

Intersection Types
for Unboundedness Problems

Paweł Parys

University of Warsaw

ITRS 2018

Our setting

Intersection types can be used as:

● an extension of simple types (mostly undecidable)

● a refinement of simple types (mostly decidable)

this talk

Our setting

We consider infinitary, simply-typed l-calculus
and simply-typed lY-calculus.

Our setting

We consider infinitary, simply-typed l-calculus
and simply-typed lY-calculus.

Simple types (sorts): o, o(oo), (oo)o, (oo)(((oo)o)o)

Our setting

We consider infinitary, simply-typed l-calculus
and simply-typed lY-calculus.

Simple types (sorts): o, ooo, (oo)o, (oo)((oo)o)o

Order: ord(o)=0, ord(ab)=max(ord(a)+1, ord(b))

0 1 2 3

Our setting

We consider infinitary, simply-typed l-calculus
and simply-typed lY-calculus.

Simple types (sorts): o, ooo, (oo)o, (oo)((oo)o)o

Order: ord(o)=0, ord(ab)=max(ord(a)+1, ord(b))

0 1 2 3

l-terms:
● variables: xa, yb, ...
● constants: aa, bb, … – only for sorts of order ≤1
● l-abstraction: (lxa.Kb)ab

● application: (Kab La)b

+ coinduction

Every term has a particular sort.

We assume that all arguments of constants are already applied:
aooo Ko

 Lo is allowed, but aooo Ko is not allowed

We allow infinite terms, but the set of types of subterms should be finite.

Our setting – lY-calculus

lY-term is a finite representation of an infinite l-term:
● In a lY-term we may use a binder “Y”
● Meaning:

(Yxa.Ma)a - this is the unique (infinite) l-term such that
Yx.M = M[Yx.M/x]

Example:
 the lY-term: Yx.((ly.a y) x)
 represents the l-term: ((ly.a y) ((ly.a y) ((ly.a y) ((ly.a y) ...))))

Our setting – Böhm trees

● Every finite l-term K reduces to a term in b-normal form.

Our setting – Böhm trees

● Every finite l-term K reduces to a term in b-normal form.
● Every (infinite) l-term K reduces to term in head-b-normal form, i.e.:

lx1.
....lxn.y M1 … Mk or lx1.

....lxn.a M1 … Mk

Our setting – Böhm trees

● Every finite l-term K reduces to a term in b-normal form.
● Every (infinite) l-term K reduces to term in head-b-normal form, i.e.:

lx1.
....lxn.y M1 … Mk or lx1.

....lxn.a M1 … Mk

● We may reduce each M1, …, Mk to head-b-normal form, etc.
● The limit is called the Böhm tree of K.

Our setting – Böhm trees

● Every finite l-term K reduces to a term in b-normal form.
● Every (infinite) l-term K reduces to term in head-b-normal form, i.e.:

lx1.
....lxn.y M1 … Mk or lx1.

....lxn.a M1 … Mk

● We may reduce each M1, …, Mk to head-b-normal form, etc.
● The limit is called the Böhm tree of K.

Suppose that:
➔ K is of sort o
➔ K has no free variables
➔ we only use constants of order ≤1.
Then the Böhm tree is a tree built out of constants.

Our setting – Böhm trees

● Every finite l-term K reduces to a term in b-normal form.
● Every (infinite) l-term K reduces to term in head-b-normal form, i.e.:

lx1.
....lxn.y M1 … Mk or lx1.

....lxn.a M1 … Mk

● We may reduce each M1, …, Mk to head-b-normal form, etc.
● The limit is called the Böhm tree of K.

Example:
 Yx.((ly.a y) x) = ((ly.a y) ((ly.a y) ((ly.a y) ((ly.a y) ...))))

Suppose that:
➔ K is of sort o
➔ K has no free variables
➔ we only use constants of order ≤1.
Then the Böhm tree is a tree built out of constants.

(a ((ly.a y) ((ly.a y) ((ly.a y) ...))))

Our setting – Böhm trees

● Every finite l-term K reduces to a term in b-normal form.
● Every (infinite) l-term K reduces to term in head-b-normal form, i.e.:

lx1.
....lxn.y M1 … Mk or lx1.

....lxn.a M1 … Mk

● We may reduce each M1, …, Mk to head-b-normal form, etc.
● The limit is called the Böhm tree of K.

Example:
 Yx.((ly.a y) x) = ((ly.a y) ((ly.a y) ((ly.a y) ((ly.a y) ...))))

Suppose that:
➔ K is of sort o
➔ K has no free variables
➔ we only use constants of order ≤1.
Then the Böhm tree is a tree built out of constants.

(a (a ((ly.a y) ((ly.a y) ...))))

Our setting – Böhm trees

● Every finite l-term K reduces to a term in b-normal form.
● Every (infinite) l-term K reduces to term in head-b-normal form, i.e.:

lx1.
....lxn.y M1 … Mk or lx1.

....lxn.a M1 … Mk

● We may reduce each M1, …, Mk to head-b-normal form, etc.
● The limit is called the Böhm tree of K.

Example:
 Yx.((ly.a y) x) = ((ly.a y) ((ly.a y) ((ly.a y) ((ly.a y) ...))))

Suppose that:
➔ K is of sort o
➔ K has no free variables
➔ we only use constants of order ≤1.
Then the Böhm tree is a tree built out of constants.

(a (a (a ((ly.a y) ...))))

Our setting – Böhm trees

● Every finite l-term K reduces to a term in b-normal form.
● Every (infinite) l-term K reduces to term in head-b-normal form, i.e.:

lx1.
....lxn.y M1 … Mk or lx1.

....lxn.a M1 … Mk

● We may reduce each M1, …, Mk to head-b-normal form, etc.
● The limit is called the Böhm tree of K.

Example:
 Yx.((ly.a y) x) = ((ly.a y) ((ly.a y) ((ly.a y) ((ly.a y) ...))))

Suppose that:
➔ K is of sort o
➔ K has no free variables
➔ we only use constants of order ≤1.
Then the Böhm tree is a tree built out of constants.

(a (a (a (a ...))))

a

a

a

a

...

Our setting – Böhm trees

Example:
 Yx.((ly.b y y) x) = ((ly.b y y) ((ly.b y y) ((ly.b y y) ((ly.b y y) ...))))

(b (b (b …) (b ...)) (b (b …) (b ...)))

b

b b

b b b b

Equivalent formalisms - trees generated by:
● higher-order recursion schemes (HORSes)
● collapsible pushdown automata
● ordered tree-pushdown automata

In the context of lY-calculus (recursion schemes),
intersection types were used for:

● model checking

● transformation of schemes

● pumping

Intersection types for lY-calculus – general setting

this talk

1) model checking for co-trivial tree automata (via intersection types)

2) transformation “words → trees” (via intersection types)
 + how to use it to solve unboundedness problems

3) unboundedness problems (directly via intersection types)

Plan

Motivation: from program verification to recursion schemes

Example

open(x, “foo”)
a := 0
while a<100 do

read(x)
a := a+1

close(x)

is the file “foo”
accessed according
to open,read*,close?

open(x, “foo”)
a := 0
while a<100 do

read(x)
a := a+1

close(x)

is the file “foo”
accessed according
to open,read*,close?

open(x, “foo”)

while * do
read(x)

close(x)

is the file “foo”
accessed according
to open,read*,close?

Step 1: information about infinite data domains is approximated.

Example

Motivation: from program verification to recursion schemes

open(x, “foo”)
while * do

read(x)
close(x)

is the file “foo”
accessed according
to open,read*,close?

Step 2: consider the tree of possible control flows.
open

while

close read
while

close read
while

close read

close

is each path
labelled by

open,read*,close?

Example

Motivation: from program verification to recursion schemes

What about higher order programs?

let f(x, g) =
if * then g(x)
else f(x, fun h x -> h(x); h(x))

open(x)
f(x, read)
close(x)

open

 if

close if

read

close

 if

read

read

close

 if

read

read

read

read

close

2k

....

● For programs without recursion, each path
of the tree is a regular language.

● Programs with (higher-order) recursion can
be approximated by recursion schemes

Motivation: from program verification to recursion schemes

questions about
programs close

questions about
Bohm trees

We fix some alternating tree automaton:
Q – set of states
D – set of transitions of the form (q,a) → (Q1, ..., Qr) where r=arity(a)
q0 – initial state (for the root of the tree)

Intersection types describing co-trivial ATA

We fix some alternating tree automaton:
Q – set of states
D – set of transitions of the form (q,a) → (Q1, ..., Qr) where r=arity(a)
q0 – initial state (for the root of the tree)

Run on a tree t = labeling of nodes of t by sets of states
● if a node v is labeled by S, and its children by S1, ..., Sr, then for every

q∈S there is a transition (q,a) → (Q1, ..., Qr) with Q1⊆S1, ..., Qr⊆Sr

Intersection types describing co-trivial ATA

We fix some alternating tree automaton:
Q – set of states
D – set of transitions of the form (q,a) → (Q1, ..., Qr) where r=arity(a)
q0 – initial state (for the root of the tree)

Run on a tree t = labeling of nodes of t by sets of states
● if a node v is labeled by S, and its children by S1, ..., Sr, then for every

q∈S there is a transition (q,a) → (Q1, ..., Qr) with Q1⊆S1, ..., Qr⊆Sr
● co-trivial accepting condition: only finitely many nodes are labeled

by nonempty sets

Intersection types describing co-trivial ATA

We fix some alternating tree automaton:
Q – set of states
D – set of transitions of the form (q,a) → (Q1, ..., Qr) where r=arity(a)
q0 – initial state (for the root of the tree)

Run on a tree t = labeling of nodes of t by sets of states
● if a node v is labeled by S, and its children by S1, ..., Sr, then for every

q∈S there is a transition (q,a) → (Q1, ..., Qr) with Q1⊆S1, ..., Qr⊆Sr
● co-trivial accepting condition: only finitely many nodes are labeled

by nonempty sets

Goal: given an automaton A and a term K, decide whether A accepts
the Böhm tree of K.
We can achieve this goal using a type system of intersection types:
a type t can be derived for K A accepts BT(K)
[Broadbent, Kobayashi – CSL 2013]

Intersection types describing co-trivial ATA

Intersection types:
● describe behavior of the automaton
● refine simple types (sorts): for every sort a we have a set Typesa of

types refining sort a
Type judgments:

G K : t

Intersection types describing co-trivial ATA

⊤

Intersection types:
● describe behavior of the automaton
● refine simple types (sorts): for every sort a we have a set Typesa of

types refining sort a
Type judgments:

G K : t

Typeso=Q
A term of sort o (a tree, or a term that generates a tree) has type q
(where q∈Q) if the tree can be accepted from state q

Intersection types describing co-trivial ATA

⊤

Intersection types:
● describe behavior of the automaton
● refine simple types (sorts): for every sort a we have a set Typesa of

types refining sort a
Type judgments:

G K : t

Typeso=Q
A term of sort o (a tree, or a term that generates a tree) has type q
(where q∈Q) if the tree can be accepted from state q

For each transition (q,a) → (Q1, ..., Qr) of A we have a typing rule:

Intersection types describing co-trivial ATA

⊤

G a K1 … Kr : q⊤

G Ki : p for each i∈{1,…,r} and each p∈Qi⊤

Terms of order 1 describe fragments of trees:

Typeso→o→o=P(Q)P(Q)Q

such a type is of the form Qx→Qy→q

(it says that if the subtree given as the first
argument is accepted from all states in Qx,
and the subtree given as the second argument is accepted from all
states in Qy, then the whole tree can be accepted from q)

Remark: Qx has to be a set of states, not a single state, even if we
consider nondeterministic automata instead of alternating automata,
because x can appear multiple times in K.

Intersection types describing co-trivial ATA

lx.ly.K

x x y

In general:

Typeso=Q
Typesa→b=P(Typesa)Typesb

Elements of Typesa→b are written as Y→t

Intersection types describing co-trivial ATA

In general:

Typeso=Q
Typesa→b=P(Typesa)Typesb

Elements of Typesa→b are written as Y→t

Intersection types describing co-trivial ATA

G a K1 … Kr : q⊤

G Ki : p for each i∈{1,…,r} and each p∈Qi⊤Typing rules:

G K L : t⊤

G K : Y→t⊤ G L : s for each s∈Y⊤

G lx.K : Y→t⊤
G[xY] K : t⊤

G x : t⊤

t∈G(x)

Intersection types describing co-trivial ATA

G a K1 … Kr : q⊤

G Ki : p for each i∈{1,…,r} and each p∈Qi⊤Typing rules:

G K L : t⊤

G K : Y→t⊤ G L : s for each s∈Y⊤

G lx.K : Y→t⊤

G[xY] K : t⊤

G x : t⊤
t∈G(x)

Lemma: For a closed term K of sort o, and for a state q,

 A accepts BT(K) from state q⊤

there is a finite derivation
 of e K : q

 K may be infinite

Intersection types describing co-trivial ATA

G a K1 … Kr : q⊤

G Ki : p for each i∈{1,…,r} and each p∈Qi⊤Typing rules:

G K L : t⊤

G K : Y→t⊤ G L : s for each s∈Y⊤

G lx.K : Y→t⊤

G[xY] K : t⊤

G x : t⊤
t∈G(x)

Lemma: For a closed term K of sort o, and for a state q,

 A accepts BT(K) from state q⊤

there is a finite derivation
 of e K : q

Lemma 2: If we consider A with trivial accepting condition, instead of co-trivial
(if we allow infinite runs of A), we have the equivalence

 A accepts BT(K) from state q

⊤

 there is a derivation
(arbitrary – possibly infinite)
 of e K : q

 K may be infinite

Intersection types describing co-trivial ATA

Lemma: For a closed term K of sort o, and for a state q,

Proof sketch:

1) If M→ N, then G M : t G N : t

2) For K=BT(K) the lemma is trivial (only rules for a constant are used)

3) Both sides of the lemma talk only about finite prefixes of the
term, so we can assume that K is finite. Then K→ BT(K).

 A accepts BT(K) from state q⊤

there is a finite derivation
 of e K : q

b ⊤ ⊤

b
*

Intersection types describing co-trivial ATA

Lemma: For a closed l-term K of sort o, and for a state q,

Goal: given an automaton A and a finite lY-term K', decide whether
A accepts BT(K').

 A accepts BT(K) from state q⊤

there is a finite derivation
 of e K : q

Intersection types describing co-trivial ATA

Lemma: For a closed l-term K of sort o, and for a state q,

Goal: given an automaton A and a finite lY-term K', decide whether
A accepts BT(K').
● Recall that K' is a finite representation of an infinite lY-term K.
● Seeing K' we have to check whether a type judgment can be

derived for K.
● I.e., seeing Yx.M, we have to check which type judgments can be

derived for M[M[M[M[M[...]/x]/x]/x]/x].
● This is an easy fixpoint computation.

⊤

there is a finite derivation
 of e K : q

 A accepts BT(K) from state q

a

Unboundedness – basic problem

Input: closed lY-term K of sort o (i.e. infinite l-term represented in a finite way)

Question: In the Böhm tree of K, are there (finite) branches
 with arbitrarily many symbols “a”?

a

a
a

a

a
a

a

a
a

a
a

a

a
…

(∀n ∃branch with >n appearances of a)

a

Unboundedness – basic problem

Input: closed lY-term K of sort o (i.e. infinite l-term represented in a finite way)

Question: In the Böhm tree of K, are there (finite) branches
 with arbitrarily many symbols “a”?

a

a
a

a

a
a

a

a
a

a
a

a

a
…Notice:

There may be no path with infinitely many „a”.
Our property is not regular!!!
(regular properties can be checked e.g. by [Ong – LICS 2006])

(∀n ∃branch with >n appearances of a)

Unboundedness – basic problem

Input: closed lY-term K of sort o (i.e. infinite l-term represented in a finite way)

Question: In the Böhm tree of K, are there (finite) branches
 with arbitrarily many symbols “a”?

This is an instance of a more general problem, called diagonal problem or
simultaneous unboundedness problem (SUP):
Input: closed lY-term K of sort o, set A of symbols
Question: In the Böhm tree of K, are there (finite) branches with
 arbitrarily many appearances of every symbol from A?

(∀n ∃branch ∀a∈A there are >n appearances of a on the branch)

This problem is decidable
[Hague, Kochems, Ong – POPL 2016],
[Clemente, P., Salvati, Walukiewicz – LICS 2016]

(∀n ∃branch with >n appearances of a)

Unboundedness – basic problem

Input: closed lY-term K of sort o (i.e. infinite l-term represented in a finite way)

Question 1: In the Böhm tree of K, are there finite branches
 with arbitrarily many symbols “a”?

(∀n ∃branch with >n appearances of a)

Solution – preparation:
We generalize the problem to nondeterministic terms
(aka nondeterministic recursion schemes).
● We add a new construct: nd K

a La

● We add reduction rules: nd K L→K and nd K L→L
● Now there is no one unique Bohm tree

Instead, we have a set of finite trees (normal forms) of a (closed,
of sort o, potentially infinite) lambda-term K; we denote this set L(K)

Unboundedness – basic problem

Solution – preparation:
We generalize the problem to nondeterministic terms
(aka nondeterministic recursion schemes).
● We add a new construct: nd K

a La

● We add reduction rules: nd K L→K and nd K L→L
● Now there is no one unique Bohm tree

Instead, we have a set of finite trees (normal forms) of a (closed,
of sort o, potentially infinite) lambda-term K; we denote this set L(K)

● New question: are there trees in L(K) with arbitrarily many symbols “a”?
● Easy reduction from question 1 to the new question:

replace every appearance of a M N by a (nd M N);
then L(K') is the set of branches BT(K)

● In particular all symbols in K' are of arity 0 and 1

Input: closed lY-term K of sort o (i.e. infinite l-term represented in a finite way)

Question 1: In the Böhm tree of K, are there finite branches
 with arbitrarily many symbols “a”?

(∀n ∃branch with >n appearances of a)

Unboundedness – basic problem
Input: nondeterministic closed lY-term K of sort o (symbols of arity 0 & 1)

Question: are there trees (paths) in L(K) with arb. many symbols “a”?
How to solve it?

step 1a term K of order m, where
L(K) is a set of words
written on branches

a term K' of order m-1, where
in L(K') these words are
written in leaves

a
b

a
b

c
a
▲

▪
a b

a●
▪

▪
b ●

▪
c a

▪
▪

▪▪

∈L(K) ∈L(K')

Unboundedness – basic problem
Input: nondeterministic closed lY-term K of sort o (symbols of arity 0 & 1)

Question: are there trees (paths) in L(K) with arb. many symbols “a”?
How to solve it?

step 1a term K of order m, where
L(K) is a set of words
written on branches

a term K' of order m-1, where
in L(K') these words are
written in leaves

a term K'' of order m-1,
where L(K'') has similar
words written on branches

step 2

▪
a b

a●
▪

▪
b ●

▪
c a

▪
▪

▪▪

∈L(K')

a
a

b
a
▲

∈L(K'')

Unboundedness – basic problem
Input: nondeterministic closed lY-term K of sort o (symbols of arity 0 & 1)

Question: are there trees (paths) in L(K) with arb. many symbols “a”?
How to solve it?

step 1a term K of order m, where
L(K) is a set of words
written on branches

a term K' of order m-1, where
in L(K') these words are
written in leaves

a term K'' of order m-1,
where L(K'') has similar
words written on branches

step 2

Repeat these steps until the order drops down to 0,
and solve the diagonal problem for a regular language.

Unboundedness – basic problem
Input: nondeterministic closed lY-term K of sort o (symbols of arity 0 & 1)

Question: are there trees (paths) in L(K) with arb. many symbols “a”?

a term K' of order m-1, where
in L(K') these words are
written in leaves

a term K'' of order m-1,
where L(K'') has similar
words written on branches

step 2

Example:
▪

a a
●●

▪
▪

a a
▪

a a

▪
▪

▪

▪
a a

●●
▪

 a
a a

▪
a a

 a
 ●

 a ▪

Idea:
1) Choose (nondeterministically) only one branch.
2) For every removed subtree with a, write a new a just above.

Unboundedness – basic problem
Input: nondeterministic closed lY-term K of sort o (symbols of arity 0 & 1)

Question: are there trees (paths) in L(K) with arb. many symbols “a”?

a term K' of order m-1, where
in L(K') these words are
written in leaves

a term K'' of order m-1,
where L(K'') has similar
words written on branches

step 2

Example:
▪

a a
●●

▪
▪

a a
▪

a a

▪
▪

▪

▪
a a

●●
▪

 a
a a

▪
a a

 a
 ●

 a ▪

Idea:
1) Choose (nondeterministically) only one branch.
2) For every removed subtree with a, write a new a just above.
3) The number of a's decreases at most logarithmically,
 if the branch is chosen correctly (always go to the subtree with more a's).
We skip the details.

Unboundedness – basic problem
Input: nondeterministic closed lY-term K of sort o (symbols of arity 0 & 1)

Question: are there trees (paths) in L(K) with arb. many symbols “a”?

step 1a term K of order m, where
L(K) is a set of words
written on branches

a term K' of order m-1, where
in L(K') these words are
written in leaves

S → A e c
A x y → a (A (b x) (d x))
A x y → x

S → ▪ A e
A → ▪ a (▪ A b))
A → ●

a
a

Example:

a
a

b
b

b
e

a
b

e▪
▪
▪

a
b

▪
▪

a
b

▪
▪

●

[Asada, Kobayashi – ICALP 2016]

Unboundedness – basic problem
Input: nondeterministic closed lY-term K of sort o (symbols of arity 0 & 1)

Question: are there trees (paths) in L(K) with arb. many symbols “a”?

step 1a term K of order m, where
L(K) is a set of words
written on branches

a term K' of order m-1, where
in L(K') these words are
written in leaves

S → ▪ A e
A → ▪ a (▪ A b))
A → ●

Example:

Idea: 1) Observe that an argument of type o can be used at most once.

S → A e c
A x y → a (A (b x) (d x))
A x y → x

Unboundedness – basic problem
Input: nondeterministic closed lY-term K of sort o (symbols of arity 0 & 1)

Question: are there trees (paths) in L(K) with arb. many symbols “a”?

step 1a term K of order m, where
L(K) is a set of words
written on branches

a term K' of order m-1, where
in L(K') these words are
written in leaves

S → ▪ A e
A → ▪ a (▪ A b))
A → ●

Example:

Idea: 1) Observe that an argument of type o can be used at most once.
 2) All arguments of type o are dropped (⇒ order decreases).
 3) Every subterm M N with N of type o can be replaced
 a) either by ▪ M N (when the argument is used in M),
 b) or by M (when the argument is ignored in M).

S → A e c
A x y → a (A (b x) (d x))
A x y → x

Unboundedness – basic problem
Input: nondeterministic closed lY-term K of sort o (symbols of arity 0 & 1)

Question: are there trees (paths) in L(K) with arb. many symbols “a”?

step 1a term K of order m, where
L(K) is a set of words
written on branches

a term K' of order m-1, where
in L(K') these words are
written in leaves

S → ▪ A e
A → ▪ a (▪ A b))
A → ●

Example:

Idea: 1) Observe that an argument of type o can be used at most once.
 2) All arguments of type o are dropped (⇒ order decreases).
 3) Every subterm M N with N of type o can be replaced
 a) either by ▪ M N (when the argument is used in M),
 b) or by M (when the argument is ignored in M).
 4) Additional work is required to choose correctly a) or b).

 We use intersection types here.

S → A e c
A x y → a (A (b x) (d x))
A x y → x

Type-guided transformation
Difficulty to overcome: given a nondeterministic closed lY-term K
of sort o, with symbols of arity 0 & 1 only, we want to say for every
its subterm M of order 0 whether M
● is “used in the generated tree”, or (equivalently)
● is “responsible for creating the leaf of the generated tree”

We use intersection types to achieve this goal!

Difficulty to overcome: given a nondeterministic closed lY-term K
of sort o, with symbols of arity 0 & 1 only, we want to say for every
its subterm M of order 0 whether M
● is “used in the generated tree”, or (equivalently)
● is “responsible for creating the leaf of the generated tree”

We use intersection types to achieve this goal!
Before we start:
● Notice that the considered property depends of the choice of the

generated tree: maybe one tree uses M to generate the leaf,
and another tree does not.

● Thus, we first guess whether M generates the leaf (nondeterministic
choice), and then we make sure that the choice is respected.

Type-guided transformation

Difficulty to overcome: given a nondeterministic closed lY-term K
of sort o, with symbols of arity 0 & 1 only, we want to say for every
its subterm M of order 0 whether M
● is “used in the generated tree”, or (equivalently)
● is “responsible for creating the leaf of the generated tree”

We use intersection types to achieve this goal!
Before we start:
● Notice that the considered property depends of the choice of the

generated tree: maybe one tree uses M to generate the leaf,
and another tree does not.

● Thus, we first guess whether M generates the leaf (nondeterministic
choice), and then we make sure that the choice is respected.

Let us first present the type system itself;
then, we present the transformation.

Type-guided transformation

For terms of sort o we need two types:
● this term is responsible for creating the leaf – denoted (1,o);
● this term is not responsible for creating the leaf – denoted (0,o).

Typeso={0,1}{o}

Type-guided transformation

For terms of sort o we need two types:
● this term is responsible for creating the leaf – denoted (1,o);
● this term is not responsible for creating the leaf – denoted (0,o).

Typeso={0,1}{o}

Rules:

Type-guided transformation

G a K : (s,o)⊤

G K : (s,o)⊤

G e : (1,o)⊤

In general, for terms of sort a =a1→...→ak→o:
● a type is of the form (s,Y1→...→Yk→o),

where s∈{0,1}, and YiTypesai

● In other words: Typesa={0,1}P(Typesa1)...P(Typesa1){o}
● s says whether the term is responsible for creating the leaf
● Yi is the set of types needed for the i-th argument

Type-guided transformation

In general, for terms of sort a =a1→...→ak→o:
● a type is of the form (s,Y1→...→Yk→o),

where s∈{0,1}, and YiTypesai

● In other words: Typesa={0,1}P(Typesa1)...P(Typesa1){o}
● s says whether the term is responsible for creating the leaf
● Yi is the set of types needed for the i-th argument

Rules:

Type-guided transformation

G nd K L : t⊤

G K : t⊤

G nd K L : t⊤

G L : t⊤

G a K : (s,o)⊤

G K : (s,o)⊤

G e : (1,o)⊤

In general, for terms of sort a =a1→...→ak→o:
● a type is of the form (s,Y1→...→Yk→o),

where s∈{0,1}, and YiTypesai

● In other words: Typesa={0,1}P(Typesa1)...P(Typesa1){o}
● s says whether the term is responsible for creating the leaf
● Yi is the set of types needed for the i-th argument

Rules:

Type-guided transformation

G nd K L : t⊤

G K : t⊤

G nd K L : t⊤

G L : t⊤

G a K : (s,o)⊤

G K : (s,o)⊤

G e : (1,o)⊤

G x : t⊤

t∈G(x)

In general, for terms of sort a =a1→...→ak→o:
● a type is of the form (s,Y1→...→Yk→o),

where s∈{0,1}, and YiTypesai

● In other words: Typesa={0,1}P(Typesa1)...P(Typesa1){o}
● s says whether the term is responsible for creating the leaf
● Yi is the set of types needed for the i-th argument

Rules:

Type-guided transformation

G nd K L : t⊤

G K : t⊤

G nd K L : t⊤

G L : t⊤

G a K : (s,o)⊤

G K : (s,o)⊤

G e : (1,o)⊤

G x : t⊤

t∈G(x) G lx.K : (s',Y→s)⊤
G[xY] K : (s,s)⊤

where s'=0, s=1 if Y contains a pair (1,?)
and s'=s otherwise

Rules:

Type-guided transformation

G nd K L : t⊤

G K : t⊤
G nd K L : t⊤

G L : t⊤

G a K : (s,o)⊤

G K : (s,o)⊤

G e : (1,o)⊤

G x : t⊤

t∈G(x) G lx.K : (s',Y→s)⊤

G[xY] K : (s,s)⊤

where s'=0, s=1 if Y contains a pair (1,?)
and s'=s otherwise

G K L : (sK+s1+...+sn,s)⊤

G K : (sK,{(s1,s1),...,(sn,sn)}→s)⊤ G L : (si,si) for each i⊤

Type-guided transformation

It is not enough to derive types; we need to transform terms (basing on
derived types)
We enrich type judgments:

G M : t ⇒ N
In environment G the term M can have type t and then it should be
transformed to term N.

⊤

Transformation:

Type-guided transformation

G nd K L : t ⇒ N ⊤

G K : t N⊤

G e : (1,o) ⇒ e ⊤ G a K : (s,o) ⇒ ▪ a N ⊤

G K : (s,o) N ⊤

G nd K L : t ⇒ N ⊤

G L : t N⊤

⊤
⊤

Transformation:

Type-guided transformation

G x : t ⇒ ● ⊤

t∈G(x) ord(x)=0
G x : t ⇒ xt ⊤

t∈G(x) ord(x)>0

Arguments of order 0 disappear!

G nd K L : t ⇒ N ⊤

G K : t N⊤

G e : (1,o) ⇒ e ⊤ G a K : (s,o) ⇒ ▪ a N ⊤

G K : (s,o) N ⊤

G nd K L : t ⇒ N ⊤

G L : t N⊤

⊤
⊤

Transformation:

Type-guided transformation

G lx.K : (s',Y→s) ⇒ N⊤

G[xY] K : (s,s) N⊤

where Y={t1,...,tn} and s'=0, s=1 if ti=(1,?) for some i, and s'=s otherwise

G lx.K : (s',Y→s) ⇒ lxt1
.....lxtn

.N⊤

G[xY] K : (s,s) N⊤ord(x)=0 ord(x)>0

Arguments of order 0 disappear!

G x : t ⇒ ● ⊤

t∈G(x) ord(x)=0
G x : t ⇒ xt ⊤

t∈G(x) ord(x)>0

G nd K L : t ⇒ N ⊤

G K : t N⊤

G e : (1,o) ⇒ e ⊤ G a K : (s,o) ⇒ ▪ a N ⊤

G K : (s,o) N ⊤

G nd K L : t ⇒ N ⊤

G L : t N⊤

⊤
⊤

Transformation:

Type-guided transformation

G K L : (sK+s1+...+sn,s) ⇒ N M1 ... Mn ⊤

G K : (sK,{(s1,s1),...,(sn,sn)}→s) N⊤ G L : (si,si) Mi for each i⊤

ord(x)>0

Transformation:

Type-guided transformation

⊤

G K : (sK,{(s1,s1),...,(sn,sn)}→s) N⊤ G L : (si,si) Mi for each i⊤

ord(x)>0

G K L : (sK+s1+...+sn,s) ⇒ N⊤
G K : (sK,{(s1,s1),...,(sn,sn)}→s) N⊤ G L : (si,si) Mi for each i⊤

s1+...+sn=0, ord(x)=0

G K L : (sK+s1+...+sn,s) ⇒ N Mj⊤

G K : (sK,{(s1,s1),...,(sn,sn)}→s) N⊤ G L : (si,si) Mi for each i⊤

sj=1, ord(x)=0

G K L : (sK+s1+...+sn,s) ⇒ N M1 ... Mn

Transformation:

Type-guided transformation

⊤

G K : (sK,{(s1,s1),...,(sn,sn)}→s) N⊤ G L : (si,si) Mi for each i⊤

ord(x)>0

G K L : (sK+s1+...+sn,s) ⇒ N⊤
G K : (sK,{(s1,s1),...,(sn,sn)}→s) N⊤ G L : (si,si) Mi for each i⊤

s1+...+sn=0, ord(x)=0

G K L : (sK+s1+...+sn,s) ⇒ N Mj⊤

G K : (sK,{(s1,s1),...,(sn,sn)}→s) N⊤ G L : (si,si) Mi for each i⊤

sj=1, ord(x)=0

M1, …, Mn are all terms such that G K : t ⇒ Mi

⊤G K : t nd M1 (… (nd Mn-1 Mn) ...)
⊤

G K L : (sK+s1+...+sn,s) ⇒ N M1 ... Mn

We have seen so far:
● A type system describing behavior of a (co-trivial) alternating tree

automaton
● A type system that helps in transforming path-generating lambda-terms

to tree-generating lambda-terms of order lower by one.
➔ This allows to solve the unboundedness problem

Next:
● A type system that solves the unboundedness problem directly.

Unboundedness directly via intersection types - idea

term K Böhm tree of K

a

a

a
a

a
a

a

a

a

path P in Böhm tree
derivation for K
approximating the
number of „a” on P

Property to describe (unboundedness): In the Böhm tree of K,
are there finite paths with arbitrarily many symbols “a”?

single letter: [P. – ITRS 2016]
multiple letters: [P. – FSTTCS 2017]

term K Böhm tree of K

a

a

a
a

a
a

a

a

a

path P in Böhm tree
derivation for K
approximating the
number of „a” on P

Easy to say using intersection types:
● which „a” of K will appear in the Böhm tree

Unboundedness directly via intersection types - idea

term K Böhm tree of K

a

a

a
a

a
a

a

a

a

path P in Böhm tree
derivation for K
approximating the
number of „a” on P

Quite easy to say using intersection types:
● which „a” of K will appear on P in the Böhm tree

Unboundedness directly via intersection types - idea

term K Böhm tree of K

a

a

a
a

a
a

a

a

a

path P in Böhm tree
derivation for K
approximating the
number of „a” on P

Quite easy to say using intersection types:
● which „a” of K will appear on P in the Böhm tree

Difficulty:
● single „a” of K may result in many „a” on P (l y. y (y bo)).aoo

Idea of solution:
● detect (and count) places where variable containing „a” is duplicated

Unboundedness directly via intersection types - idea

Intersection types refining sort o: a = a1→...→→o:

 T o = { (F, M, o) }

Intersection types

Solution: type derivations are labeled by flags and markers.

(for each order m we have flags of order m,
and a marker of order m)

flags used in the derivation

markers used in the derivation

Intersection types refining sort a = a1→...→ak→o:

 T a = { (F, M, T1→...→Tk→o) }

Intersection types

(for each order m we have flags of order m,
and a marker of order m)

sets of types refining a1, ..., ak flags used in the derivation

markers used in the derivation

Only finite derivations!
No weakening! (every type for an argument have to be used)
For every sort there are only finitely many types refining it!

Solution: type derivations are labeled by flags and markers.

Flags & markers

one marker of order 0 (= end of path)
flags of order 1 (= „a” on the path)

Böhm tree of K

Flags & markers

tree

terms

(after many b-reductions)

one marker of order 0 (= end of path)
flags of order 1 (= „a” on the path)

N1 Nk
...N2 N3 N4

Flags & markers

 b b ... b

only variables of order 0

N1 Nk
...N4 N3 N2

@
lx

x

number of order-1 flags unchanged!

the type system ensures that a variable
with marker is used exactly once!

one marker of order 0
flags of order 1

N1 Nk
...N2 N3 N4

Flags & markers

 b b ... b

only variables of order 0

number of order-1 flags unchanged!

N1 Nk
...N2 N3 N4N1 Nk

...N4 N3 N2

one marker of order 0
flags of order 1
one marker of order 1

Flags & markers

 b b ... b

only variables of order 0

number of order-1 flags unchanged!

N1 Nk
...N2 N3 N4N1 Nk

...N4 N3 N2

one marker of order 0
flags of order 1
one marker of order 1
flags of order 2 – places on the path to order-1 marker having a descendant with order-1 flag

Flags & markers

 b b ... b

only variables of order 0
log(fl1)£fl2£fl1

number of order-1 flags unchanged!

N1 Nk
...N2 N3 N4N1 Nk

...N4 N3 N2

one marker of order 0
flags of order 1
one marker of order 1
flags of order 2 – places on the path to order-1 marker having a descendant with order-1 flag

for some location of order-1 marker
(we always go to a subtree with more order-1 flags)

Flags & markers

K b ... b b ... b b b ... b

continue like this...

 fln ≈ fl1

only order 0only order 1

fl1 unchangedfl2 unchanged

fl2≈fl1fl3≈fl2

Flags & markers

K b ... b b ... b b b ... b

continue like this...

 fln ≈ fl1

only order 0only order 1

fl1 unchangedfl2 unchanged

fl2≈fl1fl3≈fl2

We put all the flags & markers in derivations for K.
The number of order-n flags approximates the number of „a” on some path in
the Böhm tree of K.

 there exist derivations for K with
 arbitrarily many order-n flags

in the Böhm tree of K
there exist paths with
arbitrarily many „a”

easy to decide

Intersection types refining sort a = a1→...→ak→o:

 T a = { (F, M, T1→...→Tk→o) }

Intersection types

(for each order m we have flags of order m,
and a marker of order m)

sets of types refining a1, ..., ak flags used in the derivation

markers used in the derivation

● Only finite derivations!
● No weakening! (every type for an argument have to be used)
● Some types are idemponent (when no marker is present) – can be used

arbitrarily many times
● Some types are not idempotent (when a marker is present) – can be used

only once
● But every kind of marker can be placed only in one place.
● In effect, for every sort there are only finitely many types refining it!

G K : t⊤Type judgments: , where c is the number of flag of order n
c

Advantages of the approach via intersection types:

● Better complexity
● We can obtain a reflection property:

Given a lambda-term K (closed, of sort o), we can compute a
lambda-term K' such that BT(K') is an enriched version of BT(K) –
namely, for every node v of BT(K') we have an additional bit saying
whether there are finite paths with arbitrarily many symbols “a”
starting in v.

Advantages of the approach via intersection types:

● Better complexity
● We can obtain a reflection property:

Given a lambda-term K (closed, of sort o), we can compute a
lambda-term K' such that BT(K') is an enriched version of BT(K) –
namely, for every node v of BT(K') we have an additional bit saying
whether there are finite paths with arbitrarily many symbols “a”
starting in v.

● Consequence: We can decide the WMSO+U logic on those Bohm
trees – given a sentence f of WMSO+U, and a lambda-term K
(closed, of sort o), we can decide whether f holds in BT(K).
[P. – STACS 2018]

MSO+U extends MSO by the following „U” quantifier:

UX.f(X)
f(X) holds for sets of arbitrarily large size

n∈ℕ X (n<|X|< ∧ f(X))

This construction may be nested inside other quantifiers,
and f may have free variables other than X.

WMSO+U

MSO+U logic (introduced by Bojańczyk in 2004)

MSO+U extends MSO by the following „U” quantifier:

UX.f(X)
f(X) holds for sets of arbitrarily large size

n∈ℕ X (n<|X|< ∧ f(X))

This construction may be nested inside other quantifiers,
and f may have free variables other than X.

WMSO+U logic (introduced by Bojańczyk in 2004)

We consider Weak MSO+U (quantification over finite sets only):

X →
fin

X

e.g. we can express that there exist paths with arbitrarily many „a”

WMSO+U

Thank you!

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69
	Slajd 70
	Slajd 71
	Slajd 72
	Slajd 73
	Slajd 74
	Slajd 75
	Slajd 76
	Slajd 77
	Slajd 78
	Slajd 79
	Slajd 80
	Slajd 81
	Slajd 82
	Slajd 83
	Slajd 84
	Slajd 85
	Slajd 86
	Slajd 87
	Slajd 88
	Slajd 89

