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Higher-order recursion schemes – what is this?

Definition
Recursion schemes = simply-typed lambda-calculus + recursion
or: a context-free grammar in which nonterminals can take arguments

In other words:
● programs with recursion
● higher-order functions (i.e., functions taking other functions as

parameters)
● every function/parameter has a fixed type
● no data values, only functions

We consider here nondeterministic schemes.



  

Higher-order recursion schemes – what is this?

Definition
Recursion schemes = simply-typed lambda-calculus + recursion
or: a context-free grammar in which nonterminals can take arguments

In other words:
● programs with recursion
● higher-order functions (i.e., functions taking other functions as

parameters)
● every function/parameter has a fixed type
● no data values, only functions
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      sequential programs

programs with H-O recursion

     finite-state systems

H-O recursion schemes

abstractionactual objects



  

Higher-order recursion schemes – example

Rules:
S       → A a
A f     → A (D f)
A f     → f b
D f x → f (f x)

Here: S,A,D are nonterminals (where S – starting nonterminal),
a,b are terminals,
f,x are variables (parameters)
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A f     → A (D f)
A f     → f b
D f x → f (f x)

Here: S,A,D are nonterminals (where S – starting nonterminal),
a,b are terminals,
f,x are variables (parameters)

The same using another syntax:
fun S() = { A(a); }
fun A(f) = { if ? then A(lx.D(f,x)) else f(b); }
fun D(f,x) = { f(f(x)); } 



  

Higher-order recursion schemes – example

Rules:
S       → A a
A f     → A (D f)
A f     → f b
D f x → f (f x)

Here: S,A,D are nonterminals (where S – starting nonterminal),
a,b are terminals,
f,x are variables (parameters)

In our world, everything is required to have a fixed type:
S : o,     A : (o→o)→o,     D : (o→o)→o→o
a : o→o,    b : o
f : o→o,    x : o 
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Rules:
S       → A a
A f     → A (D f)
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Dynamics:
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Higher-order recursion schemes – example

Rules:
S       → A a
A f     → A (D f)
A f     → f b
D f x → f (f x)

Dynamics:
S → A a → A (D a) → A (D (D a)) → D (D a) b → D a (D a b)
   → a (a (D a b))



  

Higher-order recursion schemes – example

Rules:
S       → A a
A f     → A (D f)
A f     → f b
D f x → f (f x)

Dynamics:
S → A a → A (D a) → A (D (D a)) → D (D a) b → D a (D a b)
   → a (a (D a b))→ a (a (a (a b)))



  

Higher-order recursion schemes – example

Rules:
S       → A a
A f     → A (D f)
A f     → f b
D f x → f (f x)

Dynamics:
S → A a → A (D a) → A (D (D a)) → D (D a) b → D a (D a b)
   → a (a (D a b))→ a (a (a (a b)))

Basic setting:
● Terminals are either of type o→o (one argument of ground type),

or of type o (no arguments) 
Then a scheme generates a word (e.g., a a a a b)
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Basic setting:
● Terminals are either of type o→o (one argument of ground type),

or of type o (no arguments) 
Then a scheme generates a word (e.g., a a a a b)

Recognized language:  {a2nb : n∈ℕ}



  

Higher-order recursion schemes – example

Rules:
S       → A a
A f     → A (D f)
A f     → f b
D f x → f (f x)

Recognized language:  {a2nb : n∈ℕ}

Another view: generating a single 
infinite tree, containing all possible 
derivations of the scheme (“∨” = branching)
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Model checking for schemes

General goal: verifying properties of languages/trees 
generated by schemes

Theorem [Ong 2006]
There is an algorithm, which given a recursion scheme G and 
an MSO formula f checks whether f holds in the tree generated
by G.
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General goal: verifying properties of languages/trees 
generated by schemes

Theorem [Ong 2006]
There is an algorithm, which given a recursion scheme G and 
an MSO formula f checks whether f holds in the tree generated
by G.

Moreover: there exist (experimental) tools that take as input
a program in a functional language, and a property, and check
whether the program satisfies this property. They approximate
the program by a recursion scheme, and then they check 
the property in the tree generated by the scheme.

Aim of this work: verify properties not expressible in MSO.

Model checking for schemes
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Input: a scheme S recognizing L, set of letters A
Question: is it the case that for every n∈ℕ there is a word w∈L 

containing every letter from A at least n times?



The diagonal problem
Input: a scheme S recognizing L, set of letters A
Question: is it the case that for every n∈ℕ there is a word w∈L 

containing every letter from A at least n times?

Example: 
A = {a, b}
L1 = {anb | n∈ℕ}{abn | n∈ℕ} – answer = NO
L2 = a*b* – answer = YES

L3 = {anbn+3 | n∈ℕ} – answer = YES

L4 = {bbb(ab)n | n∈ℕ} – answer = YES



The diagonal problem
Input: a scheme S recognizing L, set of letters A
Question: is it the case that for every n∈ℕ there is a word w∈L 

containing every letter from A at least n times?

Remark
Notice that this is not a regular property of the tree generated by S, i.e.,
the tree containing all words from L on particular branches. 
We say here that “something is unbounded”.
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1. Interesting on its own: sometimes we want to know whether some
    event may happen arbitrarily many times, or not.
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Question: is it the case that for every n∈ℕ there is a word w∈L 

containing every letter from A at least n times?

Motivation?
1. Interesting on its own: sometimes we want to know whether some
    event may happen arbitrarily many times, or not.
2. It is easy to reduce the problem of computing the downward closure
    of the language recognized by a scheme to the diagonal problem 
    The downward closure L of a language L contains all words that can 
    be obtained from words in L by removing some letters [Zetzsche 2015].
    The downward closure is always a regular language.

examples: 
(a*b*) = a*b*

{anbn+3 | n∈ℕ} = a*b*

{bbb(ab)n | n∈ℕ} = {a,b}*
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The diagonal problem
Input: a scheme S recognizing L, set of letters A
Question: is it the case that for every n∈ℕ there is a word w∈L 

containing every letter from A at least n times?

Motivation?
1. Interesting on its own: sometimes we want to know whether some
    event may happen arbitrarily many times, or not.
2. It is easy to reduce the problem of computing the downward closure
    of the language recognized by a scheme to the diagonal problem 
    The downward closure L of a language L contains all words that can 
    be obtained from words in L by removing some letters [Zetzsche 2015].
2'. For languages recognized by schemes, it is undecidable whether 
    L=A*, L1=L2, etc. But we can check this approximately, by checking 
    whether L=A*, L1=L2, etc.
3. The problem “is there a piecewise testable language (i.e., boolean
    combination of downward closed languages) containing L1 and not 
    intersecting with L2” reduces to the diagonal problem [Czerwiński, 

    Martens, van Rooijen, Zeitoun 2015]. This gives a more refined approxima-
    tion for disjointness of L1 and L2 than the test L1L2=.



The diagonal problem
Input: a scheme S recognizing L, set of letters A
Question: is it the case that for every n∈ℕ there is a word w∈L 

containing every letter from A at least n times?

Theorem [Clemente, P., Walukiewicz, Salvati 2016]
The diagonal problem for recursion schemes is decidable.

This paper: further improvements
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a word written on a branch

a scheme S of order m-1 with 
this word written in leaves 
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Input: a scheme S recognizing L, set of letters A
Question: is it the case that for every n∈ℕ there is a word w∈L 

containing every letter from A at least n times?
How to solve it?

step 1a scheme S of order m with 
a word written on a branch

a scheme S of order m-1 with 
this word written in leaves 

Order of a type:          
ord(o) = 0
ord(a1→...→ak→o) = 1+max(ord(a1), …, ord(ak))

For example:
● ord(o) = 0,
● ord(o→o) = ord(o→o→o) = 1,
● ord(o→(o→o)→o) = 2 

Order of a HORS = maximal order of (a type of) its nonterminal



The diagonal problem
Input: a scheme S recognizing L, set of letters A
Question: is it the case that for every n∈ℕ there is a word w∈L 

containing every letter from A at least n times?
How to solve it?

step 1a scheme S of order m with 
a word written on a branch

a scheme S of order m-1 with 
this word written in leaves 

S    → A e
A x → a (A (b x))
A x → x

S → ▪ A e
A → ▪ a (▪ A b))
A → ●
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We have generalized the previous setting: our new scheme recognizes
a language of trees, not a language of words
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Question: is it the case that for every n∈ℕ there is a word w∈L 
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step 1a scheme S of order m with 
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S    → A e
A x → a (A (b x))
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A → ▪ a (▪ A b))
A → ●

Example:

Idea: 1) Observe that an argument of type o can be used at most once.
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S → ▪ A e
A → ▪ a (▪ A b))
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Example:

Idea: 1) Observe that an argument of type o can be used at most once.
    2) All arguments of type o are dropped (⇒ order decreases).
    3) Every subterm M N with N of type o can be replaced
         a) either by ▪ M N (when the argument is used in M),
         b) or by M (when the argument is ignored in M).
    



The diagonal problem
Input: a scheme S recognizing L, set of letters A
Question: is it the case that for every n∈ℕ there is a word w∈L 

containing every letter from A at least n times?
How to solve it?

step 1a scheme S of order m with 
a word written on a branch

a scheme S of order m-1 with 
this word written in leaves 

S    → A e
A x → a (A (b x))
A x → x

S → ▪ A e
A → ▪ a (▪ A b))
A → ●

Example:

Idea: 1) Observe that an argument of type o can be used at most once.
    2) All arguments of type o are dropped (⇒ order decreases).
    3) Every subterm M N with N of type o can be replaced
         a) either by ▪ M N (when the argument is used in M),
         b) or by M (when the argument is ignored in M).
    4) Additional work is required to choose correctly a) or b).  
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Input: a scheme S recognizing L, set of letters A
Question: is it the case that for every n∈ℕ there is a word w∈L 

containing every letter from A at least n times?
How to solve it?

step 1a scheme S of order m with 
a word written on a branch

a scheme S of order m-1 with 
this word written in leaves 

a scheme S of order m-1 with
a similar word written on a branch

step 2
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Idea:
1) Choose (nondeterministically) only one branch.
2) For every removed subtree with a, write a new a just above.

Example:
▪
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step 2

Repeat these steps until the order drops down to 0,
and solve the diagonal problem for a regular language.



The diagonal problem
Input: a scheme S recognizing L, set of letters A
Question: is it the case that for every n∈ℕ there is a word w∈L 

containing every letter from A at least n times?
How to solve it?

step 1a scheme S of order m with a 
“word” written on |A| branches

a scheme S of order m-1 with 
this “word” written in leaves 

a scheme S of order m-1 with
a similar “word” written on |A| branches

step 2

Repeat these steps until the order drops down to 0,
and solve the diagonal problem for a regular language.

Complexity of this solution?
● Every step applied to a scheme of order m increases its size 

m-fold exponentially.
● In total the complexity becomes about m2-EXPTIME
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we recover the solution to the diagonal problem.
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Contribution
In this paper we give a new algorithm solving the diagonal problem for
recursion schemes.

Complexity:
● For schemes of order m (recognizing languages of words), the number 

of types is (m-1)-fold exponential. 
Thus the problem is in (m-1)-EXPTIME (or in NP for m{0,1}).

● We also prove a corresponding lower bound: the problem is 
(m-1)-EXPTIME-complete.

● For schemes generating languages of trees, the problem is
m-EXPTIME-complete (or NP-complete for m=0). 

● This complexity is high. But all known problems for schemes of order
m are at least (m-1)-EXPTIME-hard, even the question whether the
recognized language is nonempty. Beside of that, for some problems
there exist tools that work in practice.

● All algorithms for schemes that were implemented are based on type
systems, so also our algorithm have the potential of working in 
practice (typing is complicated in the worst-case, but usually it is 
much easier).



Contribution
In this paper we give a new algorithm solving the diagonal problem for
recursion schemes.

Advantages of our algorithm:
● Faster
● Based on a type system
● It gives also the reflection property:

Recall that we can see a recursion scheme as a generator of an infi-
nite tree, containing all words of the recognized language on branches.
Given a scheme G we can construct a scheme H which generates
the same tree as G, but enriched with additional labels: the label
of every node of the tree says what is the answer to the diagonal
problem for the subtree starting in this node (thus we have not only
the answer for the whole tree, but also for every subtree).



Contribution
In this paper we give a new algorithm solving the diagonal problem for
recursion schemes.

Further work:
● The algorithm for the diagonal can be used for model-checking

trees generated by schemes against formulas of the WMSO+U logic
[P., submitted to STACS 2018]

● This logic extends the MSO logic (weak variant – only quantification
over finite sets) with the U quantifier:
UX.f means that f holds for some arbitrarily large finite sets X



  

Thank you!
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